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Abstract— We present a framework for planning complex
motor actions such as pouring or scooping from arbitrary start
states in cluttered real-world scenes. Traditional approaches to
such tasks use dynamic motion primitives (DMPs) learned from
human demonstrations. We enhance a recently proposed state-
of-the-art DMP technique capable of obstacle avoidance by
including them within a novel hybrid framework. This comple-
ments DMPs with sampling-based motion planning algorithms,
using the latter to explore the scene and reach promising regions
from which a DMP can successfully complete the task. Exper-
iments indicate that even obstacle-aware DMPs suffer in task
success when used in scenarios which largely differ from the
trained demonstration in terms of the start, goal, and obstacles.
Our hybrid approach significantly outperforms obstacle-aware
DMPs by successfully completing tasks in cluttered scenes for a
pouring task in simulation. We further demonstrate our method
on a real robot for pouring and scooping tasks.

I. INTRODUCTION

Robots deployed in dynamic, real-world environments often
need to perform manipulation tasks in which the objective
extends beyond reaching a goal configuration at the end of the
motion. For instance, consider the action of pouring water
into a bowl (Fig. 1). Here, it is not enough to place the
manipulator above the bowl; we must also ensure that water
does not get spilled outside the bowl. Planning such complex
motor actions [1] is a challenging problem which traditional
motion-planning algorithms cannot model.

A canonical approach to modeling complex motor actions
is dynamic motion primitives (DMPs) [1], [2]. Here, one
learns reusable modules to approximate behaviours from a
single human demonstration. The demonstration is modeled as
a dynamical system, features of which are learned, allowing
the recreation of trajectories similar to the demonstration for
novel starts and goals. More recently, DMPs methods [3]
have been designed to address obstacle avoidance.

Deploying DMPs in real-world environments remains
a challenge for two reasons. Firstly, the additional hard
constraint of obstacle avoidance might conflict with the
underlying task objectives, as in Fig. 1 where obstacles
block the approach towards the target bowl in a pouring
task. The presence of obstacles also leads to the possibility of
local-minima when using potential-based obstacle avoidance
strategies [3]. Current attempts to avoid obstacles based on
DMPs face challenges in increased clutter. Secondly, the
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Fig. 1. A pouring demonstration in a cluttered tabletop environment. The
robot has to execute a motion that pours the contents of the cup into the
bowl, while avoiding the clutter in the scene.

problem at hand can be significantly different from the
training demonstration. For instance in Fig. 1 the cup and
bowl can be situated differently from the poses from the
demonstration and new obstacles might be present. In that case
the DMP adapts the motion but can introduce artifacts that
affect task success, such as tilting the cup before it reaches the
bowl. If a DMP is specified for the end-effector, it might also
be difficult to follow continuously using inverse kinematics
solvers. In contrast, computing obstacle-free motions between
general start-goal pairs for high dimensional robots is a
strength of sampling-based motion planning [4], [5].

Instead of a purely sampling-based or DMP-centric ap-
proach, we propose a hybrid motion planning framework
for complex motor actions. Our central insight is that
DMPs and sampling-based motion planning algorithms have
complementary strengths. Sampling-based algorithms excel
at generating collision-free motions connecting start and goal
configurations in well-modeled problems for high dimensional
systems. On the other hand, DMPs are a better fit than
sampling-based algorithms for settings in which the validity,
constraints, and objective of the motion cannot be easily
modeled but can be deduced from demonstrations, as is the
case in complex motor actions.

We propose a novel general framework that can discover
complex motor actions that achieve an underlying task
objective in cluttered scenes. Our framework divides the
motion plan into two parts. The first constitutes easily
modeled motions leading to regions that are likely to yield
high quality, valid DMP motions. This part of the plan
avoids obstacles, and can be effectively discovered using
a sampling-based planner. We build on a multi-goal motion
planner [6] capable of efficiently reaching promising regions
from where DMPs are attempted. The second part of the
motion is a complex motor action that is generated using an
obstacle-aware DMP [3]. For the specific task we consider a
DMP that is trained from a demonstration of the task. The
integration proposed by our framework allows us to solve
general cluttered problems that cannot be addressed by state-
of-the-art complex motor action generation schemes [3]. We
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Fig. 2. The key problem being addressed in the current work is highlighted in a pouring task. Left: A DMP in an empty scene for a problem that
resembles the training demonstration succeeds. Middle: An obstacle-aware DMP [3] avoids the clutter but fails at the task because it tilted the cup too
early. Right: Our proposed hybrid method motion plans to different regions from where DMPs are evaluated. Here planning avoided all the obstacles to the
right of the table, and a DMP was discovered from the left of the table which successfully poured all of the contents of the cup into the bowl.

evaluate our framework for a pouring task in randomized
benchmarks where the start and target of the action are varied.
As the extent of clutter in the tabletop scene is increased our
hybrid solution significantly outperforms an obstacle-aware
DMP-based method [3] in pouring the contents of a cup
into a bowl. Fig. 2 illustrates a case where our approach
is successful in a cluttered environment. Demonstrations of
pouring and scooping actions on a Fetch robot highlight the
applicability of our method to real world problems.

The rest of the paper is organized as follows. Section II pro-
vides an overview of related work. Section III gives a formal
description of the problem statement. Section IV describes
the details behind the hybrid planning strategy. Section V
describes our experiments and real-world demonstrations.

II. RELATED WORK

Modelling complex motor actions: Various lines of work
have looked at the problem of generating complex mo-
tions for robotic systems that exhibit desired task-specific
characteristics. Splines, potentials and other optimization
techniques [7]–[10] are commonly used tools. However
these techniques require well-defined optimization objectives
which might not always be available especially in the
case of complex motor actions. Human demonstrations [11]
have been suggested as an effective reference for such
motions. To this end, several learning/statistical tools have
been proposed [12]–[14]. However, these often require large
demonstration datasets which can be cumbersome to collect
in learning-from-demonstration settings. Assuming that the
primitives can be neatly parametrized, it has been shown
that learning parameters for effective actions can provide
increased success rates [15]. Our work in contrast deals with
arbitrary primitives while allowing sampling-based motion
planners to help alleviate the complexity of the action.
DMPs: DMPs [1], [2], [16] were proposed as a trajectory
modeling framework to learn representations from single
demonstrations. While DMPs are effective at encoding
stylistic behaviours, they provide no guarantees of resolving
into intended motion. Generalization to new queries is
dependent on hyperparameters and the relative start and
goal positions. This gap becomes even more pronounced in
cluttered environments where the system must avoid obstacles
while maintaining desired kinematic profiles. Such limitations
are shared by all current available representation tools - any
query vastly different from the dataset distribution is likely
to yield low success. Since DMPs are a well-formulated and
canonical modeling tool, this paper focuses on them.

DMPs with obstacle avoidance: The problem of obstacle
avoidance is usually addressed by introducing additional
potential fields associated with the obstacles [3], [17]. This
is likely to lead to local-minima in high clutter environments.
Further, these potentials must be carefully designed based on
the task and environment to ensure that the local perturbations
don’t conflict with the underlying task objectives (if even such
a potential field exists). Challenging clutter in scenes makes it
difficult to respect the desired motion profiles while avoiding
obstacles. The state-of-the-art obstacle avoidance proposes a
volumetric scheme using superquadratic potentials [3]. Our
work compares against the strategy defined in this approach.

Traditional motion planners: On the opposite end of the
spectrum, sampling-based planners [4], [5] have proven to be
effective planners in high-dimensional spaces. A particular
extension to traditional tree-based planners [6], relevant to
this work, allows for the lazy evalution of multiple goals, i.e.
it will resolve to a grounding of the goal that is the ’easiest’
to find. Sampling-based planners only allow for constrained
point-to-point (or point-to-region) queries and fall short of
effectively modeling complex motion characteristics that
DMPs are capable of. Trajectory optimization methods [10],
[18] avoid the sampling step and attempt to deform trajec-
tories constrained by some convex objective function. Tree
based sampling planners have benefited from incorporating
optimization planners to exploit local domain information
[19]. Methods such as splines require a well-formed objective
function which is often non-trivial to construct. Our work
builds upon the idea of extending sampling-based planners
using techniques that can resolve arbitrary motions.

Motion primitives alongside sampling-based planners:
Motion primitives have been used to bias the sampling strategy
to acheive motions simlar to the the primitive [20]. We remark
that the final solution is only as good as the inital primitive
grounding and the sampling risks loosing key characteristics.
Another class of work has proposed using primitives for the
exploration of the configuration space (C-Space) in sampling-
based planners [21], [22]. These methods propose variants
to tree-based planning algorithms that use primitives to grow
the tree. These methods are typically interested in using
primitives to speed-up the motion-planning problem, rather
than the successful execution of a desired motor action.
Similar ideas have been explored in the context of grasp
planning [23]. Simultaneous grasp and motion-planning [24]
has considered coupling grasping attempts with tree-based
planners. Though these hybrid methods build on sampling-
based planning schemes, the objective is still to plan to goal
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configurations or end-effector poses. In contrast our proposed
hybrid framework accomplish underlying task objectives
instead of simply reaching a goal, by using DMPs from
different parts of the search space to express motion profiles
of task demonstrations.

III. PROBLEM FORMULATION

A robotic arm r has a d-dimensional C-Space Q ⊂ Rd. The
workspace W ∈ SE(3) also contains obstacle geometries,
causing robot configurations x ∈ Q to be invalid through
collisions or collision-free, creating subsets Qobs and Qfree.
The robotic arm has a hand geometry called an end-effector.
A point in the workspace is denoted by a pose p ∈ W . There
exists a mapping (forward kinematics) from a configuration to
an end-effector pose, FK : Q →W , and the inverse mapping
is IK : W → Q. A sequence of motions performed by a
robot called a trajectory, is represented by a parameterized
curve in the C-Space, π : [0, 1] → Q. Here π(0) and π(1)
denote the start and end of the trajectory respectively. Let
π(t′ : t′′) denotes a segment of the trajectory between time
parameter instants t′ and t′′. For every C-Space trajectory
there exists a corresponding workspace end-effector trajectory
π̄, and vice versa. We are often interested in generating robotic
motions that exhibit specific characteristics, or obey certain
constraints for their C-Space, or workspace trajectories. In
this work we want to plan for complex motor actions.
Definition 1 Motion Planning The general motion planning
problem is defined by a start configuration x0 ∈ Qfree,
and a goal set Qgoal ⊂ Qfree. A solution trajectory π is
a parametrized curve such that π : [0, 1] → Qfree, π(0) =
x0, π(1) ∈ Qgoal, π(i) ∈ Qfree∀i ∈ [0, 1]. The motion
planning subroutine is defined as

πMP ← MP(x0,Qgoal,Qfree).

Of interest to us are motions which represent complex
motor behaviors [1] (Sec 2.1) referred to as complex motor
actions, associated with underlying task objectives.

Arbitrary human-centric motor task objectives are difficult
to model with engineered constraints and goals. For instance
in pouring such a goal function might measure the amount
of cup contents that end up in the bowl, and the motion ends
at an end-effector pose right above the bowl. We assume that
for a task, we can estimate this from an action demonstration
(πdemo

1) that successfully achieves the task objective.
Given two trajectories, their similarity is calculated using

a spatio-temporal error measure, dynamic time warping
(DTW) [25], [26] as D(π1, π2). The choice of DTW allows for
temporal flexibility, a more relaxed error measure compared
to euclidean distance. Assume that two trajectories are similar
if D(π1, π2)−1 > Γ for threshold Γ.
Definition 2 Complex Motor Action from Demonstration
Given a demonstration of a successful complex motor action
πdemo, a trajectory π, similar to πdemo, i.e., D(π, πdemo) < Γ,
is considered a complex motor action from demonstration.
Definition 3 Complex Motor Action Generation Given a
task-specific goal pgoal, and a start x0, a module capable

1The demonstration might be recorded in either Q or W .

of generating a complex motor action from demonstration
outputs πCMA such that D(πCMA, πdemo) < Γ, πCMA(0) =
x0, FK(πCMA(1)) = pgoal.

πCMA ← CMA(x0, pgoal,Qfree).

Note that it’s not necessary that the complex motor action
trajectory πCMA remains collision-free. For that we introduce
the stronger guarantees afforded by planning. We now define
the primary problem of planning for complex motor actions.
Problem Definition
Input: The problem specification outlined by
• a demonstration of a successful action execution, πdemo

• a starting configuration of the robotic arm x0
• a task objective that defines a goal region Qgoal

Output: A solution trajectory π such that,
• π(0) = x0, π(1) ∈ Qgoal

• π(t) ∈ Qfree ∀t ∈ [0, 1]
• π includes a sequence of motions that fulfills the task,

i.e., ∃t′, t′′ ∈ [0, 1] s.t. D(π(t′ : t′′), πdemo)−1 > Γ.

IV. APPROACH

We propose a hybrid planning framework to compute
complex motor actions. The key idea is to build on a sampling-
based motion planning algorithm that starts growing a search-
tree from the start configurations eventually covering the
C-Space. During this exploration, a complex motor action
generation module is invoked from different parts of the
C-Space. This is done to compute motions, from various
configurations to a task-specific goal region, similar to the
demonstration. Such motions are only accepted if they remain
collision free with obstacles in the scene. We attempt multiple
complex motor action rollouts, and ensure that we reach parts
of the C-Space from where these motions are collision-free,
thereby discovering a valid motion. Now we introduce hybrid
planning in the context of complex motor actions.
Hybrid Planning: In our proposed hybrid framework the
components involved are a hybrid planning module HP, a
transition set of configurations QHP, and a hybrid planning
solution trajectory πHP. The current task specification deter-
mines a set of target end-effector posesWgoal ⊂ W . It is up to
the hybrid planning module to discover a trajectory that begins
at x0, and ends at a configuration that has the end-effector
at a pose pgoal ∈ Wgoal. The trajectory has to be collision
free. It is assumed that there exists a transition QHP, such
that motion planning can connect to a configuration within it.
From the same such transition configuration a complex motor
action generator should roll out a trajectory that is a) similar
to the demonstration πdemo of the complex motor action, b)
ends at a task specific goal region, and c) is collision-free.

πHP ← HP(x0,Wgoal,Qfree)

s.t., ∃QHP ⊂ Qfree, ∃t ∈ [0, 1), πHP(t) ∈ QHP,

πHP(0 : t)← MP(x0, πHP(t),Qfree),

πHP(t : 1)← CMA(πHP(t), pgoal,Qfree)

s.t. FK(πHP(1)) = pgoal ∈ Wgoal

It is the responsibility of the hybrid planning framework
to discover transition regions QHP, use a motion planner to
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achieve them, and execute valid motions from these regions
to successfully complete the complex motor action. Our
framework has two primary components, a sampling-based
forward search tree and an obstacle aware DMPs. The first
allows us to navigate to promising regions while avoiding
obstacles and the second allows us to generate complex motor
actions. The high-level approach is illustrated in Fig. 3.

A. Components of our Hybrid Framework

Sampling-based Forward-search Tree: We build a
sampling-based forward search tree rooted at x0 and sample
to grow the tree across Qfree to compute πHP(0 : t) that
ends at a transition point xend = πHP(t). A randomized tree-
based exploration is probabilistically complete, i.e., given
enough samples it will explore all reachable parts of Qfree.
The exploration of Qfree must be directed towards transition
points from where different rollouts of the complex motor
action can be attempted. The complex motor action generation
module, when triggered from different regions of the Qfree,
exhibits varying rates of success. This gives rise to multiple
goal regions with varying likelihood of successful execution
of the complex motor action. We find previous work [6]
particularly helpful in weighing and prioritizing different
goal regions, although any sampling-based planner with
similar functionality can be used. This allows for an adaptive
exploration of the search space. For instance, consider a
scenario where navigating to the region of highest promise
is unreachable due to obstacles. The planner must adapt and
advance towards alternative regions.
Obstacle-aware DMPs: Given the demonstration, πdemo,
we build complex motor action representation using DMPs
[1], [2] with state-of-the-art obstacle avoidance [3]. This
serves as our underlying complex motor action generation
module. Given workspace demonstration2, π̄demo, we train
a reusable complex motor action generation module, DMP.
Leveraging the workspace-centric power of DMPs, such a
module takes as input a starting state x0, from where the end-
effector pose pstart is recorded as FK(x0), a task relevant
goal pose, pgoal ∈ W , and returns a workspace trajectory π̄
that is similar to π̄demo i.e., D(π̄, π̄demo) < Γ. The motions
of the robot ultimately exist in the C-Space so the inverse
kinematics mapping IK can be used to obtain a C-Space
trajectory πCMA from π̄. The workspace trajectories represent
a sequence of poses p ∈ SE(3) over time, where each the
ith SE(3) coordinate is pi. The DMP models each coordinate
of a workspace trajectory as a second order dynamical system,
with additional non-linear terms [2] (eq 2.1).
Training the DMP: Given a demonstration π̄demo, ending at
π̄demo(1), the terms for the ith coordinate of an instantaneous
demonstrated pose pdemo, and its higher order derivatives,
these terms can be expressed as a second order system. Within
this system, a forcing function fdemo is defined to capture
the motion profile of π̄demo as follows [2] (Eq 2.12):

f idemo = τ2p̈idemo − α(β(π̄demo(1)i − pidemo)− τ ṗidemo)

2In this work we focus on demonstrations arising from humans

Fig. 3. The hybrid planning framework for a pouring action. We build a
tree from the start, and invoke a DMP for complex motor action generation.

Here τ is the temporal scaling term, and α,β are the spring
and damping constants. We choose to represent f idemo as a
weighted linear combination of exponential basis functions,
and use locally weighted regression to learn the parameters,
from which we learn f idemo. This is used to generate π̄.
Generating a complex motor action from demonstration:
Given the new problem trying to reach pgoal, while following
an action similar to π̄demo, we want to compute the ith

coordinate of instantaneous poses pi along π̄ modeled as
τ p̈i = α(β(pigoal − pi)− ṗi) + f idemo + φi.

Note that this is essentially a reorganization of the second
order system model, but using the current goal pgoal, and
the pre-trained forcing function component f idemo to force
the current motion to be similar to π̄demo temporally and
spatially. The term φi is an additional term responsible for
potential-based obstacle avoidance [3]. The sequence of poses
p generates π̄, which is converted to πCMA using IK.
Limitations of DMPs: DMPs, although effective modeling
tools to capture motion features, are susceptible to errors
in cluttered environments, or when the query vastly differs
from the demonstration. These scenarios are likely to yield
warped paths that violate the underlying task objective.
Furthermore the output workspace path π̄ might not have
a continuous mapping to Q if the IK is infeasible along
the way, leading to a discontinuous πCMA. These limitations
make relying exclusively on DMPs ineffective and necessitate
the incorporation into a sampling-based planning framework.

B. Algorithmic Details

Algorithms 1 and 2 detail the high-level steps of our
approach. Alg 2 is responsible for exploring the different
groundings of the complex motor action, while Alg 1 builds a
sampling-based tree to reach the previously explored transition
regions similar to previous work [6]. It adaptively grows
towards regions from where DMP rollouts are promising
while biasing towards easier to reach transitions.
Sampling candidates: The limitations of DMPs underscores
the importance of deliberately choosing promising transition
configurations as points to transition between motion planning
and DMPs. In this work we choose to sample these points
from a task-space region (TSR) [27] that is defined from
the complex motor action objective. A TSR is essentially
a set of constraints in SE(3) on the end-effector of the
manipulator, and maps to the configuration space of the robot.
For instance the TSR for pouring can be defined as a region
around the bowl, with the cup frame fixed to be upright.
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Algorithm 1: HYBRIDPLANNER

input : Start configuration x0, Task specific goal
region Wgoal, Demonstration π̄demo, Qfree

output : Solution trajectory π
1 trainDMP(π̄demo)
2 Theap ← TRANSITIONSAMPLER(Wgoal,Qfree)
3 π ← ∅
4 while not done do
5 if GoalBiasing() then xrand ← GetTop(Theap)
6 else xrand ← RandomSample()
7 xtree ← SelectNode(xrand)
8 xnew ← Propagate(xtree, xrand)
9 if IsValid(xtree, xnew) then

10 GrowTree(xtree, xnew)
11 if xnew ∈ Theap then
12 π ← ReconstructMotorAction(xnew)
13 return π

14 if GoalBiasing() then
Promote(Theap, xrand)

15 else if GoalBiasing() then
Penalize(Theap, xrand)

16 return π

Algorithm 2: TRANSITIONSAMPLER

input : Task specific goal region Wgoal, Qfree

output : A sorted heap Theap of transition states
1 Theap ←− ∅ while not done do
2 xtransition ← SampleTransitionPoint(Qfree)
3 pgoal ← SampleGoalPose(Wgoal)
4 πDMP ← DMP(xtransition, pgoal,Qfree)
5 Wquality = Score(πDMP )
6 if Wquality > Γ and IsValid(πDMP ) then
7 Theap ← Theap ∪ xtransition
8 Sort(Theap)

9 return Theap

This is theoretically a lower dimensional manifold within Q
that can still be sampled [28]. We use the TSR to sample
in QHP (line 2 of Alg 2). We iteratively relax the TSR
constraints if valid sampling continually fails - this ensures
the exploration of Q. The variability introduced by sampling
allows us to explore configurations from where the DMP
might have a clearer shot at the goal within clutter to allow
a successful rollout. Sampling transition configurations also
gives a motion planner a richer set of goals. Further, we also
sample goal points, pgoal from another TSR (line 3 in Alg 2).
The constraint on this is task-specfic, i.e., for the pouring
action the bowl must end up over the bowl allowing some
tolerances. Given xtransition and pgoal we forward roll-out
the trajectory using the pre-trained DMP, capable of obstacle
avoidance [3] (line 4 in Alg 2). Fig. 4 illustrates this step.
Note that not every DMP will be of the same quality. We
want to score successful DMPs.
QHP along with the associated weights are fed into the

sampling-based search tree (Alg 1). The planner keeps track

Fig. 4. Sampling QHP and rolling out DMPs. Some are invalid (red), some
are incomplete or discontinuous (yellow), while only few are valid (green).

of goal-biasing attempts, promoting goals that have high
success rates while penalizing goals that the search tree in
unable to advance towards (line 7,8 in Alg 1).
Scoring: Given the sampled set of transition points, we need
to estimate the quality of each point with respect to the given
DMP. The quality score must capture the underlying task
objective and other measures like smoothness and continuity.

To allow for rotational invariance, the translational compo-
nent of the DMP workspace trajectory π̄ is mapped to a lower
two-dimensional space, defined by the radial distance from the
goal and the height with respect to the goal. Each dimension
is then normalized to be within the [0, 1] range. This is
consistent with the local frame in which DMPs are rolled
out [2](Sec 3.4). To account for the underlying task objectives,
we compare this trajectory to a template motion π̄demo which
is achieved by rolling out the DMP under conditions similar
to training, i.e. identical boundary points and non-existence
of clutter. We compare the trajectories using FastDTW [26]
distance D in SE(3) to allow for temporal flexibility. The
similarity is then the inverse of D.

Besides the shape similarity measure, we are also interested
in a measure of continuity. We use TRAC-IK [29] with
Distance as the null-space objective to map π̄ to a C-Space
trajectory πCMA, similar to prior work [3]. A measure of
discontinuity cdis is the maximumQ jump along the trajectory
waypoints. The continuity score is the inverse of cdis. It is
possible that IK fails completely at a waypoint. To account for
this, a component of the score is allocated to the completion
of IK along the waypoints. The percent of the path sucessfully
mapped using IK is denoted as ccomp ∈ [0, 1].

The total quality measure then is a weighted combination,
Wquality = w1 ·D−1 + w2 · c−1dis + w3 · ccomp. We threshold
and reject all samples below a certain threshold Γ (line 5 in
Alg 2). The transition point allowing successful a DMP is
added to a sorted heap (line 6-8 in Alg 2).
Constructing action representations: In this work we are
primarily interested in task objectives centered in W(true
for most manipulation actions). The DMP is trained via
workspace demonstrations π̄demo. We developed an aug-
mented reality (AR) application on a MagicLeap device
that allows users to manipulate objects and record SE(3)
trajectories. AR provides a principled way to rapidly generate
and test demonstrations [30].

V. TEST SCENARIOS

We evaluate the performance of our hybrid approach
against the state-of-the-art obstacle avoidance aware DMP in
simulation settings for a pouring action.
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Fig. 5. Top row: The pouring benchmark setups for sampled scenes demonstrating examples of three degrees of clutter (from left to right) easy, medium,
and hard. Bottom row: Histograms indicating the success of the action when executed using a obstacle aware DMP (orange) versus our hybrid approach
(blue). For every point on the X-axis, the plots count the number of runs where more than the corresponding number of beads ended up inside the bowl.

A. Pouring Benchmark

We evaluate our hybrid planner approach on a pouring
motion which is an instance of a complex motor action.
Pouring, unlike point-to-point motion, has an underlying task
objective, dependent on the motion characteristics. Further,
since we want our system to be agnostic to the specific
complex motor action, positions of the cup and bowl, and
obstacles, handcrafting the motion apriori is infeasible.
Training setup: We train a DMP for the pouring motion,
given a single pouring human demonstration. The pouring
demonstration was conducted in a clutter-free environment
with the cup starting 40cm away from the bowl such that the
motion was within the dexterous reachability of the robot.
Experiment setup: We design three different environments
with varying degrees of clutter, replicating different difficulty
levels: easy, medium and hard. Difficulty here corresponds to
the number and size of obstacles in the environment, as shown
in Fig 5. For each of these environments, we randomly sample
25 different valid cup positions on the table such that there
exists a valid grasping configuration to it. The cup is filled
with 50 beads with properties of steel. The simulation setup
is done on Gazebo [31]. (We compare our hybrid-planning
strategy to DMPs rolled out with our implementation of
volumetric obstacle avoidance [3].) The transition points are
sampled from a TSR centered around the bowl, enforcing the
cup stay close to upright. The goal is the cup inverted over
the bowl at a height of 30cm. The planning component of our
hybrid strategy, for this task, uses a constrained sampler [28]
that keeps the cup upright.
Metrics: We chose to quantify performance based on number
of beads poured successfully, computation time and execution
time. The number of beads poured successfully captures the
intrinsic success specific to the task and is most critical. Since
these tasks have underlying objectives, measuring real world
performance is the only fair evaluation method.
Results: The benchmarking results appear in Fig. 5 as
cumulative histograms. The plots display the number of runs
for which pouring resulted in at least b beads in the bowl.
The performance improvement achieved by our method is
especially significant in more clutter. Compared to obstacle
aware DMPs, our method has significantly more runs with
a higher number of beads successfully poured. For the runs

Obstacle-aware DMP [3] Hybrid Planner

computation(s) execution(s) computation(s) execution(s)

easy 0.226 50.11 1.194 61.51

medium 0.240 57.07 5.082 69.03

hard 0.298 56.10 6.911 70.51

TABLE I
with at least one bead successfully poured, we record the
average computation and execution times, presented in Table
I. Expectedly, our hybrid planning is slower than a single
rollout of a DMP (solutions are still found within a few
seconds), but our hybrid framework vastly outperform the
DMP baseline in task success.

B. Real-world Tests (demonstrations in video)

Fig. 6. Real
world scooping
demonstration.

We used the Fetch mobile manipulator to
demonstrate pouring (Fig 1) and scooping
(Fig 6) tasks in tabletop scenes. Vicon cam-
eras were used to determine the object poses.
Household objects were placed on the table
to create clutter. The robot poured lentils to
a bowl, and scooped beans from a plate.

VI. DISCUSSION AND FUTURE WORK

We have demonstrated in this work the benefits of combin-
ing the powers of sampling-based motion planning, and DMPs
to plan for complex motor actions. Experimental validation of
pouring actions in various amounts of simulated clutter show
that our method succeeds at the task objective by pouring
more of a cup’s contents into a target bowl than a obstacle
aware DMP baseline. The performance gulf grows more
stark in scenes with more cluttering obstacles. There is a
clear need for planning to overcome the shortcomings of
DMPs in arbitrary real-world scenes. Demonstrations of both
pouring and scooping further motivate our method as a way
to execute such actions on real systems. The proposed work is
a stepping stone that opens up possibilities for longer-horizon
tasks, modeling more complex demonstrations, and framing
such actions in the context of task planning, towards broader
goals of designing more capable robots in human-centric
tasks.
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