
Dynamic Inference of Likely Data Preconditions over
Predicates by Tree Learning

Sriram
Sankaranarayanan

NEC Laboratories America.
srirams@nec-labs.com

Swarat Chaudhuri
Penn. State University
swarat@cse.psu.edu

Franjo Ivančić
NEC Laboratories America.
ivancic@nec-labs.com

Aarti Gupta
NEC Laboratories America.
agupta@nec-labs.com

ABSTRACT
We present a technique to infer likely data preconditions
for procedures written in an imperative programming lan-
guage. Given a procedure and a set of predicates over its in-
puts, our technique enumerates different truth assignments
to the predicates, deriving test cases from each feasible truth
assignment. The predicates themselves are derived auto-
matically using simple heuristics. The enumeration of truth
assignments is performed using a propositional SAT solver
along with a theory satisfiability checker capable of gener-
ating unsatisfiable cores.

For each assignment of truth values, a corresponding set
of test cases are generated and executed. Based on the result
of the execution, the truth assignment is classified as being
safe or buggy. Finally, a decision tree classifier is used to
generate a Boolean formula over the input predicates that
explains the data obtained from the test cases. The resulting
Boolean formula is, in effect, a likely data precondition for
the procedure under consideration.

We apply our techniques on a wide variety of functions
from the standard C library. Our experiments show that
the proposed technique is quite robust. For most cases, it
successfully learns a precondition that captures a safe and
permissive calling environment.
Categories and Subject Descriptors: D.2.4 [Verifica-
tion]: Statistical Methods, I.2.6 [Learning]: Induction.
General Terms: Verification, Theory.
Keywords: Software Specification, Verification, SAT, De-
cision Trees, Machine Learning.

1. INTRODUCTION
A data precondition specifies safe calling environments for

a procedure that permit its error-free execution. Precondi-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA’08, July 20–24, 2008, Seattle, Washington, USA.
Copyright 2008 ACM 978-1-59593-904-3/08/07 ...$5.00.

tions support modularity in software by formally document-
ing interfaces. They enable reliable integration testing by
detecting failures closer to their sources. They also support
modular verification of large software systems using annota-
tion checkers.

In this paper, we investigate a predicate-based approach
to inferring data preconditions for low-level software libraries.
Our technique infers preconditions based on a set of pred-
icates P = {π1, . . . , πm} involving the inputs to the proce-
dure as well as instrumentation variables for pointers such
as allocation bounds and null-terminator positions. Such
predicates may be provided by the user, or automatically
extracted from the procedure description.

Given a procedure and a set of predicates, we first perform
predicate-complete enumeration to explore all the feasible
truth assignments to the predicates, assigning each predi-
cate a Boolean value true or false. For each feasible truth
assignment, we derive a set of conforming test cases to the
procedure. The resulting executions are classified as erro-
neous, if at least one execution leads to a failure, or error
free, if all executions succeed. After enumerating all the fea-
sible truth assignments to the input predicates, we obtain a
complete truth table that classifies the truth assignments as
erroneous or error-free. Such a table represents a Boolean
function over the truth assignments that predicts the oc-
currence of an error. Expressing this Boolean function as
a formula involving the predicates π1, . . . , πm yields the re-
quired data precondition.

Frequently, however, the number of predicates is large
(100s of predicates and beyond). Therefore, a complete
enumeration of all the truth assignments is not tractable.
We present a statistical sampling technique by combining a
randomized SAT solver coupled with a theory satisfiability
checker. By executing the test cases so obtained we obtain
a partial truth table. We then use a decision tree learning
technique to learn a Boolean function that predicts error-free
execution. The sampling ensures that the truth table is free
of biases due to the systematic solution search commonly
used in deterministic SAT solvers.

We have implemented our technique using automatically
inferred predicates on the functions implemented in the stan-
dard C library to learn accurate preconditions for them.
In general, we find that the decision tree learner is robust
enough to learn preconditions for almost all the examples.

1: char * strcpy (char * a, char * b) {
2: char * c = a, *d = b;
3: while (*d) *c = *d++;
4: return a;
5: }

Figure 1: An unoptimized implementation of the
strcpy function

We also find that the inferred precondition is often more
precise than the “man” specification for these functions. We
also discuss some pitfalls and provide techniques to alleviate
them.

Approach at a Glance
Figure 1 shows an unoptimized implementation of the stan-
dard library string function strcpy. The optimized imple-
mentation is part of the built-in C library, and is more com-
plex. Any safe call to the function requires that (a) pointer b
points to a null-terminated string, and (a) the string length
of b is strictly less than the allocated bounds of a.

Our overall approach consists of four major stages: (a)
adding instrumentation variables and predicates on which
the precondition will be based, (b) enumerating (sampling)
feasible truth assignments to the predicates, (c) formulat-
ing and running test cases to obtain a truth table, and (d)
learning the data precondition from the (partial) truth ta-
ble. We outline the basic approach to learn the appropriate
precondition for guaranteeing overflow-free execution of the
procedure.

Instrumentation Variables & Predicates. Instrumentation
variables represent attributes such as allocated bounds for
pointers and sentinel variables for the null character for
strings, i.e., the string length. Instrumentation of the strcpy
function results in the variables strLen(a), strLen(b), fwdBnds(a),
fwdBnds(b) representing the string lengths and the bounds
for the pointers a, b, respectively 1. These variables are
treated as the de facto inputs to the function strcpy. We
may also assign magic number addresses to the pointers a, b
to allow for the possibility of their aliasing each other.

Tools such as CCured can be used instrument code to auto-
matically track such quantities during execution [24]. Verifi-
cation tools such as F-Soft can symbolically track and reason
about such attributes [15].

The predicates used in the preconditions involve the input
variables to the procedure, including the associated instru-
mentation variables for string/allocated length. These may
be directly provided by the user or derived heuristically from
the program text. In practice, we use heuristics to arrive at
such predicates. One simple and effective heuristic involves
adding predicates of the form i − j ≤ 0, i ≤ 0, i ≥ 0, for all
integer inputs i, j to the program. For this example, we use
the following predicates:

π1 : strLen(a) = 0
π2 : strLen(b) < strLen(a)
π3 : fwdBnds(a) ≤ strLen(a)
π4 : fwdBnds(b) ≤ strLen(b)
π5 : fwdBnds(a) ≤ strLen(b)

1Analogous to fwdBnds(·), we may add reverse bounds to
reason about underflows.

π1 π2 π3 π4 π5 overflow?
f f f f f f
f t f t f t
t f f t t t
f t f f f f
f f f t t t
f t t f f t
f f f t t t
...

...

Table 1: Truth table for overflow violations using
predicates π1, . . . , π5 for the strcpy function.

Truth Assignment Enumeration. The goal of the enumera-
tion is to consider all possible truth assignments to the predi-
cate π1, . . . , π5. Given 5 predicates, we may have as many as
32 truth assignments. However, not all assignments are fea-
sible. For instance, the assignment B : π2 : f, π3 : f, π5 : t
(the other predicates may have arbitrary truth values) cor-
responds to the assertion Ψ(B) : strLen(b) ≥ strLen(a) ∧
fwdBnds(a) > strLen(a) ∧ fwdBnds(a) ≤ strLen(b) ∧ · · · ,
obtained by conjoining the predicates or their negations ac-
cording to the assignment. The assertion Ψ(B) is unsatis-
fiable in the theory of integer arithmetic, and hence B is
infeasible. On the other hand, the assignment π1 : t, π2 :
f, π3 : f, π4 : f, π5 : t is feasible. It is satisfied by
the valuation strLen(a) = 0, fwdBnds(a) = 10, strLen(b) =
5, fwdBnds(b) = 4.

The satisfying valuations for a feasible truth assignment
can be converted into test cases. For the valuation above, we
initialize parameter a to a valid array of size 10 with string
length 0, and b to an array of size 4 with string length 5 (by
convention, strLen(a) ≥ fwdBnds(a) denotes that the string
is not null-terminated). These strings are filled with random
characters. Running the procedure, leads to an overflow
since b is not null-terminated.

Along these lines, it is possible to enumerate all the feasi-
ble truth assignments to the predicates, classifying each as
leading to an overflow or otherwise. Table 1 shows the par-
tial truth table for some feasible assignments. The overflow
result corresponding to infeasible assignments are treated as
logical don’t-cares. The Boolean function (π4 ∨ π5) provides
the simplest explanation (in information-theoretic terms) of
the complete truth table, i.e, it predicts the overflow status
for all the rows in the truth table, correctly. It can be derived
by using machine learning techniques discussed later. Sub-
stituting the predicate definitions, directly yields the data
precondition for overflow-free execution:

¬
`

fwdBnds(b) ≤ strLen(b) ∨ fwdBnds(a) ≤ strLen(b)
´

The precondition requires that b be properly null-terminated
and that the array length of a be larger than the string
length of b. It corresponds to the “man page” specification
for the strcpy function. The rest of the paper explains each
part of our technique in detail.

2. RELATED WORK
The automatic inference of API specifications for software

libraries has been studied by many researchers in the past

under vastly different settings. The specifications may be of
two distinct types: (a) Control Specification: safe/permissive
sequences of function calls, and (b) Data Preconditions: as-
sertions on input values at the entry to each function.

In theory, the execution of a sequential procedure depends
purely on the state of the program at entry, rather than the
history of previous calls. Therefore, a sufficiently complex
data precondition alone could adequately specify the envi-
ronment at the function call, without referring the sequence
of state transitions that lead up to the input environment.
Nevertheless, such a precondition may not be realizable in
practice. Therefore, the choice of a specification style de-
pends primarily on type of library under consideration.

Example 2.1. The correct calling convention for the string
library function strcpy is best described by a precondition
on its inputs. In fact, temporal formalisms based on calls to
other functions cannot specify the string library usage natu-
rally and succinctly.

On the other hand, the pthread_join operation in the
standard Pthread library requires that the operand thread
be initialized and started using the pthread_init function.
Using a data precondition is quite cumbersome in this case
and may refer to numerous entities not directly related to the
thread library itself. The operation of the library is therefore
best specified as a permissible temporal call sequence.

Table 2 presents some representative work on inferring
both control and data preconditions for APIs, on client code
or library code, using static/dynamic techniques and based
on formal analysis of the program or on statistical meth-
ods. Note that with very few exceptions a majority of the
statistical methods focus on learning temporal relationships
between function calls and their arguments.

Ammons et al. mine specifications by dynamically ob-
serving the interaction of the client with the library API [3].
The specifications are mined using an automata learning
algorithm that learns weighted probabilistic finite state au-
tomata. Data preconditions such as strLen(a) ≤ fwdBnds(b)
cannot be specified as such using their technique. However,
their technique can specify certain forms of data precondi-
tions by enforcing that the the return value of a call is used
as an argument to another.

Alur et al. [2] use predicate abstraction and model check-
ing on the libraries to synthesize specifications that charac-
terize correct calling sequences for a given API. Henzinger
et al. extend this work by inferring the most permissive lan-
guage that does not restrict any safe sequence [14]. These
techniques can be extended to infer data preconditions by
adding the requisite predicates to the alphabet of the au-
tomaton to be learned. However, tracking boolean combina-
tions of such predicates may lead to an exponential increase
in the size of the alphabet.

Taghdiri et al. present a technique for summarizing heap
functions (summary is presented as function specification)
using a relational abstract interpretation of the code. The
relations are used to describe the current state of the heap
w.r.t the calling environment [31].

Ramanathan et al. perform an automatic static analysis
of the application code to mine usage patterns for a given
API [27]. Their approach infers usage patterns by observ-
ing the sequence of calls along and conditions checked on
their arguments checked along different control-flow paths.
However, for low-level libraries such as the C string library,

the client code seldom performs explicit sanity checks on the
inputs that may be used as clues to the preconditions. In
such situations, preconditions are best inferred by analyzing
the library.

Recent work by Yannick Moy uses forward/backward ab-
stract interpretation techniques to infer data preconditions
for low-level procedures [23]. Their technique can generate
a safe precondition, which is exact in many practical cases.
Furthermore, their scheme does not require a set of predi-
cates provided a priori. On the other hand, their analysis
requires polyhedral invariants. Techniques for computing
such invariants are exponential on the number of function
variables, including locals, globals and instrumentation vari-
ables. Our approach, on the other hand, is dynamic and can
potentially scale better.

Our previous work uses Inductive Logic Programs (ILP) [21]
to learn permissible sequences of function calls along with
(control) preconditions that indicate a safe execution of the
functions in a given library [28]. The resulting specification
is presented as a logic program using a disjunction of Horn
clauses to represent the target concept. The current work
focuses solely on inferring data preconditions. Secondly, our
current approach can learn arbitrary Boolean combinations
of predicates, as opposed to Horn clauses.

Finally, work on invariant inference using testing has been
pioneered by Ernst et al. and implemented in tools such
as Daikon [11]. Our fundamental approach to specification
inference also makes observations from test cases. Further-
more, like Daikon our approach uses predefined patterns as
predicates on which the specifications are based. While a
precondition classifies inputs as being safe or unsafe, an in-
variant classifies states as being reachable or unreachable. In
theory, classification is an easier problem in the presence of
both positive and negative examples of the target concept.
Since unreachability cannot be determined using dynamic
techniques, classification-based approaches should perform
better for precondition inference, and in theory, be less de-
pendent on the test coverage. The recent work of Csallner et
al. extends the Daikon approach by combining testing with
symbolic execution in order to infer likely invariants [9].

In principle, invariant inference tools such as Daikon and
DySy can also be used to learn specifications by running
them on clients that call the library functions and collecting
invariants at the entry to the function of interest. How-
ever, such an approach is restricted by the usage patterns of
the particular client chosen. In general, we require invari-
ant inference across numerous clients that use the library
exhaustively in order to mine a general precondition.

Predicate Complete Testing. Ball presents a technique for
testing programs based on monitoring user-defined predi-
cates at key program points [4]. A notion of coverage is
defined in terms of the predicate combinations encountered.
The predicates can be used to generate a set of tests using
a theorem prover, that optimizes the notion of coverage.

Co-Operative Bug Isolation. Recently, statistical techniques
have been used to debug programs by finding and ranking
different predictors for bugs. The co-operative bug isola-
tion (CBI) technique due to Liblit et al. [19] instruments
programs with monitors at branch conditions to generate
data on the branch conditions visited, branches taken, the
values of predicates at each instrumentation point and the
outcome of the execution (erroneous/error free). Using sta-

Table 2: Tabular comparison of precondition learning techniques
Ref Client Static Formal Ctrl Description

Lib. Dyn. Stat. Data
Engler et al. [10] C S S C+D Paranthesised fn. calls, required null pointer checks, ..
Ammons et al. [3] C D S C Probabilistic Finite State Automata(FSA)
Whaley et al. [33] C S F C Safe pairs of method calls
Jiang et al. [17] C D S C Ngram-based FSA learning
Yang et al. [34] C D S C FSA inferred from traces
Alur et al. [2] L S F C FSA (predicates on return values)
Henzinger et al. [14] — Improves Alur et al, ibid —
Kremenek et al. [18] C S S C ownership models of objects using Bayesian learning
Taghdiri et al. [31] L S F D relational analysis to generate summaries.
Ramanathan et al. [27] C S S C+D common calling conventions for API using static analysis.
Acharya et al. [1] C S S C FSA based on partial-orders from traces
Moy [23] L S F D based on sound linear invariants and weakest preconditions
Sankaranarayanan et al. [28] L D S C+D Inductive Logic Programs on inbuilt predicates
Current Work L D S D Boolean combination of predicates using decision tree learner

tistical correlation analysis, their technique ranks predictors
for crashes in the program. Our technique shares some in-
teresting similarities with that of Liblit et al. Techniques
such as CBI can suggest/rank individual predicates based
on their influence over the program behaviour. In turn, our
technique can be used to compute likely preconditions as a
Boolean combination of the suggested predicates.

Concolic Testing. Our approach uses random testing for
a given truth assignment of predicates to classify the out-
comes. However, insufficient coverage obtained by testing
may create noise in the truth table and confuse the learner.
Recently, there has been a slew of work on combining sym-
bolic and concrete execution for test case generation [12, 7,
30]. Concolic testing consists of instrumenting a running
program to produce constraints along its execution path,
so that the path exercised by the program can be symboli-
cally executed to perform further test case generation. The
recent work of Majumdar and Sen extends concolic testing
with random simulation. This approach, called Hybrid Con-
colic testing uses a combination of random exploration of the
state space along with directed symbolic execution to test
software [20]. These techniques can directly replace random
testing used in our tool in the presence of the source code
to explore the space of inputs reliably.

Decision Tree Learning. Data preconditions for functions
generally have a non trivial Boolean structure. They tend to
involve disjunctions, conjunctions and negations of simpler
relations among the variables of the program. We use a stan-
dard decision tree learning technique to infer a Boolean func-
tion given a partial truth table describing the function [21].
This is a well studied problem in machine learning with clas-
sic approaches such as the ID3 learning algorithm [26] that
has been implemented in freely available tools such as c4.5.
The ID3 algorithm uses an entropy-based heuristic to bias
its search towards succinct tree representations that explain
the data with as few errors as possible.

3. ENVIRONMENT PREDICATES
Throughout this paper, we consider low-level imperative

procedures written in the C language with basic data-types
such as integers, floating points, characters along with ar-
rays/pointers at various levels of indirections. We assume

that all the inputs to the procedure along with their types
are known in advance. Unless otherwise mentioned, our
techniques will work under a black box setting, i.e., the pro-
cedure is available for execution in the object form but the
source code is not necessarily available. However, the avail-
ability of source code can improve the accuracy of our tech-
nique considerably.

Pointer/Array Attributes. Our first step is to associate var-
ious attributes to the pointers and arrays used as inputs to
our procedure. With each array (pointer) q, we associate in-
teger variables to track its address, allocated bounds, string
length, element range, and other important attributes that
may influence the error-free execution of the procedure. The
actual attributes themselves may vary depending on the na-
ture of the code. For instance, the string length attribute
may be meaningless to a function that sorts the elements of
an integer array.

Address Each pointer is provided with a magic number de-
noting its address. The address numbers do not corre-
spond to the virtual/physical pointer address in some
memory layout. Instead, they denote aliasing relation-
ships among the various pointers.

Forward Bounds The forward bound of a pointer p of a
type t denotes the maximum index N for which the C
language expression q[N − 1] may be safely evaluated
without a memory overflow. The forward bound for
a pointer/array q is represented by an integer vari-
able fwdBnds(q). It follows that for any pointer q,
fwdBnds(q) ≥ 0. As a convention, the NULL pointer
has a bound of 0. The reverse bound may also be
added to track bounds for underflows.

String Length The string length for a string pointer de-
notes the index of the earliest occurrence of a null
terminator character. It is tracked by the variable
strLen(q), which is assumed non-negative. By conven-
tion, we treat a string as null terminated iff strLen(q) <
fwdBnds(q) and improperly terminated otherwise.

Additionally, we may track the interval range eltRng(q)
in which all the elements q[i] lie. Some applications may
require sentinel variables to track the positions of special

characters such as “/”, “*”, and so on. It is also possible to
use sentinels that track the occurrence of the value stored in
a variable c inside an array a and so on.

Def. 3.1 (Calling Environment). The calling envi-
ronment for a procedure with base-type inputs v1, . . . , vm,
and pointer inputs q1, . . . , qn, consists of valuations to the
variables v1, . . . , vm, address valuations to the pointers q1, . . . , qn

along with valuations to the instrumentation variables for
each pointer qi: fwdBnds(qi), strLen(qi), and so on.

Functions in C/Pascal may also depend on global vari-
ables, parameters such as system time, random number gen-
erators, files in disks and inputs read from the user. We
assume that all such inputs are specified as a part of the
calling environment above.

Predicates. Predicates over the procedure inputs are used
in our scheme to describe calling environments. These pred-
icates π1, . . . , πm may be specified by the user. On the other
hand, an adequate set of predicates is hard to obtain without
a precise knowledge of the procedure’s workings. Therefore,
our technique automatically arrives at a set of predicates
over the input variables using some heuristics.

A common observation about programs that manipulate
arrays and strings is that the relative sizes of the arrays,
strings and their ranges matter most to the working of the
program. Secondly, these relations are, as a rule, quite sim-
ple in form. In most cases, they consist of direct comparisons
of the form i ≤ j, i = j and so on. We use the following de-
fault scheme for arriving at predicates given input integers
i1, . . . , im, pointers q1, . . . , qm and the associated variables
strLen(·), fwdBnds(·) and so on.

Base value comparisons We consider all pairwise com-
parisons of the form ai ≤ aj , where ai, aj may be base
variables or instrumentation variables for pointers.

Zero Comparisons We add predicates such as vi ≤ 0 and
vi ≥ 0 for each numerical variable vi.

Pointer address comparison We consider all pairwise alias
relationships between pointers qi = qj and so on.

Magic Numbers and Flags Many procedures employ in-
put flags to perform case distinctions inside the code.
As a result, setting such flags to different magic num-
bers may cause different behaviours in the procedure.
If known, we add magic number comparisons between
the variables and the flags.

Consistency Requirements. The presence of instrumenta-
tion variables requires that certain consistency conditions
be enforced automatically in any input calling environment.
The consistency requirements for pointer aliasing require
that whenever two pointers alias, i.e., qi = qj holds, we also
require their instrumentation variables to have the same val-
ues, i.e, fwdBnds(qi) = fwdBnds(qj), strLen(qi) = strLen(qj)
and so on. Similarly, we require array/string lengths to be
non-negative. This can be expressed using an assertion

Ψc :
^

i!=j

(qi = qj) ⇒ (fwdBnds(qi) = fwdBnds(qj) ∧ · · ·) .

Truth Assignments. Let π1, . . . , πN represent a suitable set
of predicates derived using the heuristics described above. A

truth assignment B to the predicates maps each predicate πi

to a Boolean value T or F . Each truth assignment represents
a set of calling environments over the inputs given by the
assertion:

Ψ(B) :
^

i|B(πi)=T

πi ∧
^

i|B(πi)=F

¬πi .

On the other hand, not every truth assignment represents
a calling environment. Consider, for instance, π1 : a > b,
π2 : b > c and π3 : a > c. The assignment of π1, π2 : T and
π3 : F leads to the unsatisfiable assertion

a > b ∧ b > c ∧ ¬(a > c) ,

Furthermore, certain assignments may not lead to consis-
tent environments. Consider the predicate π1 : q = r and
the predicate π2 : fwdBnds(q) ≤ fwdBnds(r). According to
the consistency condition Ψc above, it is not possible for the
assignment π1 : T and π2 : F to yield a consistent assign-
ment of truth values, even though π1∧¬π2 is satisfiable. An
assignment of truth values which represents no (consistent)
calling environment is said to be infeasible.

Under the assumption that π1, . . . , πN consist of the set
of possible indicators of whether a calling environment leads
to the safe execution or not, we seek to execute the program
for each feasible truth assignment to π1, . . . , πN . Therefore,
we first present techniques for enumerating all feasible truth
values for a given set of predicates.

3.1 Enumerating All Feasible Assignments
Given predicates π1, . . . , πN drawn from a theory T such

as linear arithmetic, we wish to generate all the feasible truth
assignments.

A naive approach to this problem considers all possible
truth assignments B, evaluating Ψ(B) for T -satisfiability in
each case. However, such an approach is impractical since it
requires 2N satisfiability queries. In theory, the exponential
cost is unavoidable since there may be an exponential num-
ber of feasible truth assignments in the first place. However,
our experiments indicate that the number of feasible assign-
ments, while exponential in N still remains much smaller
than 2N . Therefore, we present a technique using a combi-
nation of SAT solvers and T -satisfiability checker generat-
ing unsatisfiable cores. Our technique learns conflict clauses
from unsatisfiable instances to avoid encountering them in
subsequent iterations.

The enumeration scheme is shown in Algorithm 1. Our al-
gorithm maintains a CNF SAT formula S over the variables
b1, . . . , bN representing all the truth assignments that are
yet to be considered in the enumeration. At each enumera-
tion step, we use a SAT solver to find a satisfiable solution
B for S. Failing to find a solution signifies that all feasi-
ble assignments have been enumerated, and therefore the
enumeration may terminate. Otherwise, we check the T -
satisfiability of the formula Ψ(B)∧Ψc obtained by translat-
ing B as a conjunction of predicates. Recall that Ψc enforces
the consistency of the input calling environment. If the for-
mula Ψ(B)∧Ψc is satisfiable, we output B as a feasible truth
assignment. Furthermore, in order to rule out B from fu-
ture enumerations, we add a blocking clause to the formula
S (line 7). On the other hand, if Ψ(B)∧Ψc is unsatisfiable,
we add a new conflict clause based on the unsatisfiable core
C of Ψ(B) (line 10). The conflict clause rules out the cur-
rent truth assignment B, or any other assignment B′ that

Algorithm 1: Generate all feasible assignments given a
set of predicates π1, . . . , πN

Input: π1, . . . , πN , satisfiability checker T , prop. SAT
solver.

Result: All feasible truth assignments.
begin

S := true /* Initialize SAT formula */1

while (S Satisfiable) do2

/* Other termination criteria are
possible. */

B := satisfying assignment to S3

ψ :=
V

B(bi): T πi ∧
V

B(bj):F ¬πj4

Ψc enforces the consistency conditions.
if ψ ∧Ψc is T -satisfiable then5

Output B as a feasible assignment6

S := S ∧ (
W

B(bi):T
¬bi ∨

W

B(bj):F bj)7

/* Add blocking clause for B. */
8

else /* ψ is T -unsat */
Let C be the unsatisfiable core.9

S := S ∧ (
W

πi∈C ¬bi ∨
W

¬πj∈C bj)10

/* Add conflict clause for C. */

end

extends the unsatisfiable core C.

Theorem 3.1. The enumeration algorithm (Algorithm 1)
enumerates all the feasible truth assignments.

Even though it is possible to enumerate all the truth as-
signments, it may not be practical to do so. The number of
feasible truth assignments grows exponentially in the num-
ber of predicates N . More significantly, most of the effort is
unnecessary. In practice, we expect a majority of the chosen
predicates πj to be irrelevant. I.e., they may not have any
bearing on the error-free execution of the procedure. Such
predicates do not appear in the data precondition. Unfor-
tunately, it is equally hard to reliably detect this relevant
set of predicates in advance, without a detailed knowledge
of the procedure.

Therefore, instead of enumerating all the feasible truth
assignments, we choose to sample a fixed number of feasible
truth assignments at random. Under the assumption that
the number of predicates that directly affect the execution
of the program is small, a sufficient number of randomly
chosen assignments will contain all the possible assignments
to this small subset in combination with various assignments
to the irrelevant variables. As a result, it will be possible for
a machine learning algorithm such as decision tree learning
to mine these predicates and also learn the precise Boolean
function that predicts the outcome of the execution given a
truth assignment to the predicates.

A naive approach consists of modifying Algorithm 1 to
terminate after a fixed number of feasible solutions have
been produced. However, SAT solvers based on systematic
state-space search such as Zchaff [22], follow a determinis-
tic search procedure that produces “nearby” solutions in the
search space on each run. Therefore, the truth assignments
produced represent a small set of nearby assignments in the

space of all solutions. Using such assignments affects the
learned precondition adversely.

3.2 Sampling Feasible Assignments
Direct Sampling. One scheme for sampling feasible assign-
ments is to directly choose values for the variables from their
domains. The feasible truth assignment is obtained by eval-
uating the predicates on the chosen solution. This approach
has the advantage of being computationally inexpensive. It
also produces a feasible truth assignment at each sampling
step without producing infeasible assignments.

However, sampling solutions directly leads to repetitions
of previously seen samples. Furthermore, some feasible as-
signments may be sampled with much greater probability
than others.

Example 3.1. Consider a single variable x with predi-
cates p1 : x ≤ 0 and p2 : x ≥ 0. Our sampling scheme
simply samples an integer value for x at random from the
interval [−231, 231 − 1].

However, most of the samples generated correspond to the
truth assignments (p1, p2) : (T, F) or (F, T). The assign-
ment (T, T) consists of the sample x = 0. The chances
of randomly choosing this assignment is vanishingly small.
This phenomenon is more pronounced when then number of
predicates increases, leading to a large number of truth as-
signments that have a very low probability of being sampled
directly at random.

SAT-based sampling. Our sampling scheme employs a SAT
solver that chooses a solution uniformly at random from
among all the possible solutions. We will assume that such
a solver is available to us. We modify Algorithm 1 in two
significant ways: (a) the termination criterion of the while
loop in line 2 is augmented to sample a fixed number of fea-
sible truth assignments, and (b) the satisfiable solution in
Line 3 is obtained using a randomized SAT solver.

To see why the algorithm would sample uniformly at ran-
dom, let us represent the set of all unexplored feasible truth
assignments after some j > 0 rounds of sampling by the set
Fj and the remaining unexplored infeasible assignments by
Ij . At each execution of the loop body, the formula S rep-
resents the assignments in Fj ∪ Ij . At each sampling step,
the satisfying assignment B chosen in line 3 may belong to
Fj or Ij .

(a) If B ∈ Fj , then it is in effect chosen uniformly at random
from the set Fj . Furthermore, Fj+1 = Fj − {B}.

(b) If B ∈ Ij , no sample is generated and the set Fj is
unaffected.

Theorem 3.2. Algorithm 1 implemented using a random-
ized SAT solver samples uniformly at random (without re-
placement) from the set of all feasible truth assignments.

We require a SAT solver that is capable of producing a
solution uniformly at random from the set of all solutions.
This is actually a hard problem to solve in practice, and
can be reduced to counting the number of solutions to a
SAT problem. Fortunately, randomized SAT solvers such
as WalkSAT perform a random walk on the space of truth
assignments and can produce solutions at random, though
not guaranteed to be uniform random [29, 32]. Gogate et al.

discuss sampling from the solutions of general constraint sat-
isfaction problems (CSP) almost uniformly at random [13].

We may combine direct sampling with SAT-based sam-
pling by first generating many feasible truth assignments
through direct sampling, while remembering previously gen-
erated truth assignments. When the direct sampling scheme
fails to generate new samples for a given number of consec-
utive rounds, we may use the SAT-based sampling scheme
by adding clauses to block the truth assignments generated
by direct sampling.

4. TEST GENERATION
The previous section presented a scheme to enumerate

(sample) the feasible truth assignments given a set of pred-
icates π1, . . . , πN over the inputs to a procedure. From
each feasible truth assignment, we extract a theory formula
ψ : Ψ(B) ∧ Ψc. We wish to associate an outcome with
each truth assignment. For the purposes of this discussion,
the outcome “Error” indicates that some input satisfying ψ
leads to an error (eg., buffer overflow, memory leak, invalid
pointer dereference, fatal exception and so on), while “OK”
indicates that all inputs satisfying ψ can execute safely.

In general, associating the correct outcome with each truth
assignment requires us to reason about the correctness of the
procedure under a (possibly infinite) set of input environ-
ments. Off-the-shelf, formal verification tools can be used
provided (a) the source code is available and (b) the bugs
that may occur can be exhaustively specified. To achieve
precision, we require the verification to be (a) sound, so
that no “OK” outcomes are wrongly classified, and (b) com-
plete, so that no erroneous outcomes are wrongly classified.
Since these requirements are hard to fulfill, we use differ-
ent informal/semi-formal testing techniques to label truth
assignments with outcomes that may be incorrect with a
small probability.

Black-Box Approaches. Given a truth assignment, we sim-
ply generate a fixed number inputs at random, execute the
procedure and observe the result. Using a satisfiability solver
over predicates T , we obtain values for base variables, pointer
addresses and the associated instrumentation values. This
lets us setup a corresponding environment by dynamically
allocating regions of the required lengths, randomly generat-
ing elements in the chosen range and setting the null termi-
nator character based on the value of the string length. The
resulting execution is monitored using tools such as val-
grind and purify, and classfied as erroneous or error-free.
We generate many solutions given a particular truth assign-
ment and run tests for each one of them.

Small-Model Enumeration. Black-box approaches involving
small model enumeration have been quite effective for gen-
erating test cases to find bugs [16, 5]. In our approach, it is
possible to enumerate satisfying solutions to the predicates
by placing small bounds on the integer variables as well as
variables such as array lengths, ranges and so on. However,
for other aspects of the environment such as contents of ar-
rays and strings, we may resort to random input generation
rather than enumeration.

The primary advantage of a black box testing approach
is its ease of implementation. Secondly, our observations
rely on concrete executions rather than symbolic reasoning.
Testing is relatively fast and does not require access to the
source code. The disadvantage of a black box approach is its

limited coverage especially when the search space is large.
This may lead to inconsistencies (noise) in the truth table
and cause incorrect preconditions to be learned.

White-box Approaches. The drawbacks of a black-box test-
ing approach can be mitigated in part by using more sophis-
ticated approaches that use the source code of the procedure
to reliably guide the execution towards a failure.

Concolic testing approaches such as DART/CUTE achieve
this by using a constraint solver to symbolically execute code
paths along concrete executions to find test cases for that
explore feasible paths systematically [12, 30, 20]. Such tools
can directly incorporate the input constraints arising from
the truth assignments into the exploration process. They
also generate errors from concrete program executions, thus
making the results reliable.

On the other hand, it is not possible to conclude if a truth
assignment is error-free using tools such as CUTE. To do so,
we may use formal proof-based approaches to static analy-
ses such as abstract interpretation [8]. Static analysis tech-
niques are scalable and precise enough to handle large pro-
grams. However, a key drawback of these techniques, from
the point of view of this paper, is that they require an exact
specification of all the situations that are considered “erro-
neous” and associated program instrumentation to enable
sound reasoning about the properties.

5. DECISION-TREE LEARNING
Given a (partial) truth table that associates a value for

a target concept (did the program crash?) with each truth
assignment to a set of Boolean variables, we wish to learn
a simple decision tree that (a) involves as few predicates
as possible, and (b) can be described using as few bits as
possible, in an information-theoretic sense. Doing so, we
simultaneously seek to achieve the maximum possible accu-
racy over the rows of the truth table. In practice, since the
underlying concept being sought (data precondition) usually
conforms to requirements (a) and (b), we may achieve a high
level of accuracy using a machine learning algorithm biased
towards “simpler” Boolean functions.

Decision Trees
Decision trees are commonly used representations for Boolean
functions [6]. Each internal node of a decision tree is labeled
with a Boolean (decision) variable. Each node has two chil-
dren corresponding to the truth assignments “T”/“F” to the
variable labeling the node. Each leaf of the tree is also la-
beled T/F, and refers to the outcome corresponding to the
truth assignments in the branch leading from the leaf back
to the root of the tree. One of the key requirements is that
each branch of the tree have at most one occurrence of a
variable. If a variable is missing from a branch, we assume
that the outcome along the branch holds for either truth
assignment to that variable.

Example 5.1. Figure 2 shows a decision tree over Boolean
decision variables v0, . . . , v5. Each branch represents a set
of truth assignments to the variables. For instance, the
leftmost branch assigns variables v0, v1 to T while leaving
the other variables unassigned. In effect, this branch rep-
resents 16 different truth assignments corresponding to all
possible assignments to the variables that do not occur in
the branch. All these assignments share the same outcome

v0

v1 v3

T F v5 F

T F

Figure 2: A decision tree over Boolean variables
v0, . . . , v5. The dashed edges denote “T” assignments
to their parents, whereas the solid edges denote the
“F” assignments.

Algorithm 2: id3Learn: Learn a decision tree.

Input: Partial truth table T over decision variables
V : {v1, . . . , vk}.

Result: A decision tree for T .
begin

/* Base Cases */

BC1: If all outcomes are “true”, create leaf T .1

BC2: If all outcomes are “false”, create leaf F .2

BC3: If V = ∅, return a leaf with the majority3

outcome.
/* Recursive Step */
begin

Choose vi ∈ V with max. Information Gain4

/* Split the table based on vi */
(T1, T2) := SplitTruthTable(T, vi : T/F)5

/* Recursively learn decision trees for
T1, T2 */

D1 := id3Learn(T1, V − {vi})6

D2 := id3Learn(T2, V − {vi})7

output tree D :

2

4

vi

D1 D2

3

5

8

end
end

(T). The decision tree shown represents the Boolean func-
tion: (v0 ⇒ v1) ∧ v3 ∧ v5.

Decision Tree Learning
We now discuss commonly used approaches to infer decision
trees from a partial truth table mapping truth assignments
of the decision variables to their outcome. The most popu-
lar approach to learn decision trees uses the id3 2 learning
algorithm [26, 21].

Algorithm 2 shows the id3 algorithm in detail. The algo-
rithm is recursive, with the base case occurring when all the
outcomes are the same, or there are no decision variables
left to split upon.

During the recursive step, we choose a decision variable
vi to split upon. This variable is chosen based on a “infor-
mation gain” heuristic (line 4). Once a variable is chosen,
the current truth table is split into two subsets, one corre-
sponding to vi : T and the other to vi : F . After learning a

2Iterative Dichotomizer 3

decision tree recursively on each of the sub-tables, we merge
them by adding a decision node based on vi at the root.

Information Gain Heuristic: The choice of a variable vi to
split the current truth table T is based on a metric called
the “information-gain”. Informally, let p be the number of
outcomes that are labeled true and n be the number labeled
false. The entropy measure of the truth table is defined as

I(p, n) = − p
p + n

log

„

p
p + n

«

− n
p + n

log

„

n
p + n

«

.

The entropy measure is close to zero when all the out-
comes in the tree are uniformly true or uniformly false. Let
T1, T2 be the truth tables produced by splitting on the case
vi = true or vi = false, respectively. Let p1, n1 be the num-
ber of true , false outcomes in T1 and similarly, p2, n2 for
T2. The information gained by splitting on the variable vi

is given by

Gain(vi) = I(p, n) −
X

k=1,2

pk + nk

p + n
I(pk, nk) .

In other words, it is the difference between the entropy mea-
sure of the table T and the weighted means of the entropies
of the tables T1, T2. The id3 algorithm splits on that vari-
able vj for which Gain(vj) is maximum.

The id3 algorithm is widely used in a variety of applica-
tions involving data classification. It has been implemented
in the freely available tool c4.5 [25] and its commercial im-
provement c5.0 3. These tools feature numerous practical
improvements over the basic algorithm presented here.

6. EXPERIMENTAL RESULTS
We validate our approach empirically by learning precon-

ditions of functions in the C string library. The C string
library contains a rich variety of string manipulation func-
tions that are widely used in other C programs. They in-
clude a variety of functions to copy, concatenate, parse and
compare strings. Because of their frequent usage, their im-
plementation is heavily optimized using special instructions,
wherever possible. Also, their implementations are platform
and compiler dependent. This makes the library suitable for
direct analysis using dynamic analyses.

Our prototype tool reads the function prototype to gener-
ate instrumentation variables and predicates on the inputs.
The instrumentation consists of array and string lengths for
pointers. The predicates used consist of zero comparisons as
well as pairwise comparisons between integer variables. Cur-
rently, our implementation ignores pointer aliases, treating
all input pointers as unaliased.

The theory satisfiability checking for linear arithmetic and
unsatisfiable core extraction are performed using the open
source LP solver GLPK 4. We use a combination of the
MiniSAT and the WalkSAT libraries for solving satisfiabil-
ity problems 5. Based on each solution instance, we pro-
duce strings with the specified allocation lengths and string
lengths.

To generate the contents of these strings, we first consider
a naive fuzzing scheme that generates random character se-
quence of the appropriate length. However, events such as

3Cf. http://www.rulequest.com
4Cf.http://www.gnu.org/glpk
5Cf. http://www.satlive.org

identical input strings, inputs with a numerical prefix or
inputs containing a specific terminator have a very small
probability of occurrence under this scheme. These events
are key to the behaviour of functions such as strtol, strcmp
and so on.

We improve upon naive fuzzing by using a common char-
acter pool with a small number (∼ 10) of characters, includ-
ing alphanumeric characters, white spaces, separators and so
on. This pool is chosen afresh at the start of each test. Each
input string is produced as a sequence of random characters
drawn from the smaller character pool.

Table 3 shows the results on 30 commonly used functions.
Corresponding to each function, we show the number of ar-
guments, predicates, the number of SAT problems solved
and the number of truth assignments generated. For each
truth assignment, we ran ∼ 1000 different tests based on
different solutions obtained from the theory solver and dif-
ferent random strings corresponding to each solution. The
testing process is terminated upon an out-of-bounds mem-
ory access. The times for testing correspond to smart fuzzing
and are nearly identical to those obtained by naive fuzzing.
The time taken to learn the decision tree is negligible in each
case (≤ 1s). We use heavyweight memcheck tool in valgrind
to detect buffer overflows directly by instrumenting memory
reads in the binary 6. While, valgrind detects invalid reads
and writes precisely, it causes a factor of 50 slowdown in our
testing. Alternatives such as CCured instrument standard C
library functions with manually written preconditions [24].
They are inadmissible for the purposes of this experiment.

The “Result” column of Table 3 compares the final pre-
condition learned by our tool with the actual specifications
of the functions. A ⊇ mark denotes that the precondition
is permissive, i.e, it strictly contains the manual specifica-
tion while predicting errors accurately. An ⊆ mark denotes
that the precondition is safe, i.e, it is contained by the man-
ual specification. A

√
mark denotes a permissive and safe

precondition. Finally, a .= mark indicates that the predi-
cate learned does not have a formal inclusion relationship
with that in the manual. Overall, our tool learns an exact
precondition for 28 of the 30 instances 7.

In many cases, the number of feasible assignments is much
smaller than the total number of truth assignments. The re-
sults obtained show that relatively few predicates actually
appear in the final precondition. The last column in Table 3
shows the Boolean structure of the discovered precondition.
Conjunctions of predictes are denoted by

V

while more com-
plex preconditions involving a disjunction of clauses are de-
noted

W

∧.

Example 6.1. The preconditions learned by our tool are
often more permissive than the manual specification. For the
function strcmp(p, q), our tool infers the precondition

(fwdBnds(p) > strLen(q) ∧ fwdBnds(q) > strLen(q)) ∨
(fwdBnds(p) > strLen(p) ∧ fwdBnds(q) > strLen(p))

This is an over approximation of the usual specification which
requires both p and q to be null terminated. Note, however,
that since the function terminates as soon as it observes the
first difference between the strings, the precondition learned
by our tool ensure correct execution.

6cf. http://www.valgrind.org
7The actual preconditions learned are available by request-
ing srirams@nec-labs.com

The errors in the preconditions learned are due to (a) in-
completeness/unsoundness in the testing process, and (b)
missing predicate (functions strcat and strncat). The in-
completeness can be alleviated by approaches such as con-
colic testing using DART/CUTE [12, 30] and ultimately
solved by using full-blown verification.

7. PREDICATE INFERENCE

Our learning scheme depends critically on the predicates
used. In this section, we present a promising approach that
can be used to infer linear predicates from the test data.

Example 7.1. For the strcat(p, q) function, our technique
generates a safe but impermissive precondition due to the
missing predicate fwdBnds(p) − strLen(q) − strLen(p) > 0
which is a part of the correct precondition. However, such
predicates are not considered by our predicate generation
scheme. We now outline a refinement scheme that infers
such a predicate predicate based on the data from the test
cases.

Let P be a procedure with n > 0 integer inputs x1, . . . , xn.
By extensively testing P on a set of input vectors, we may
classify the inputs into two sets C ⊆ Zn consisting of cor-
rect executions and W ⊆ Zn of inputs leading to erroneous
executions. Our goal is to find a function p(x1, . . . , xn) that
separates the sets W and C:

∀ (w1, . . . , wn) ∈ W, p(w1, . . . , wn) > 0, and
∀ (c1, . . . , cn) ∈ C, p(c1, . . . , cn) ≤ 0 .

Such problems are instances of the general data-classification
problems that the theory of machine learning attempts to
solve. In general, since W ∩ C = ∅, such a separator func-
tion may always be found. However, it can be quite complex,
depending on the sets W and C.

We are interested in simple functions p that are linear
expressions over the variables x1, . . . , xn. The problem of
discovering a linear function p that separates two linear-
separable sets W and C can be solved using techniques such
as least-squares regression. The success of such techniques
depends primarily on (a) whether the sets W and C are ac-
tually linearly separable, and (b) on the amount of available
data, i.e, the sizes and the distribution of the sets W and C.

Example 7.2. Consider the strcat(p, q) function. Assum-
ing that p and q are null-terminated strings, we generate ran-
dom inputs (fwdBnds(p), strLen(p), fwdBnds(q), strLen(q)))
and classify them into sets W,C based on the outcome.

Figure 3(a,b) show the sets W, C as scatter plots. To aid
visualization, the value of fwdBnds(q) is not plotted. Fig-
ure 3(c) shows a separating hyperplane. Not surprisingly,
this plane does not involve fwdBnds(q) and is given by fwdBnds(p)−
strLen(p) − strLen(q) = 0.

This immediately suggests the predicate

fwdBnds(p) ≤ strLen(p) + strLen(q) .

Adding this predicate to those generated by our heuristic pro-
duces the correct precondition for the strcat function.

Starting from an initial set of predicates π1, . . . , πN pro-
vided by our heuristics, we discover new predicates by clas-
sifying the inputs satisfying to a given truth assignment.

Table 3: Precondition learning on the C standard library. Legend: nSAT: # of prop. SAT problems, nAssgn.:
of truth assignments, Comp.?: complete enumeration?, results using naive fuzzing vs. smart(er) fuzzing,
#preds: number of predicates in the precondition, struct.: Boolean structure of the precondition

Func. Enumeration Time (sec) Results
name nArgs nPreds nSAT nAssgn. Comp.? Enum Test naive smart #preds. struct.
strdup 1 5 13 6 Y 0.6 5.1

√ √
1 -

strlen 1 5 12 6 Y 0.6 5.1
√ √

1 -
strrchr 2 11 66 32 Y 1.5 28.6

√ √
1 -

strndup 2 11 65 32 Y 1.5 40.3
√ √

3
V

bzero 2 11 73 32 Y 1.6 35.2
√ √

2
V

memfrob 2 11 63 32 Y 1.5 36
√ √

2
V

strnlen 2 11 68 32 Y 1.6 40.3
√ √

3
V

strtol 2 11 58 32 Y 1.4 49.6 .=
√

2
V

strchr 2 11 66 32 Y 1.5 28.7
√ √

1 -
strcmp 2 19 248 150 Y 3.8 158.5 ⊇

√
4

W

∧
strcoll 2 19 254 150 Y 3.9 161 ⊇

√
4

W

∧
strcpy 2 19 240 150 Y 3.8 107.1

√ √
2

V

strcspn 2 19 243 150 Y 3.7 93.1 ⊇
√

2
V

strpbrk 2 19 251 150 Y 3.8 95.7 ⊇
√

2
V

strspn 2 19 251 150 Y 3.8 109.4 ⊇
√

3
V

strstr 2 19 231 150 Y 3.7 131.6 ⊇
√

5
W

∧
strtok 2 19 252 150 Y 3.8 129 ⊇

√
3

V

strverscmp 2 19 241 150 Y 3.7 163 ⊇
√

6
W

∧
strcat 2 19 236 150 Y 3.7 74 ⊆ ⊆ 3

V

memchr 3 19 332 220 Y 5.2 237.7 ⊇
√

2
V

memset 3 19 328 220 Y 5.3 234.2
√ √

2
V

strncat 3 29 584 301 N 4.7 180 ⊆ ⊆ 5
W

∧
strncmp 3 29 575 301 N 4.7 317.6 ⊇

√
8

W

∧
strncpy 3 29 600 301 N 4.9 267.5

√ √
4

V

strxfrm 3 29 601 301 N 5 234.4
√ √

4
V

strtok r 3 29 614 301 N 5 241.7 ⊇
√

4
V

memcmp 3 29 589 301 N 4.8 322.2 ⊇
√

9
W

∧
memcpy 3 29 570 301 N 4.7 253.4

√ √
3

V

memmove 3 29 597 301 N 4.8 262.2
√ √

3
V

memmem 4 41 1203 301 N 10.5 1200 ⊇
√

7
W

∧
memccpy 4 41 1033 301 N 8.7 908 ⊇

√
3

V

Based on the outcomes of the individual inputs, we derive a
hyperplane that separates positive and negative examples.
Linear separations discovered that hold for multiple truth
assignments can then be added to the set of predicates and
used in the overall precondition learning scheme.

8. CONCLUSION
We have presented a technique based on predicates to

infer likely data preconditions. Our approach uses testing
along with tree learning to infer Boolean combinations of
the input predicates that predict an error-free execution.
The approach works well on a variety of string and pointer
manipulating functions in the C standard library.

One of the key issues raised by our approach is the auto-
matic inference of a suitable set of predicates, given a pro-
gram. We have presented some preliminary observations
that can be used to solve this problem. We hope to investi-
gate the applicability of such techniques in the near future.

9. REFERENCES
[1] Acharya, M., Xie, T., Pei, J., and Xu, J. Mining

API patterns as partial orders from source code: from

usage scenarios to specifications. In ESEC-FSE ’07
(2007), ACM Press, pp. 25–34.

[2] Alur, R., Černý, P., Madhusudan, P., and Nam,
W. Synthesis of interface specifications for java
classes. In Proc. Symp. on Principles of prog. lang.
(POPL) (2005), ACM Press, pp. 98–109.

[3] Ammons, G., Bod́ık, R., and Larus, J. R. Mining
specifications. In POPL (2002), pp. 4–16.

[4] Ball, T. A theory of predicate-complete test
coverage. In FMCO (2004), pp. 1–22.

[5] Boyapati, C., Khurshid, S., and Marinov, D.
Korat: automated testing based on java predicates.
SIGSOFT Softw. Eng. Notes 27, 4 (2002), 123–133.

[6] Bryant, R. M. Graph-based algorithms for boolean
function manipulation. IEEE Transactions on
Computers C-35, 8 (Aug. 1986), 677–691.

[7] Cadar, C., and Engler, D. R. Execution
Generated Test Cases: How to make systems code
crash itself. In SPIN (2005), vol. 3639 of LNCS,
Springer–Verlag, pp. 2–23.

0
100 150 200

80
160200

0
40
80

120
160

C

0 50 100 150 200
60

120160
200

0
60

120
200

W

0 50 100 150 200
50

100
150

200
-200
-100

0
100
200

x − y − z = 0

(a) (b) (c)

Figure 3: Sets C and W for the strcat function, and (c) the hyperplane separating them.

[8] Cousot, P., and Cousot, R. Abstract
Interpretation: A unified lattice model for static
analysis of programs by construction or approximation
of fixpoints. In POPL (1977), ACM, pp. 238–252.

[9] Csallner, C., Tillmann, N., and Smaragdakis,
Y. DySy: Dynamic symbolic execution for invariant
inference. In Proc. ICSE (2008), ACM Press.

[10] Engler, D. R., Chen, D. Y., and Chou, A. Bugs as
inconsistent behavior: A general approach to inferring
errors in systems code. In SOSP (2001), pp. 57–72.

[11] Ernst, M. D. Dynamically Discovering Likely
Program Invariants. Ph.D., University of Washington
Department of Computer Science and Engineering,
Seattle, Washington, Aug. 2000.

[12] Godefroid, P., Klarlund, N., and Sen, K. DART:
Directed Automated Random Testing. In PLDI
(2005), ACM, pp. 213–223.

[13] Gogate, V., and Dechter, R. A new algorithm for
sampling csp solution uniformly at random. In CP’07
(2007).

[14] Henzinger, T. A., Jhala, R., and Majumdar, R.
Permissive interfaces. In ESEC/SIGSOFT FSE
(2005), ACM, pp. 31–40.

[15] Ivančić, F., Yang, Z., Ganai, M. K., Gupta, A.,
and Ashar, P. F-Soft: Software verification
platform. In Computer-Aided Verification (CAV 2005)
(2005), vol. 3576 of LNCS, Springer–Verlag,
pp. 301–306.

[16] Jackson, D., and Vaziri, M. Finding bugs with a
constraint solver. SIGSOFT Softw. Eng. Notes 25, 5
(2000), 14–25.

[17] Jiang, G., Chen, H., Ungureanu, C., and
Yoshihira, K. Multi-resolution abnormal trace
detection using varied-length N-grams and automata.
In ICAC (2005), IEEE Computer Society,
pp. 111–122.

[18] Kremenek, T., Twohey, P., Back, G., Ng, A. Y.,
and Engler, D. R. From uncertainty to belief:
Inferring the specification within. In OSDI (2006),
USENIX Association, pp. 161–176.

[19] Liblit, B. Co-Operative Bug Isolation. Phd,
University of California, Berkeley,CA, 2005.

[20] Majumdar, R., and Sen, K. Hybrid concolic testing.
In ICSE’07 (2007), pp. 416–426.

[21] Mitchell, T. M. Machine Learning. McGraw-Hill,
1997.

[22] Moskewicz, M., Madigan, C., Zhao, Y., Zhang,
L., and Malik, S. Chaff: Engineering an efficient sat
solver. In Proc. 39th Design Automation Conference
(DAC’01) (2001).

[23] Moy, Y. Sufficient preconditions for modular
assertion checking. In VMCAI’08 (2008), LNCS,
Springer-Verlag.

[24] Necula, G., McPeak, S., and Weimer, W.
CCured: Type-safe retrofitting of legacy code. In
Proc. POPL (2002), ACM.

[25] Quinlan, J. C4.5: Programs for Machine Learning.
Morgan-Kauffmann, 1993.

[26] Quinlan, J. R. Induction of decision trees. Machine
Learning 1 (1986), 81–106.

[27] Ramanathan, M. K., Grama, A., and
Jagannathan, S. Static specification inference using
predicate mining. In Prog. Lang. Design &
Implementation (PLDI) (2007), ACM press,
pp. 123–134.

[28] Sankaranarayanan, S., Ivančić, F., and Gupta,
A. Mining library specifications using inductive logic
programming. In Proc. ICSE (2008), ACM Press.

[29] Selman, B., Kautz, H., and Cohen, B. Local
search strategies for satisfiability testing. DIMACS
series on Discrete Mathematics and Theoretical
Computer Science 26 (1996).

[30] Sen, K., Marinov, D., and Agha, G. Cute: A
concolic unit testing engine for c. In ESEC/FSE’05
(2005), ACM Press.

[31] Taghdiri, M., Seater, R., and Jackson, D.
Lightweight extraction of syntactic specifications. In
SIGSOFT FSE (2006), pp. 276–286.

[32] Wei, W., Erenrich, J., and Selman, B. Towards
efficient sampling: Exploiting random walk strategies.
In AAAI’04 (2004).

[33] Whaley, J., Martin, M. C., and Lam, M. S.
Automatic extraction of object-oriented component
interfaces. In ISSTA (2002), pp. 218–228.

[34] Yang, J., and Evans, D. Automatically discovering
temporal properties for program verification, 2005.
TR, Department of Computer Science, University of
Virginia.

