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ABSTRACT

We present a Bayesian framework that can learn probabilistic speci-
fications from large, unstructured code corpora, and then use these
specifications to statically detect anomalous, hence likely buggy,
program behavior. Our key insight is to build a statistical model
that correlates specifications hidden inside a corpus with the syntax
and observed behavior of their implementations. While analyzing
a program, we condition this model into a posterior distribution
that prioritizes specifications that are relevant to the program. The
problem of finding anomalies is framed quantitatively, as a problem
of computing a distance between a “reference distribution” over
program behaviors that our model expects from the program, and
the distribution over behaviors that the program actually produces.

We implement our ideas in a system, called SALENTO, for finding
API usage errors in Android programs. SALENTO learns specifica-
tions using a combination of a topic model and a neural network
model. Our experiments show that the system can discover sub-
tle errors in Android applications in the wild, and outperforms a
comparable non-Bayesian approach.
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1 INTRODUCTION

Over the years, research on automated bug finding in programs has
had many real-world successes [11, 14]. However, one perennial
source of difficulty is the need for formal specifications. Traditional
approaches require the user to specify correctness properties; any
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property that is not specified is outside the scope of reasoning.
However, formally specifying real-world software is a difficult task
that users often refuse to undertake.

A natural response to this difficulty is to automatically learn
specifications of popular software components like APIs and frame-
works. The availability of large corpora of open-source code makes
this idea especially appealing [15]. By analyzing these corpora, one
can generate numerous examples of how real-world programs use
a set of components. Statistical methods can then be used to learn
common patterns in these examples. According to the well-known
thesis that bugs are anomalous behaviors [20, 28], a program whose
use of the components significantly deviates from these “typical”
usage patterns can be flagged as erroneous.

The problem of specification learning has been studied for a
long time [6-8, 25]. However, existing approaches to the problem
face two basic issues when applied to large code corpora. First,
examples derived from such a corpus can be noisy. While programs
in a mature corpus are likely to be mostly correct, not all examples
extracted from such a corpus represent correct behavior. Second,
such a corpus is fundamentally heterogeneous, and may contain
many different specifications, some of them mutually contradictory.
For example, it may be legitimate to use a set of APIs in many
different ways, and a large enough corpus would contain instances
of all these usage patterns. A specification learning tool should
distinguish between these patterns, and a bug-finding tool should
only compare a program with the patterns that are relevant to it.

Among existing methods for specification learning, the majority
follow a traditional, qualitative view of program correctness. In this
view, a specification is a set of program behaviors (e.g., sequences
of calls to API methods), and a behavior is either correct (in the
specification) or incorrect (outside the specification). Such an ap-
proach is not robust to noise because its belief in the correctness
of a behavior does not change smoothly with the behavior’s ob-
served frequency. A small number of incorrect training examples
can wrongly persuade the method that a behavior is correct.

An obvious fix to this problem is to view a specification as a
probabilistic rather than a boolean model. Such a specification as-
signs quantitative likelihood values to observed program behaviors,
with higher likelihood representing greater confidence in a behav-
ior’s correctness. Some recent work adopts this view by modeling
program behaviors using models like n-grams [40, 52] and recur-
rent neural networks [47]. To find bugs using such a model, one
generates behaviors of the target program using static or dynamic
analysis, then evaluates the likelihood of these behaviors [53].

While robust to noise, approaches of this sort have a basic dif-
ficulty with heterogeneity. The root of this difficulty is that these
methods learn a single probability distribution over program be-
haviors. For example, if Z; and Z; are two common but distinct
patterns in which programs in a corpus use a set of APIs, these
approaches would learn a specification that is a mixture of Z; and
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Z,. During program analysis, such a mixture would assign low
likelihoods to behaviors that match one of, but not both, Z; and Z,.
As behaviors from a program are likely to follow only one of the
two patterns, this phenomenon would lead to inaccurate analysis.

In this paper, we present a Bayesian approach to specification
learning and bug finding that is robust to heterogeneity and noise.
Our key insight is to build a statistical model that captures the
entire gamut of specifications in an unstructured code corpus. More
precisely, our model learns a joint probability distribution over a
random variable Z representing hidden specifications and a random
variable X representing syntactic features of implementations of
these specifications. When using this model to analyze a particular
program F with feature set Xg, we specialize it into a posterior distri-
bution P(Z|X = Xp) over specifications. Intuitively, this distribution
assigns higher weight to specifications for programs that similar to
F, and can be seen as the part of the model that is relevant to F.

This model architecture can tolerate high amounts of hetero-
geneity in the corpus. Suppose that the programs in the corpus
use a set of APIs following distinct patterns Z1, ..., Zp, but that
programs that look like F (i.e., have feature set Xf) tend to follow
Z1. During training, our framework learns this correlation between
XF and Z;. This means that the posterior distribution P(Z|X = X)
puts a high weight on Z; and low weights on Zj, ..., Zy, and that
correctness analysis of F happens only with respect to Z;.

Our second key idea is to frame the detection of likely errors
as an operation over distributions. We assume, for each program
F, a distribution Pg(Y) over the behaviors Y of the program. This
distribution — a probabilistic behavior model — may be learned from
data, or, as in this paper, be a definition that is a parameter of the
framework. This allows us to develop a model P(Y|Z = Z) of the
behaviors Y of a program that follows a specification Z. When
combined with the posterior P(Z|X = Xf) for Z, this model gives
us a “reference distribution” P(Y|X = Xf) over behaviors that the
model expects from a program that looks like F. The anomaly score
of F, which quantifies the extent to which F behaves abnormally,
is now defined as a statistical distance (in particular, the Kullback-
Leibler divergence [34]) between P(Y|X = Xf) and Pg(Y).

Our Bayesian approach is a framework, meaning that it can
be implemented using various concrete statistical models. In this
paper, we instantiate it with a combination of the popular topic
model Latent Dirichlet Allocation (LDA) [17], and a class of neural
networks that are conditioned on a topic model [37]. To compute
the anomaly score for a program F, we repeatedly query this model
for the likelihood of different behaviors of F, and then aggregate
these likelihood values into an estimate of the anomaly score.

We implement our ideas in a system called SALENTO, and use the
system to detect API misuse in Android applications. Using three
APIs as benchmarks, we show that SALENTO can automatically
discover subtle API bugs in Android applications in the wild. These
violations range from GUI bugs to inadequate encryption strength.
Some of these errors are difficult to characterize in logic-based
specification notations, indicating the promise of our approach in
settings where traditional formal methods are hard to apply. We
also show that the method has good precision and recall and is more
robust to heterogeneity than a comparable non-Bayesian approach.

Now we summarize the contributions of this paper:
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e We present a novel Bayesian framework for learning specifica-
tions from large code corpora (Section 3).

e We offer a novel formulation of the problem of finding anoma-
lous program behavior as the problem of computing a distance
between a program and a reference distribution (Section 3).

e We present an instantiation our framework with a topic model
and a topic-conditioned recurrent neural network (Section 4).

o We evaluate the approach on the problem of detecting anomalous
API usage in a suite of Android applications (Section 5).

2 OVERVIEW

In this section, we present an overview of our approach, with the
help of an illustrative example.

2.1 Modeling Framework and Workflow

Our approach has the following key aspects. First, we assume the
existence of a specification Z for each program F. However, unlike
traditional approaches that start with a formal specification, Z
in our context is not observable. Instead, what is observable is
Xk, a set of syntactic features for F. The features are evidence, or
data, that inform our opinion as to the unseen specification Z.
In Bayesian fashion, our uncertainty about Z is formalized as a
posterior distribution P(Z|X = Xg), where Z is a random variable
over specifications and X is a random variable over features. This
distribution assigns higher likelihood to a specification if we believe
it is more likely to be the correct specification for programs that
“look like” F, given the evidence.

Second, we allow for uncertainty regarding the behaviors Y —
defined as sequences of observable actions — that a given program F
produces. This uncertainty comes from the fact that we do not fully
know the inputs on which the program will run, and is captured
by a distribution Pp(Y), where Y is a random variable ranging over
behaviors. The framework also allows for a distribution P(Y|Z = Z)
over the behaviors of programs that implement a given specification
Z. This uncertainty can come from the fact that we do not know
the inputs to implementations of Z, or the fact that we may have
never seen a specification exactly like Z before, so that we have to
guess the behavior of a program implementing Z.

Our a priori belief about the relationships between specifications
and the features and behaviors of their implementations is given
by a joint distribution P(X, Y, Z). Our third key idea is that this
distribution is informed by data extracted from a corpus of code.
This information is taken into account formally during a learning
phase that fits the joint distribution prior model to the data.

Finally, in the inference phase, we frame bug detection as a prob-
lem of computing a quantitative anomaly score. In traditional cor-
rectness analysis, the semantics of programs and specifications are
given by sets, and one checks if the set difference between a pro-
gram and a specification is empty. Our formulation is a quantitative
generalization of this, and defines the anomaly score for a program
F as the Kullback-Leibler (KL) divergence [34] between the behavior
distribution Pr(Y) for F, and the posterior distribution P(Y|X = Xf)
that the model expects from F. Correctness analysis amounts to
checking whether this score is below a threshold.

The workflow of our method is as in Figure 1. The training
and inference phases are denoted by green (solid) edges and red
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Figure 1: Workflow, with instantiations in grey boxes

(dashed) edges respectively. During training, from each program F;
in a corpus of programs Fy, Fs, ..., we extract a set of features X,,
and sample a set of behaviors from the distribution Pf, (Y), forming
the training data. From this data, we learn the joint distribution
P(X,Y,Z | M), where M represents the model parameters.
During inference, we extract the features Xg of a given program
F, and query the trained model for the distribution P(Y|X = Xg, M)
that tells us how F should behave. Separately, we obtain the distri-
bution Pr(Y) over observed behaviors of F. The anomaly score of F
is then computed as the KL-divergence between these distributions.

2.2 Instantiating the Framework

An instantiation of our framework must concretely define program
features and behaviors, and the way in which the distributions
P(X,Y,Z | M) and Pp(Y) are obtained. In this paper, we consider a
particular instantiation, embodied in the SALENTO tool, where the
goal is to learn patterns in the way programs call methods in a set
of APIs. We abstract each such call as a symbol from a finite set,
and define a behavior Y as a sequence of symbols. The feature Xr
for a program F is the set of symbols that F can generate.

A key idea in this instantiation is to capture hidden specifications
using a topic model. Here, “topic” is an abstraction of the hidden
semantic structure of a program. A specification for a program F is a
vector of probabilities whose the i-th component is the probability
that F follows the i-th topic. For example, the topics in a given
corpus may correspond to GUI programs and bit-manipulating
programs. A program that makes many calls to GUI APIs will likely
have a higher probability for the former topic.

Specifically, we use Latent Dirichlet Allocation (LDA) [17] to
learn a joint distribution P(Z, X|M) over the topics and features of
programs. A topic-conditioned recurrent neural network model [37],
is used to learn conditional distributions of the form P(Y|Z = Z,M).
The joint distribution P(X, Y, Z|M) that our framework maintains
can be factored into these two distributions.

Our probabilistic model P¢(Y) for behaviors of programs F is not
data-driven. This is because to learn this distribution statistically,
we would need data on the inputs that F receives in the real world.
Since such data is hard to get, we simply assume a definition of
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Pr(Y). While many such definitions are possible, the one we pick
models F as a class of automata, called generative probabilistic au-
tomata [7, 39]. The distribution Pg(Y) is simply the semantics of
this automaton.

2.3 Example

Consider the problem of finding bugs in GUIs, where the right and
wrong ways of invoking GUI API methods are seldom formally
defined. Specifically, consider a dialog box in a GUI that does not
give the user an option to close the box, and a dialog box that
does not display any textual content. Clearly, such boxes violate
user expectations, and are buggy in that sense. Two such boxes,
produced by real-world Android apps, are shown in Figure 2(a).
The code snippets responsible for these boxes are shown in
Figure 2. For example, in Figure 2(b)(i), b is a dialog box; the method
b.setItems(...) adds content to the dialog box; the method b.show()
displays the box. If the branches in lines 4 and 7 are not taken, then
b.show() opens the box without a “close” button. Note that the
sequences of API calls that lead to these bugs are not forbidden by
the API, and would not be caught by a traditional program analysis.
In contrast, a statistical method like ours can observe thousands of
programs and learn that these sequences are abnormal.
Operationally, to debug this program using SALENTO, we gener-
ate features and behaviors from a corpus of Android apps. Using
these features, LDA learns to classify programs by the APIs they
use, and to also distinguish between different usage patterns in
the same API Consider the examples of dialog box creation in Fig-
ure 2(b), where program F; in (b)(i) explicitly specifies the items
that go into the box, and the program F; in (b)(ii) provides a View
that encompasses the items that go into the box. LDA can assign dif-
ferent topics to these usage patterns. For example, the pattern used
in Fy could be assigned the first topic, resulting in a topic vector
(Z) (0.98,0.01,0.01), and the pattern used in F2 could be assigned
the second topic, resulting in the topic vector (0.01,0.98,0.01).
Conditioned on such a topic vector Z, a topic-conditioned RNN
provides the probability of an API call sequence Y, that is, P(Y =
Y|Z = Z). For instance, given the former topic vector, a topic-
conditioned RNN trained on thousands of examples of topics and
behaviors would provide a high probability to a sequence such as:
new A() setTitle(...) setItems(...) show()
and a low probability to an abnormal sequence such as
new A() setTitle(...) show()
as it shows a dialog without any content. However, our probabilistic
automaton model Pr, (Y) of F; assigns about 0.66 and 0.33 probabil-
ity, respectively, to these sequences. In general, the KL-divergence
between the two distributions is high, causing F to be flagged as
anomalous.

3 BAYESIAN SPECIFICATION FRAMEWORK

In this section, we formalize our framework, along with the prob-
lems of specification learning and anomaly detection.

3.1 Program Behaviors and Features

Our framework is parameterized by a programming language. Each
program in the language has a syntax and an operational semantics.
Because the details of the language do not matter to the framework,
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AlertDialog.Builder b = new AlertDialog.Builder (this);
b.setTitle (R.string.title_variable_to_insert);
if (focus.getId() == R.id.tmpl_item)
b.setItems (R.array.templatebodyvars, this);
else if (focus.getId() == R.id.tmpl_footer)
b.setItems (R.array.templateheaderfootervars,

b.show();
(b))

AlertDialog.Builder b = new AlertDialog.Builder (this);
.setMessage ("Parametres?");

.setCancelable (false) ;

.setView (dlgLayout);

.setPositiveButton ("Ok", new OnClickListener () {..
.setTitle ("Aide")

.show () ;

this);

1)

o o oo oo

(b)(ii)

Figure 2: (a) Abnormal dialog boxes discovered by our anomaly detection (b) Code snippets corresponding to the dialog boxes

we do not concretely define this syntax and semantics. Instead, we
assume that the syntax of each program F can be abstracted into
a feature set Xg. For instance, such features can include syntactic
constructs, assertions, and natural language comments. We also
assume that program actions during execution can be abstracted
into a finite alphabet ¥ of observable symbols (including an empty
symbol €). We model program executions as behaviors Y, defined to
be words in 3*. A behavior is the result of a probabilistic generative
process that takes place when a program is executed. Accordingly,
we assume a probabilistic behavior model of F, defined as a distribu-
tion Pg(Y) over the behaviors of F.

3.2 Specification Learning

Our framework builds a probabilistic model P(X, Y, Z) that factor-
izes as P(X,Y,Z) = P(Y|Z)P(X|Z)P(Z). The model captures the
intuition that every program is implementing some unknown spec-
ification in the space of all specifications (P(Z)), which determines
the program’s behavior (P(Y|Z)) and features (P(X|Z)).

Building this model requires data, in the form of a large corpus
of example programs. As in all statistical learning methods, we first
develop an appropriate statistical model, which is typically a distri-
bution family, and then learn that model—choose the parameters
for the model family so they match reality—by training it on data.
To this end, P(X, Y, Z) also takes as input a set of model parameters
M. Fully parameterized, this distribution becomes:

P(X,Y,ZM) = P(Y|Z, M)P(X|Z, M)P(Z|M) 1)

The available data are then used to choose an appropriate set of
parameters M. For this, we follow the standard recipe of maximum
likelihood [16]. Suppose that we are given a large corpus of programs
{F1,...,Fn}, and for each program F; we have extracted the pair
(XF;»{Yi,1 Yi,2,...)) consisting of its feature set and a number of
examples of its behavior sampled from its behavior model. Given
this data, our goal is to choose M that maximizes the function:

N
]_[ f HP(Yi,jIZ:Z,M) P(Xf,1Z = Z,M)P(Z; M) dZ |.
i=1 \VZ\y,;
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Note that we integrate out Z, since this is an unseen random
variable, as we typically do not know the value of the precise specifi-
cation associated with each code in the corpus. Once M is learned,
the distribution would represent our prior belief as to what the
“typical” specification, behavior and features look like, informed by
the programs in the corpus.

3.3 Anomaly Detection
Suppose that we are given a new program F and would like to obtain
a quantitative measure of the “bugginess” of F. On the one hand,
since we already have learned a joint distribution over behaviors,
features and specifications, P(X,Y, Z|M), we can condition this
distribution with the newly observed X, to obtain the posterior:
P(Y,Z,X = XfIM
P(Y, ZIX = X¢, M) = DL 2 X = XFIM)
P(X = X¢IM)

From Equation 1, we have

P(Y|Z,M)P(X = X¢|Z, M)P(Z|M)

P(Y,Z|X = Xg, M) = P = Xe M)

Applying Bayes’ rule to the term P(X = Xf|Z, M) we rewrite
P(Y,Z|X = Xg, M) as
P(ZIX = Xg, M)P(X = X¢|M)
P(ZIM)
P(X = Xg|[M)
= P(Y|Z,M)P(Z|X = X§, M)

P(Y|Z,M) P(ZIM)

From this, since we do not know the precise specification that F is
implementing, we can integrate out Z to obtain the (marginalized)
posterior distribution over behaviors:

P(YIX = Xp, M) = fzpmz =ZM)P(ZIXp. M) dZ  (2)

This form is amenable to Monte Carlo integration, which estimates
an integral through random sampling. Intuitively, it gives us a dis-
tribution over the program behaviors Y, that would be anticipated,
given learned parameters M, for a program with feature set Xp.
On the other hand, we have a distribution Pg(Y) over the actual
behaviors of F when it is executed. The final step is to then com-
pare this actual distribution with the anticipated distribution over
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behaviors, that is, P(Y|X = Xg, M). A measure such as the Kullback-
Leibler (KL) divergence [34] between distributions is appropriate
here. The KL-divergence between two distributions P; and P, over
the domain i is a quantitative measure defined as:

Py (i)
Py (i)

DkL(P1IP2) = ) Pi(i)log 3

Using this measure, we can compute the anomaly score of F by
setting P; and P; to the distributions Pr(Y) and P(Y|X = Xg, M)
respectively, and ranging i over the domain of all possible program
behaviors in the language ¥*:

D P(Y =Y)

Yex*

1 Pr(Y =Y)
B DY = YIX = Xp, M)

©

Choosing an Abstraction. When instantiating the framework,
the exact form of the feature set Xp must be chosen with some
care. If the feature set Xp does not provide any abstraction for the
program (i.e., Xf is the program itself) and the model and learner
are arbitrarily powerful, then P(Y|X = Xf, M) (Equation 2) could,
in theory, describe the compiler and symbolic executor used to
produce the training data. This would mean that the KL divergence
(Equation 3) is zero for any program.

When applying the framework to a problem, we protect against
this possibility by choosing a feature set X that abstracts the pro-
gram adequately. For example, when debugging API usage, it makes
sense to choose Xf as the bag of API calls made by the code. This
ensures that P(Y|X = Xg, M) is limited to attaching probabilities to
sequences that can be made out of those calls, and it is impossible
for the learner to “learn” to compile and execute a program.

4 INSTANTIATION OF THE FRAMEWORK

Now we present a concrete instantiation of our framework.

4.1 Probabilistic Behavior Model Pr(Y)

First, our instantiation includes a definition of the probabilistic
behavior model Pg(Y). This definition relies on the abstraction of
programs as generative probabilistic automata [39, 49].

Program Model. A generative probabilistic automaton is a tuple
F=(Q,%,q0,0Q4,0) where Q is a finite set of states, ¥ is the al-
phabet of observable symbols that was introduced earlier, g9 € Q
is the initial state, Q4 C Q is a set of final or accepting states, and
8 : @xX xR 1] X Q is a transition relation. We have (i, s, p, ;) if
the automaton can transition between states g; and g; with a prob-

ability p € (0, 1], generating the symbol s. (We write g; LN qj if
such a transition exists.) Transitions with probability 0, or infeasible
transitions, are excluded from the automaton.

A program in a high-level language is transformed into the above
representation through symbolic execution [31] in a preprocessing
phase. Symbolic execution runs a program with symbolic inputs and
keeps track of symbolic states, analogous to a program’s memory.
The symbolic states encountered become the states Q, and the
accepting states Q4 are typically the states at a final location (or
some location of interest) in the program. Unbounded loops can be
handled by imposing a bound on symbolic loop unrolls, or through
a predicate abstraction of the program to make variable domains
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new A(..)
setTitle(...)

Figure 3: Automaton for the example in Figure 2(b)(i)

finite. The detection of infeasible states—in general an undecidable
problem—depends on the underlying theorem prover that is used.
As symbolic execution is a standard method in formal methods [9,
18, 29], this section only gives an example of the method’s use. As it
is applied at a preprocessing level, we often use the term “program”
to refer to an automaton generated via symbolic execution, rather
than a higher-level program to which preprocessing is applied.

Semantics. A run  of F is defined as a finite sequence of tran-
St P1 S2, P2 Sn>Pn

sitions qo e qn beginning at the

initial state qqg. 7 is accepting if qn € Q4. The probability of 7 is

P(r) = [1} pi- Every run 7 generates a behavior Y € =¥, denoted

as || = s1s2 - - sp. Let ITF be the set of all accepting runs of F, and

IIE(Y) C IIf be the set of all accepting runs x such that [z =Y.
The probabilistic behavior model Pr(Y) : * — [0, 1] is:

B =v)=2 Y P(n)

14
ﬂEHF(Y)

()

where v = 3 ; 11, P(r) is a normalization factor.

It is easy to see that Pr(Y) defines a probability distribution over
behaviors. To generate a “random” behavior of F, we simply sample
from the distribution Pg(Y).

Features. Given a program F, the feature set Xf is defined as

{slqi i) qj € 6} \ {€}, ie, the set of all non-empty symbols in
the transition system of F.

Example. The automaton for the code in Figure 2(b)(i) is shown
in Figure 3. Each “state” in the automaton is labeled with a program
location, with multiple instances of the same location being primed.
The initial state is the first location, and the accepting states, in bold,
are all instances of a (special) terminal location T in the program.
The transitions follow the structure of the code (for brevity, we
collapse sequential statements into a single transition), emitting as
symbols API methods called at each location.

Note that we gave a uniform probability at each state to transition
to the next possible states, but this can be controlled through other
means. For instance, one can apply model counting on a branch
condition and compute the probability of the program executing
one branch over another. Such a definition is not necessarily a
better choice than ours, as it would assign low probabilities to
corner cases that get triggered on a small number of inputs but
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are often of interest to users of static analysis. The two definitions
simply make different tradeoffs. We use a uniform distribution at
branches because it is simpler and worked well in our experiments.

{new A(), setTitle(...), setItems(...), show()} is the feature
set for this program. There are three accepting runs of F, and two
behaviors generated by these accepting runs:

Y1 =newA() setTitle(...) setItems(...) show()
Y2 = new A() setTitle(...) show()

We have v = 1.0, the sum of the probabilities of all accepting runs.
Hence, Pr(Y1) = (0.33 + 0.33)/1.0 = 0.66 and Pr(Y3) = 0.33.
Assume now that after training on a large number of behaviors,
the model had learned that conditioned on specifications such as
(0.98,0.01,0.01) (that gave a high probability to the first topic), pro-
gram behaviors tend to always add a title and items to dialog boxes.
This might result in the behavior Y; having a very high probability,
say 0.99, and all other behaviors having a very low probability.
Particularly, a behavior that only calls setTitle without setItems
would be assigned a very low probability, say, 107>. In our pro-
gram F, we saw that Pp(Y1) = 0.66 and Pr(Y2) = 0.33, and the
probability of any other Y is 0. Thus, the anomaly score of F is:
0.66 log % +0.33 log %—%‘Z’ = 3.16 Suppose now, that the state 11’
in the program model was infeasible. Then, both accepting runs in
the model would only generate Y1, and so Pr(Y1) = 1. The anomaly
score of this “correct” program would then be log ﬁ =0.01.

4.2 Topic Models for P(Z,X | M)

Topic models are used in natural language processing to automati-
cally extract topics from a large number of “documents” containing
textual data as words. In our case, a document is the feature set
of a program, words are symbols from the observable alphabet
that a program uses, and the topic distribution of a document is its
unknown specification.

LDA [17] is a popular topic model that models the generative
process of documents in a corpus where each document X, con-
tains a bag of words. The inputs to LDA are the number K of topics
to be extracted, and two hyper-parameters a and . LDA models a
document as a distribution over topics, and a topic as a distribution
over words in the vocabulary. An LDA model is characterized by
the variables: (i) & and 5, hyper-parameters of a Dirichlet prior that
chooses the topic distribution of each document and the word dis-
tribution of each topic, respectively (ii) Z,, the topic distribution
of document Xg,, (iii) B, the word distribution of topic k.

The result of training an LDA model is a learned value for all the
latent variables a, 77, Zf, and B, which forms our model parameter
M. During inference, we are given a document Xr, and we would
like to compute the posterior distribution P(Z|X = X, M). Since
LDA has already learned a joint distribution P(Z, X|M), this is
simply a matter of conditioning this distribution with the newly
observed Xf to get a posterior distribution over Z, which is often
approximated through a technique called Gibbs sampling [24].

4.3 Recurrent Neural Networks for P(Y | Z,M)

Neural networks have been used to solve classification problems
such as image recognition and part-of-speech tagging. These prob-
lems involve classifying an input x into a set of (output) classes y,
using the conditional distribution P(y|x, M).
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Suppose we are given a value of x: a given sequence of symbols
(characters) sys2 . . . sy—1 where each symbol is from the alphabet 2,
and we would like the model to generate the next symbol s;. We
can cast this generative problem as a classification task by creating
X1X2 .. .X;—1, where each xy. is the one-hot vector of s, and querying
the model to “classify” the sequence x1xz . .. x;—1 into |3| classes.
The output vector y; is then interpreted as a distribution over X,
from which a symbol s; can be sampled [13]. Let us denote the
probability of a symbol s given by the distribution y; as y;(s).

A topic-conditioned neural network [37] takes, in addition to
x, an input Z representing the topic distribution of a document
obtained from a topic model. To handle unbounded length input
sequences, a recurrent neural network (RNN) is used. An RNN uses
a hidden state to neurally encode the sequence it has seen so far. At
time point ¢, the hidden state h; and the output y; are computed as:

(6)

where W, V, U and T are the weight matrices of the RNN, by, and
by are the bias vectors of the hidden states and outputs respectively,
f is a non-linear activation function such as the sigmoid, and g is a
softmax function that ensures that the output is a distribution.

Training the model involves defining an error function between
the output of the RNN and the observed output in the training data.
Specifically, if the training data is of the form (Xf,,(Yi 1, Yi,2,...)),
then each training step of the RNN will consist of the input x being
Y;,j, target output y being Y; ; shifted by one position to the left
(since at time point ¢ the output y; is interpreted as the distribution
over the next symbol in the sequence), and Z being a sample from
P(Z|X = X, M) given by the trained topic model. A standard error
function such as cross-entropy between the output of the RNN and
the target output can be used.

Since the error function and all non-linear functions used in the
RNN are differentiable, training is done using stochastic gradient
descent. The result of training is a learned value for all matrices in
the RNN, which together form a part of our model parameter M.

During inference, we are given a value Z of Z and a particular
Y = s1,...,8n, and would like to compute P(Y = Y|Z = Z,M).
This is straightforward: we set x; as the one-hot vector of s; for
1<t <n Then, P(Y=Y|Z=2ZM)= ’;:_11 Yt (st+1) where y; is
computed using Equation 6.

h; = f(Wht_l +VZ+Ux; + bh), Yy = g(Th[ + by)

4.4 Estimation of the Anomaly Score

There are two difficulties associated with computing the anomaly
score in our instantiation of the framework. First, in general, the
computation in Equation 4 requires summing over a possibly infi-
nite number of program behaviors Y, which is not feasible. Second,
it also requires computing P(Y|X = Xg, M), which in turn requires
integrating out the unknown specification Z (Equation 2).

Both of these difficulties can be addressed via sampling. We note
that in general, to estimate a summation of the form )’ ; <y P1 (i) P2 (i)
where P (i) is a probability mass function over the (possibly) infinite
domain I and P, is a function on I, it suffices to take a number of
samples iy, i2, ..., im ~ P1(i). One can then use:

D PP = Y - Paliy)

iel k=1
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as an unbiased estimate for the desired sum. It is well known from
standard sampling theory that the variance of this estimator, de-
noted as 2, reduces linearly as m increases.

We can apply this process to estimate the anomaly score for F by
letting the domain I be the set of all possible behaviors in ¥, and
sampling a large number of behaviors Y with probability propor-
tional to Pr(Y), then letting P2(Y) = log(Pr(Y = Y)) — log(P(Y =
Y|X = X, M)) and using the estimator described above. We can
keep sampling until the variance of the estimate is sufficiently small.

Fortunately, sampling a behavior from the distribution Pr(Y) is
easy: we can use rejection sampling [51] to sample an accepting run
s of F and then simply obtain its behavior Y = [Jz[]. However we
do not yet have a complete solution to our problem. The difficulty
is that for a sampled behavior Y, it is not possible to compute
Py(Y =) easily because of two reasons. First, the term Pr(Y =Y)
(Equation 5) requires summing over possibly infinite number of
accepting runs I, and second, as mentioned before, computing
P(Y = Y|X = Xg, M) requires integrating over the unseen Z value.

To handle this, we extend our sampling-based algorithm. Rather
than just sampling behaviors, we sample the set I of (Y, I, ZF)
triples, where If is itself a set of accepting runs of F sampled
using the same method, and ZF is a set of values sampled from
P(Z|X = Xp,M). The latter set of samples can easily be obtained
via Gibbs sampling. One could then estimate the divergence as:

TR DY

(V.IIF, Zf) mellg(Y)
el

~log P(Y = Y|Z = Z,M)
T Z

ZeZ~F

where ﬁ;(Y) is the set of paths 7 € fIT: such that [|z[] = Y. The sum
in the first log term estimates the fraction of sampled accepting
runs whose behavior is Y, thus estimating Pr(Y = Y), and the sum
in the second log term estimates P(Y = Y|X = Xf, M).

The problem is that this estimate will be biased, since one cannot
commute the expectation operator E with a logarithm. That is:

1
E[log( )] 2 m)

mellp(Y) mellf(Y)

1
—)| # log(E
II¢|

A similar problem exists for the second summation used to estimate
the logarithm of P(Y = Y|X = X, M). Intuitively, this bias is not
surprising, since an over-estimate for the probability Pr(Y = Y) by
some constant amount is likely to have little effect on an estimate
of the logarithm of the probability. However, an under-estimate by
the same amount can cause a radical reduction in the estimate of
the logarithm, and we expect a negative bias.

A sampling-based estimate for this bias can be computed using
a Taylor series expansion about the expected value of the biased
estimator, which obtains an expression for the bias in terms of the
central moments of a Normal distribution; estimating those mo-
ments leads to an estimate for the bias. Assume that this estimator
is encapsulated in a procedure bias(Y, I, Zf) that computes the
bias of an estimate. Our final estimate for the anomaly score is:

o2

(Y. IIf, Z¢) el

log — | -1log Z P(Y =Y|Z = Z,M)

> =
| Fez;

rett(v) F
~bias(Y, TIF, Zf).
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Topic 1 Topic 2
A.setMessage (int)
A.setTitle (int)

new A (Context)

A.setPositiveButton(String,...
A.setNegativeButton (String,...
A.setMessage (String)
Topic 3 Topic 4
A.setItems (String[],...)
A.setNeutralButton (int,...)
A.show ()

A.setView (View)

new A (Context)

A.setTitle (String)
Topic 5 Topic 6
C.getInstance (String)
C.init (int,Key,...)
C.doFinal (byte[])

B.connect ()
B.getInputStream()
B.getOutputStream()

Figure 4: Top-3 methods from topics extracted by LDA (A =
AlertDialog.Builder, B = BluetoothSocket, C = Cipher)

5 EVALUATION

In this section, we present an evaluation of our method on the task
of finding API misuses in Android apps. Specifically, we seek to
answer the following questions:

(1) Can we find useful de facto specifications followed by An-
droid developers (Section 5.2)?
Using the specifications, can we find possible bugs in the
usage of the Android API in a corpus (Section 5.3)?
How does specification learning help in anomaly detection
(Section 5.4)?
How does the Bayesian framework help in handling het-
erogeneity in the specifications (Section 5.5)?

(2)
®)
4)

5.1 Implementation and Experimental Setup

Now we briefly describe the system, SALENTO, that implements our
method. SALENTO uses SooT [50] to implement symbolic execution
and transform code in an Android app into our automaton model,
TENsORFLow [3] to implement the topic-conditioned RNN, and
Scipy [30] to implement LDA. SALENTO builds a coarse model of
the Android app life-cycle by collecting all entry points in the
application which are callback methods from the Android kernel. It
also uses Soot’s Class Hierarchy Analysis and Throw Analysis to
overapproximate the set of possible call or exception targets, and
SooT’s built-in constant propagator to detect infeasible paths.

In addition to API methods in >, SALENTO also collects some se-
mantic information about the state of the program when an API call
is made. This is done through the use of simple Boolean predicates
that capture, for example, constraints on the arguments of a call, or
record whether an exception was thrown by the call. This allows us
to learn specification on more complex programming constructs.

The training corpus consisted of 500 Android apps from [1], and
the testing corpus consisted of 250 apps from [2]. The two reposito-
ries did not overlap, perhaps since the latter is open-source and the
former is not. We conducted experiments on three Android APIs:
alert dialogs (android.app.AlertDialog.Builder), bluetooth sock-
ets (android.bluetooth.BluetoothSocket) and cryptographic ci-
phers (javax.crypto.Cipher). The APIs were chosen to represent
common yet varied facets of a typical Android app (UI, functional-
ity, security). From the training and testing repositories, we created
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about 6000 and 1800 automata models (henceforth just called pro-
grams) respectively. While doing so, we set the accepting location
of the program as various locations of interest, that is, locations
where a method in one of these APIs was invoked. This helps in
localizing an anomaly to a particular location. All experiments were
run on a 24-core 2.2 GHz machine with 64 GB of memory and an
Nvidia Quadro M2000 GPU.

5.2 Specification Learning

With a goal to discover specifications of Android API usage, we
applied LDA on the training corpus of programs, where the alphabet
¥ consisted of 25 methods from the three APIs. We used o = 0.1
for each topic, and n = 1/|%] for all words in a topic. Running
LDA with 15 topics (K) took a few seconds to complete. Figure 4
shows the top-3 words (methods) from six topics extracted from
the corpus that we picked to exemplify. At a first glance, it may
seem that LDA is simply categorizing methods from different APIs
into separate topics, which can raise the question of why we need
topic models if we already knew the APIs beforehand.

LDA, however, does more than that. Topic 1 and Topic 2 contain
methods from the same API but, interestingly, different polymor-
phic versions with int and String arguments. The model has
discovered that the polymorphic versions fall under separate topics,
meaning that they are not often used together in practice. Indeed,
some Android apps declare all resources they need in a separate
XML file, and provide the resource ID as the int argument. Other
apps do not make use of this feature and instead directly provide the
string to use in the dialog box. Therefore, it makes sense that an app
would seldom use both versions together. Similarly, Topic 3 also con-
tains methods from the same API, however it describes yet another
way to create dialog boxes. Note the lack of the setMessage method
in this topic, as the message would already have been enveloped in
the View passed to setView (using both methods together can lead
to the display of corrupted dialog boxes as shown in Figure 2(a)(ii)).

As these examples show, the topic model can expose specifica-
tions of how methods in an API (or different APIs) are used together.

5.3 Anomaly and Bug Detection

To evaluate SALENTO on anomaly detection, we first trained the
topic-conditioned RNN on 60,000 behaviors sampled from the train-
ing programs. Training took 20 minutes to complete. We then com-
puted anomaly scores for the 1800 programs in our testing corpus.
The time to compute each score was around 2-3 seconds.

The histogram of scores, in Figure 5(a), shows a high concentra-
tion of small values, such as 5 or less, and a very low concentration
of high values. We chose to further investigate programs appearing
in the top 10% of anomaly scores (above the red line) for possible
bugs. Specifically, since each program provides a localization to a
location in the app (through its accepting states), we investigated
the behaviors that were sampled from the program’s probabilistic
behavior model, that would have determined its anomaly score.

Our definition of a “possible bug” is based on the following: is
a behavior an instance of Android API usage that is questionable
enough that we would expect it to be raised as an issue in a formal
code review? Note that an issue raised in a code review may relate
to a design choice and not necessarily cause the program to crash
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(an unusual button text, for example). Nonetheless, such an issue
would be raised and likely fixed by engineers examining a code.

One problem with counting an anomaly as a possible bug is
that multiple anomalies in an app can have the same “cause”—an
incorrect statement or set of statements in the code—and we would
like to avoid “double-counting” different anomalies with the same
cause as different bugs. It is a hard software engineering problem to
establish the cause of an anomaly/bug, which is out of scope of this
paper. To avoid this problem, however, we conservatively consider
only the top-most anomaly in each app in the top-10%, as clearly,
anomalies in two different apps cannot have the same cause.

Through manual inspection and triage by the first author, we
found 10 different types of possible bugs in our testing corpus
(Figure 6), ranging from the benign to the insidious. We have already
seen anomalies #6 and #10 (Figure 2) that could display corrupted
or unclosable dialog boxes. #2 could lead to an exception being
thrown due to a failed connection, #5 would create a crypto object
that defaults to the semantically insecure ECB-encryption mode,
and #8 could cause future attempts to open a socket to be blocked.

Figure 5(b)(i) shows the precision-recall plot for these possible
bugs in the top-10% of anomaly scores. It can be seen that at around
the top 8%, we reach full recall with 75% precision or 25% false pos-
itive rate. This is reasonable compared to industrial static analysis
tools such as Coverity that advocates a 20% false positive rate for
“stable” checkers [14]. Our method does not rely on specified prop-
erties to check, and many of these bugs cannot be easily expressed
as a formal property for traditional static analyzers to check.

After this threshold, the precision continues to drop, and we
conjecture that it will not increase any further, because almost all
the possible bugs have already been found. To substantiate this con-
jecture, we would have to manually inspect thousands of programs
to qualitatively declare that all anomalies have been triaged. Due
to the practical infeasibility of this task, we instead quantitatively
injected anomalies into the remaining 90% of programs through
mutations, and measured whether our model is able to detect those
mutations. For each program, we mutated the API call before its
accepting states into one chosen randomly from .

Figure 5(c) shows the anomaly scores before (dark) and after
(light) the mutation, and the cumulative mean of the relative in-
crease in the score (dashed line, secondary axis). As a result of
the mutation, the scores are greatly increased, sometimes by 20
times or more, and the mean of the increase is about 4x. That is, a
mutation, on average, caused the anomaly score to increase by 4
times, indicating that our model detected the mutation.

Note that a random mutation has the possibility of reducing the
anomaly score of a program if it had a possible bug and the mutation
happened to fix it. However, it is not very likely for a random
mutation to fix a bug, and so these instances rarely occurred.

5.4 Role of Learning in Anomaly Detection

To evaluate the role of learning, we compared with a traditional
outlier detection method that does not require learning. k-nearest
neighbor (k-NN) outlier detection [5] uses a distance measure to
compute the k nearest neighbors of a given point within a dataset.
The larger the average distance to the k-NN, the more likely it is
that the point is an outlier, or anomaly. We already have a distance
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Figure 5: (a) Histogram of anomaly score values, (b) Precision-recall for the possible bugs in Figure 6 for (i) Bayesian model
(ii) non-Bayesian model, and (c) Anomaly scores of remaining 90% programs before and after mutation

# | Count Avg Anomaly
Score

1 2 43.7 | C Single crypto object used to encrypt/decrypt
multiple data

2 1 37.5 | B Connecting to the same socket more than
once

3 1 24.7 | B Attempt to close unopened socket

4 16 22.1 | A Using String and int polymorphic methods
together

5 6 21.8 | C Crypto object created without specifying
mode

6 6 21.6 | A Using setMessage with setView

7 1 19.8 | A Dialog displayed without message

8 1 19.3 | B Failed socket connection left unclosed

9 1 16.5 | A Unusual button text

10 1 15.7 | A Dialog displayed without buttons

Figure 6: Anomalies that are possible bugs, found in the top
10% of anomalous programs

measure between distributions: the KL-divergence between the
behavior model for the given program and a program in the corpus.

We implemented such a k-NN and compared our method with
it by conservatively setting k = 1. That is, the anomaly score of
a given program is the smallest KL-divergence with any program
in the corpus. However, even with this 1-NN anomaly score, a
substantial top 25% of programs had a distance of infinity to the
corpus, thus providing no useful information about their anomalies.

The reason is that these programs happened to generate a behav-
ior that was not generated by any program in the corpus. This sets
P;(Y) to a non-zero value and P»(Y) to zero in the KL-divergence
formula (Equation 3) immediately making the sum infinity. This is
unreasonable because we clearly do not want to call every behavior
we have not observed in the training data an anomaly, but instead
would like to assign probabilities even to behaviors that were never
seen before. That is, we would like to generalize from the corpus.
This is why probabilistic specification learning is needed.

5.5 Comparison with Non-Bayesian Methods

To see how the Bayesian framework helps in handling heterogene-
ity in the corpus, we compared our method with a non-Bayesian
specification learning method. Existing state-of-the-art methods
use n-grams [52] or RNNs [47] to learn a (non-Bayesian) single
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Figure 7: Average relative increase in anomaly scores
of BluetoothSocket programs when the training cor-
pus only uses the APIs (a) BluetoothSocket, Cipher (b)
AlertDialog.Builder, BluetoothSocket, Cipher

probabilistic specification of program behaviors. We implemented
a non-Bayesian specification learner as an RNN (not topic con-
ditioned) and trained it directly on the behaviors in our training
corpus. We then performed the same anomaly and bug detection ex-
periment in Section 5.3, querying the trained model with behaviors
in the testing program for inference.

Figure 5(b)(ii) shows the precision-recall rate for the top-10%
of anomaly scores. Compared to our Bayesian method, the non-
Bayesian method fared poorly. Consider again a “stable” checker’s
false-positive rate of 20%, or 80% precision. At this threshold (marked
by the red line), our Bayesian method has about 80% recall compared
to only 53% for the non-Bayesian method. This shows that given
a reasonable precision threshold, our method is able to discover
significantly more bugs compared to the non-Bayesian method. It
is also worth noting that the non-Bayesian method was unable to
discover any possible bug that was not found by our method.

Effect of Heterogeneity. We finally performed a series of experi-
ments by incrementally increasing the heterogeneity of the training
programs. First, as a baseline, we considered only programs that use
the BluetoothSocket API, and learned from them both Bayesian
and non-Bayesian specifications of their behaviors. We then com-
puted anomaly scores of the 45 testing programs that use this APL
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In the next step, we added to the training corpus programs that
also use the Cipher API, making the corpus more heterogeneous,
and learned new specifications. We then computed anomaly scores
again, but using the new learned specifications. Figure 7(a) shows
the average relative increase in anomaly scores from using the old
versus the new specifications. Ideally, one would expect the scores
to not change, because the addition of programs that use the Cipher
API—behaviors on which are unrelated to the BluetoothSocket
API— should not have any effect on the scores. This is observed
in the Bayesian specification (dashed line), that lingers close to 1.0
on average. However, the non-Bayesian specification (solid line)
suffers from about a 2x increase.

This was further evident when programs that also use the API
AlertDialog.Builder were considered for training, making the
corpus even more heterogeneous (this is the same training corpus in
Section 5.3). In Figure 7(b), the relative increase in scores using the
Bayesian specification is, on average, close to 1.0, showing that it is
robust to the increased heterogeneity. However, the non-Bayesian
specification induces a further increase of about 3.5x in the scores.

We expect the gap to keep widening as more heterogeneous
programs are added to the corpus, at some point making the scores
from the non-Bayesian model meaningless. In contrast, the scores
from our Bayesian model would remain almost the same showing
that the model is able to “focus” on relevant parts of the learned
specification, in principle tolerating arbitrary heterogeneity.

5.6 Limitations
We conclude by summarizing the limitations of our experiments:

1. Our evaluation used Android, a platform where programs are
APIs-heavy and APIs are fairly well-structured. While our experi-
ments show good results in this domain, whether they generalize
to other domains that do not share these characteristics (such as C
programs) is an open question.

2. Our evaluation used a small subset of the Android API space,
due to the manual effort needed to report precision-recall numbers.
It is possible for the results to be different for a different set of APIs.

3. Finally, as the domains that we study often lack crisp defini-
tions of correctness, the first author of this paper manually triaged
the anomalies reported in our experiments into true and false posi-
tives. While this step was performed carefully, it is possible that a
different person could have triaged some of these reports differently.

6 RELATED WORK

Learning Qualitative Specifications. The thesis that common pat-
terns of execution can serve as a proxy for specifications has been
around since the early 2000s. Most efforts in this area [6-8, 21, 25,
35, 42, 48, 55-57] focus on qualitative specifications, typically finite
automata. As mentioned earlier, such qualitative specifications are
problematic in the presence of noise in the training data.

Learning Probabilistic Specifications. There is also a literature [7,
12, 27, 33, 36, 43, 47] on learning probabilistic specifications from
programs. Kremenek et al. [32, 33] use factor graphs constructed
using static analysis to learn specifications on resource allocation
and release. ANEK [12] uses annotations in APIs to infer specifi-
cations. MERLIN [36] starts with a given initial specification and
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refines it through factor graph construction and inference. Octeau
et al. [43] use domain knowledge to train probabilistic models of
Android inter-component communication. JSNICE [46] uses a prob-
abilistic graphical model to learn lexical and syntactical properties
of programs such as variable names and types for the purpose of
de-obfuscating Javascript programs. Some recent efforts [40, 41, 52]
have also used n-gram models to learn specifications on source code
structure. DEEPAPI [26] uses a neural encoder-decoder to learn cor-
relations between natural language annotations and API sequences.
Hagais [4] uses statistical techniques to learn the structure of small
code snippets (or “idioms”) from a corpus. The work in this space
that is the closest to ours are two methods by Raychev et al. [45, 47],
which learn probabilistic models of program behavior from large
code corpora, using RNNs among other models.

The key difference between the above approaches and ours is
that these methods learn a single probabilistic specification. In con-
trast, our approach learns a family of probabilistic specifications
simultaneously, and then specializes this model to particular anal-
ysis tasks using Bayes’ rule. As demonstrated in our experiments,
this hierarchical architecture is key to tolerating heterogeneity.

In very recent work, Raychev et al. [44], also argue that having a
single, universal probabilistic model for code can be inadequate, and
propose a decision tree algorithm that is used to choose among a
bag of statistical models for tasks such as next-statement prediction.
While philosophically aligned with our work, their efforts are quite
different in that while we argue for conditioning of models at the
program level, they argue for conditioning of models at the statement
level and focus their efforts on localized prediction tasks. One could
imagine using a model similar to what they have proposed within
our framework as a replacement for our RNN-based P(Y|Z).

Anomaly Detection. There is prior work on using learned models
of executions in anomaly detection [10, 19, 22, 23, 28, 38, 52, 54].
Aside from differing in the nature of specifications used, methods
in these categories tend to assign anomaly scores to individual
behaviors. While our method is able to assign such scores, it is also
able to produce aggregate anomaly scores for programs.

7 CONCLUSION

We have presented a Bayesian framework that can learn probabilis-
tic specifications from large, heterogeneous code corpora and then
use these specifications to find likely software errors. We have used
an implementation of this framework, based on a topic-model and
a recurrent neural network, to detect API misuse in Android, and
shown that it can find multiple subtle bugs.

A key appeal of our framework is that it does not impose an a
priori limit on the size or heterogeneity of the corpus. In principle,
our training corpus could contain all the world’s code, and it is our
vision to scale our method to settings close to this ideal. Engineer-
ing instantiations of the framework that work at such scale is a
challenge for future work.
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