
Parallel Programming with Object Assemblies

Roberto Lublinerman
Pennsylvania State University

University Park, PA 16802, USA
rluble@psu.edu

Swarat Chaudhuri
Pennsylvania State University

University Park, PA 16802, USA
swarat@cse.psu.edu

Pavol Černý
University of Pennsylvania

Philadelphia, PA 19104, USA
cernyp@cis.upenn.edu

Abstract
We present Chorus, a high-level parallel programming
model suitable for irregular, heap-manipulating applications
like mesh refinement and epidemic simulations, and JCho-
rus, an implementation of the model on top of Java. One goal
of Chorus is to express the dynamic and instance-dependent
patterns of memory access that are common in typical ir-
regular applications. Its other focus is locality of effects: the
property that in many of the same applications, typical im-
perative commands only affect small, local regions in the
shared heap.

Chorus addresses dynamism and locality through the uni-
fying abstraction of an object assembly: a local region in a
shared data structure equipped with a short-lived, specula-
tive thread of control. The thread of control in an assembly
can only access objects within the assembly. While objects
can migrate from assembly to assembly, such migration is
local—i.e., objects only move from one assembly to a neigh-
boring one—and does not lead to aliasing. Programming
primitives include a merge operation, by which an assem-
bly merges with an adjacent assembly, and a split operation,
which splits an assembly into smaller ones. Our abstractions
are race and deadlock-free, and inherently data-centric.

We demonstrate that Chorus and JChorus allow natural
programming of several important applications exhibiting
irregular data-parallelism. We also present an implementa-
tion of JChorus based on a many-to-one mapping of assem-
blies to lower-level threads, and report on preliminary per-
formance numbers.

Categories and Subject Descriptors D.3.2 [Programming
Techniques]: Concurrent Programming; D.3.2 [Program-
ming Languages]: Language Classifications—Concurrent,
distributed, and parallel languages

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA’09, October 25–29, 2009, Orlando, Florida, USA.
Copyright c© 2009 ACM 978-1-60558-734-9/09/10. . . $10.00

General Terms Languages, Design

Keywords Parallel programming, Programming abstrac-
tions, Irregular parallelism, Data-parallelism, Ownership

1. Introduction
Calls for new programming models for parallelism have
been heard often of late [29, 33]. On one hand, the demand
for parallel programming is now higher than ever: inexpen-
sive multicore machines are now near-ubiquitous, and the
bottleneck in this space is now software rather than hard-
ware. On the other hand, it is increasingly clear that the cur-
rently popular models of parallel programming—locks and
messages—are too low-level, complex, and error-prone, and
do not scale well with software complexity. Consequently,
numerous teams of programmers and researchers are seek-
ing high-level models of programming that are intuitive as
well as scalable.

Not all parallel programming, of course, poses difficult
challenges: “embarrassingly parallel” applications are easy
to program efficiently, and for regular array-based codes,
static parallelization [35] is known to work. Far more chal-
lenging is the problem of efficiently coding applications
that combine parallelism with accesses to sparse, mutable
data structures like trees and graphs. Parallelism in such
irregular applications [24] is highly input-dependent and
prone to changes at runtime, with some pathological in-
stances exhibiting no parallelism at all. This makes compile-
time parallelization impossible; in fact, Kulkarni et al. have
noted [27] that most current implementations of optimistic
parallelism (using transactional memory [28]) suffer in this
setting as well. Vexingly, numerous important scientific and
graphical applications where parallelism is needed fall in
this category—examples include physical [17] or epidemi-
ological simulations [16], mesh refinement [11], spanning
tree computations [22], n-body simulation [5], social net-
work analysis [21], and sparse matrix computations [14].

Consequently, many of these applications are perfect
challenge problems for designers of new models of shared-
memory parallel programming. This understanding is re-
flected, for example, in the recently released Lonestar bench-
marks [2, 25], which offer code and datasets for several such

1: Mesh m = /* read input mesh */
2: Worklist wl = new Worklist(m.getBad());
3: foreach Triangle t in wl {
4: Cavity c = new Cavity(t);
5: c.expand();
6: c.retriangulate();
7: m.updateMesh(c);
8: wl.add(c.getBad()); }

Figure 1. Delaunay mesh refinement: sequential algorithm

problems. In this paper, we present a response to this chal-
lenge: a data-centric programming model called Chorus, and
a concrete language called JChorus, implementing it.

1.1 Locality and dynamism
The key insight behind Chorus is one also identified by Pin-
gali, Kulkarni et al. [24, 30]: while typical irregular appli-
cations require global memory access in the worst case, the
effects of their imperative updates are usually restricted to
small, local regions in the heap. This locality forms the
essence of parallelism in this setting (Pingali and Kulkarni
call it amorphous parallelism), and Chorus gives it a first-
class treatment by exposing it at the language level. As such
locality is highly instance-dependent and intractable through
static analysis, Chorus negotiates it dynamically rather than
through static data partitioning.

For example, consider Delaunay mesh refinement, a clas-
sic and thoroughly studied [27] irregular application. The in-
put here is a triangulation of a plane—viewed as a graph
where nodes are triangles and edges represent adjacency—
and a subset of “bad” triangles that do not meet certain qual-
ity constraints. The problem is to retriangulate the mesh so
that there are no bad triangles left. It is a property of the ap-
plication that such retriangulation affects a “cavity”: a local
region in the mesh. A sequential algorithm (Figure 1) for De-
launay mesh refinement uses the following property: in each
iteration of a loop, the algorithm builds a cavity c consisting
of a bad triangle t drawn from a worklist wl of bad triangles,
expands c to the needed extent, and locally updates it using
a retriangulation routine.

In this algorithm, there is no theoretical bound on the
sizes of cavities rewritten by c.retriangulate()—at
worst, they may encompass the entire mesh. Therefore, cav-
ities need to be identified dynamically through the expand
routine. At the same time, in practice, cavities are almost
always small (see Figure 2), so that imperative modifica-
tions to the mesh are local. This combination of locality and
dynamism appears in numerous other irregular applications
known to be difficult to parallelize—indeed, it shows up in
every irregular application that we have considered.

Exploitation of parallelism in Delaunay refinement and
many other irregular applications is directly tied to the lo-
cality. In parallel Delaunay refinement, we need to guaran-
tee that cavities—local regions—are the units of space that

Cavity

Figure 2. Snapshot of a Delaunay mesh from our experi-
ments

need to be accessed and retriangulated atomically; cavities
that do not overlap can be retriangulated in parallel. Thus,
the programming pattern for a thread is:

“Dynamically identify a region to own; establish own-
ership over it. Atomically update the region. Relin-
quish ownership over the region.”

And yet, no current language for shared-memory par-
allelism can express this combination of locality and dy-
namism in a general way. In popular multithreaded lan-
guages like Java or C#, the heap is a global pool: unless
explicitly locked, a shared object can be accessed by any
thread at any time. Locality of data structure accesses is not
expressed in the program text, and there are no abstract prim-
itives capturing ownership of, and contention for, regions.

This global nature of shared-memory accesses has a neg-
ative effect on programmability as well as performance. In
lock-based programming, the programmer manually man-
ages references that can be aliased globally, leading to
races and deadlocks. In languages using non-blocking soft-
ware transactions, the burden of reasoning about global ac-
cesses is passed to the transaction manager—consequently,
in most implementations of software transactional memory,
the transaction manager must track reads and writes to the
entire memory to detect conflicts. As Kulkarni et al. [27, 26]
point out, this makes them behave inefficiently while han-
dling large irregular applications. Global heap-manipulation
also makes precise static analysis extremely difficult.

While Partitioned Global Address Space languages like
X10 [10] and Chapel [8] allow language-level partitioning
of the heap, they do not permit dynamic, lightweight cre-
ation and reconfiguration of the partitions. This makes them
unable to grapple with the unpredictable, dynamic nature of
irregular applications. Partitions that looked useful initially
could very well turn useless during the execution, so that
any workable data partitioning strategy for this setting must
be adaptive.

At the other end of the spectrum are programming mod-
els such as Actors and Active Objects [20, 3, 32, 13], where
data is encapsulated within actors, and memory accesses
are modeled by message-passing. In an actor-based encod-
ing of Delaunay mesh refinement, each actor possesses a set
of cavities, and cavity expansion is modeled by the passing
around of triangles between actors. While such an imple-
mentation captures the locality of the problem, coordination
in it is low-level, error-prone, and potentially expensive. For
one, the simple c.expand() method is now replaced by a

protocol between actors that has to be carefully coded to
guarantee properties like deadlock-freedom. Second, copy-
ing and sending data involves high overheads, and if refer-
ences rather than data are passed around, there is the poten-
tial of data races. Third, the speculative parallelism that has
been argued [27, 26] to be needed for irregular applications
seems hard to encode within the actor framework.

Thus, none of these styles of programming allow for
high-level expression of ownership of regions in the heap
(cavities in case of mesh refinement), and dynamic recon-
figuration of such ownership. Chorus, on the other hand, is
designed precisely to capture these programming patterns.

1.2 Our solution
The Chorus programming model offers a view of concur-
rency that is neither as global as Java multithreading, nor as
static as traditional data partitioning, nor based on low-level
message-passing like the Actor model. The key abstraction
here is an object assembly: a dynamically defined local re-
gion in the heap equipped with a short-lived, speculative
thread of control.

At any point in the execution, the assemblies in the sys-
tem form a disjoint partitioning of the heap. Typically, they
are also fine-grained—in particular, an assembly is allowed
to consist of just a single object. Thus, like the Actor model,
Chorus permits massive, object-level parallelism. Of course,
assemblies are just programmer abstractions—in any real
implementation, large numbers of them would be mapped
to a single hardware thread.

An assembly can perform three kinds of actions:

• It can read and write objects within itself. Notably, it
cannot access objects within any other assembly, which
means objects within assemblies are isolated.
• It can merge with an adjacent assembly, “becoming” a

bigger assembly. The thread of control in the assem-
bly with which it merges is terminated. An assembly is
speculative, meaning it can merge with, and terminate,
a neighboring assembly without explicit “consent” from
the latter.
• It can split into a collection of smaller (disjoint) assem-

blies, each possessing a new thread of control.

All concurrency in our model is captured with these prim-
itives. The number of assemblies is a proxy for the granular-
ity of concurrency that the application permits—the greater
this number, the greater the exploitable parallelism. Assem-
blies are of course not required to be bounded; in the worst
case, they encompass the whole heap. Merges allow declar-
ative and local coarsening of the granularity of parallelism
in the heap, while splits let parallelism be locally refined.
There is no global ordering between merges and splits—e.g.,
merges between distinct pairs of assemblies can always hap-
pen in parallel.

For an application, consider Delaunay mesh refinement
once again. In our approach, each triangle in the initial mesh
is an assembly. If a triangle discovers that it is bad, it forms
a cavity (a bigger assembly) via repeated merge calls to its
neighbors. The cavity retriangulates itself via a private up-
date, then splits into the new triangles (each a smaller assem-
bly). The expressed parallelism is at the finest granularity
permitted by the problem instance: all triangles and cavities
in the heap work in parallel, and atomicity of retriangulation
is guaranteed because the data in an assembly is isolated.
Thus, it captures the pattern “Own a local region, update the
region, release the region,” by rephrasing it as:

“Dynamically form an assembly by repeated merges,
update the assembly, split the assembly.”

Our concrete contributions are the following:

• We introduce the Chorus programming model, present a
core language for Chorus and its operational semantics,
and show it to be free of data races and deadlocks.
• We present JChorus, a programming language that em-

beds our model of concurrency into the sequential subset
of Java.
• We demonstrate the utility of JChorus in programming

real-life applications via several case studies. In addition
to mesh refinement, we consider the problems of Barnes-
Hut n-body simulation [5], “Focused community” dis-
covery in a social network [21, 4], an epidemiological
simulation problem [16], and an algorithm for comput-
ing minimum spanning trees [22].
• We present a prototype compiler and runtime system for

JChorus1 that use a many-to-one mapping of assemblies
to low-level threads. The implementation exploits local-
ity of heap operations, uses Tarjan’s Union-Find data
structure to maintain assemblies and a token-ring-based
strategy to ensure deadlock-freedom, and performs an
elementary form of load-balancing. We report perfor-
mance numbers for two irregular applications: Delaunay
mesh refinement and Boruvka’s algorithm for minimum-
spanning-tree computation.

The paper is organized as follows. In Section 2, we in-
troduce Chorus and study its properties. Section 3 outlines
the JChorus language, and Section 4 demonstrates our case
studies. Section 5 describes our implementation of JChorus;
Section 6 reports on performance numbers. Related work is
discussed in Section 7; we conclude with some discussion in
Section 8.

2. Chorus
Now we present the main features of the Chorus program-
ming model. We start with an informal description of the

1 The prototype, as well as our encodings of these benchmark examples, are
available at http://www.cse.psu.edu/∼swarat/chorus.

!

u
2

!

v
f

!

u
1

!

u
3

Figure 3. A heap

busy
terminated

ready (performing

update) (available for merges)

(result of being merged)

Figure 4. Control flow in assemblies

available programming constructs, then offer a more formal
presentation using a core language.

2.1 Essential Chorus
2.1.1 Heaps
The central structure in Chorus is the shared-memory heap,
which maintains the state of all shared data accessed by a
parallel program. We abstractly view a heap as a directed
graph whose nodes are objects and edges are pointers. Point-
ers here are labeled with field names. A region in a heap G
is a graph consisting of a subset of the nodes of G, and all
edges of G that connect nodes in this subset.

For example, in Figure 3, u1, u2, u3, and v are objects,
there is a pointer from u2 to v labeled by the field name f,
and each shaded circle is a region. Or consider Delaunay
mesh refinement. The mesh here can be modeled as a heap
whose objects are triangles and whose pointers connect tri-
angles that are neighbors in the mesh. Each cavity is a region
in the heap.

2.1.2 Object assemblies
An object assembly in G is a region of G equipped with a
set of local variables and a sequential thread of control. The
typical execution scenario of Chorus programs has numer-
ous assemblies executing concurrently. It is required that at
each point in an execution, these assemblies form a disjoint
partitioning of the heap—in other words, every object in the
heap belongs to (the region of) an assembly, and no object
belongs to two distinct assemblies.

While an assembly can update the heap, it embodies
isolation: it has exclusive ownership of its region and can
neither read nor write objects that fall outside it. This means
that imperative effects are local: a heap modification by
one assembly does not affect the data read by another. An
assembly is allowed to merge with adjacent assemblies and
can also split into a set of smaller assemblies. In typical
scenarios, it is short-lived and exists to achieve a specific,
local task—e.g., the retriangulation of a single cavity.

The active behavior of an assembly i1 is syntactically
defined by guarded updates of the form

:: Guard : Update

where Guard is a condition that is evaluated atomically, and
Update is a statement allowing imperative modification of
the objects and pointers within the assembly.

Control flow in i1 can be abstractly captured by a state
machine (Figure 4) with three control states: busy, ready,
and terminated. A newly created assembly starts from the
ready state. State transitions are as follows:

• If i1 is at the ready control state, then it nondeterministi-
cally chooses a guarded update, atomically evaluates its
guard, and, if the guard is enabled, moves to the busy con-
trol state to execute Update . As i1 has exclusive access
to its region, no extra precaution to ensure the atomicity
of the update is needed.
• If i1 is at the busy control state and has finished its update,

then it can move back to the ready state.
• If i1 is at the ready control state, then it can be terminated.

Unlike in other guarded-command languages, a guard
here can, in addition to checking local boolean conditions,
merge i1 with an adjacent assembly i2, taking i1 to a busy
control state and causing i2 to terminate. In its new state, i1
operates on the union of the regions previously comprising
i1 and i2. The heap itself is not modified—e.g., no pointers
are rewired. Also, the merge can happen only when i2 is in
a ready state. During the merge, i1 can copy into its own
local variables the local-variable state of i2, thus acquiring
the “work” that i2 has already done.

Thus, a merge is a synchronization operation—in fact, it
is our only synchronization operation. Figures 5-(a) and 5-
(c) show the states of a parallel program before and after the
assembly i1 merges with i2. Note that the operation locally
coarsens the granularity of parallelism in the heap.

As for updates, they permit an assembly to imperatively
modify its region—any expression whose evaluation re-
quires accesses outside H returns an error value error. An
update can also split an assembly into smaller ones—e.g.,
into assemblies containing one object each (Figures 5-(a)
and 5-(b) show before-and-after scenarios for this opera-
tion). Observe that the split locally refines the parallelism in
the system.

Importantly, merges and splits are not globally ordered: a
merge between assemblies i1 and i2 can proceed in parallel
with a merge between j1 and j2 (where j1 and j2 are distinct
from i1 and i2), or with a split of j1. Also, a modification
within i1 can run parallel to every action outside of i1.

Also note that for an assembly i1 to merge with an as-
sembly i2, no explicit “consent” from i2 is needed. All we
require is that i2 is not in the middle of an update at the
point when the merge happens. Thus, assemblies are spec-
ulative entities that may not always finish the task that they

vin

!

i
1

!

i
2

!

i
3

!

i
4

!

u

!

vf

!

i
12

!

i
11

!

i
13

!

u

!

vf

!

vf

!

N
12

!

vf

(a)

(d)

(c)

(b)

u

u

vin

vin vin

merge(u.f,!2)

split(!’)

splitone(u,!’)

vin

!

i
4

!

i
2

!

i
2

!

i
3

!

i
3

!

i
3

!

i
4

!

i
4

!

i
1

!

i
11

Figure 5. Merging and splitting

set out to accomplish. At the same time, there is no notion
of rollbacks in our model. Assemblies “commit” after every
update, and once committed, updates are final. Therefore,
applications must be coded so that the data within an assem-
bly is in a consistent state at the end of each update.

Finally, note that our object model does not allow for
aliasing. At any time, an object belongs to only one assembly
(we do make an exception for read-only data in JChorus—
see Section 3). While an assembly can have a reference to
an object outside its region, it cannot use this reference for
reading or writing.

2.1.3 Merging, splitting, and heap modification
Now we examine the programming constructs that Chorus
permits. Each assembly here is an instance of an assembly
class, and programs are collections of assembly class defini-
tions. A definition for the class τ specifies a set of guarded
updates that assemblies of class τ can execute, as well as a
set of local variables u, v, . . . that they use to refer to objects
within their regions. Objects can also be referenced using
field expressions in the usual way: if the variable u refers to
the object u and u has an f-labeled edge to v, then the name
u.f refers to v.

The simplest construct for merging two assemblies and
executing an update on the merged assembly is

:: merge(u.f, τ2) : Update.

Here, τ2 is an assembly class, u is a variable in the assembly
i1 (of class τ1) executing the guarded update, and u.f refers
to an object in a different assembly i2. For the guard here to
be enabled, i2 must be of class τ2 and in a ready state (i.e.,
it must not be currently executing an update). If it is, then its

evaluation atomically terminates the thread of control in i2,
takes i1 to the “busy” control state, and gives i1 ownership of
all objects previously owned by i1 and i2. The values of local
variables of i1 are not affected by the merge. The update
Update is now executed. For example, if the assembly i1 in
Figure 5-(a) is able to execute this command, a heap as in
Figure 5-(c) results.

A second merge construct allows i1 (the assembly per-
forming the merge) to copy the local-variable state of i2 into
a local variable. To see the usefulness of this construct, note
that the merge here terminates i2. While this is permissible
as i2 is in its ready state, the local state of i2 may contain
information that i1 may benefit from.

This construct has the form

:: merge(u.f, τ2, v1 := v2) : Update

where v1 is a local variable in assemblies of class τ1 and v2
is a local variable in assemblies of class τ2. A merge here is
as before, except in addition, the variable v1 is set during the
merge to the value of v2 in i2.

We also allow a construct

:: merge(u.f, τ ′1, τ2 [v′1 := v1, v
′
2 := v2]) : Update

for “reflective” merge (the syntax within the square brackets
is optional). Here τ ′1 and τ2 are assembly classes, u and v1
are variables in τ1, v′1 and v′2 are variables in τ ′1, and v2 is a
variable in τ2.

This merge terminates both i1 and i2, creating a fresh as-
sembly i′1 of class τ ′1. The local variables of i′1 are initialized
in accordance with the declaration of τ ′1. In addition, we have
some optional “parameter-passing”: the variables v′1 and v′2
of i′1 are respectively set to the values of v1 in i1, and v2 in
i2. The initial control state of i′1 is ready. As i1 is terminated,
the command Update is not executed.

Merges can also be constrained with boolean predicates.
For example, we have the construct

:: merge(u.f, τ2) when g : Update

where g is a predicate referring to objects in the region of
i1 and the local variables of i1. The semantics is as before,
except i1 can execute the command only when g holds. The
other kinds of merges are similarly generalized.

As for updates executed by an assembly i, they may split
i into smaller assemblies, as well as imperatively modify
objects in the region that i owns. We allow two syntactic
forms for splitting i1. Of these,

split(τ ′)

splits i at the finest possible granularity—for each object u in
the region of i, a new assembly that is of class τ ′ and control
state ready, and consists of the single node u, is activated.
Each local variable of iu is initialized to refer to u. The
assembly i ceases to exist.

assembly Triangle:: ...

:: merge (v.f, Cavity, Triangle) when isBad: skip

assembly Cavity:: ...

:: merge (v.f, Cavity) when (not isComplete): skip

:: isComplete:

retriangulate(); split(Triangle)

Figure 6. The essence of Delaunay Mesh Refinement in
Chorus

As with merges, the heap itself is not modified during
a split. Figure 5-(b) shows the assemblies i11, i12, and i13
resulting from splitting i1 in Figure 5-(a).

The other split-construct has the form

splitone(u, τ ′).

Suppose u is the object named u in the assembly i. When i
executes this update, a new assembly i′ that is of class τ ′ and
contains only u is created (each local variable of i′ points to
u). The original assembly i continues to execute; however,
as u is outside the region of the assembly after the split, all
local variables of i that pointed to u are de-initialized.

Figure 5-(d) shows the result of splitting i1, as in Fig-
ure 5-(a), in this way.

Finally, updates in i1 can contain arbitrary sequential
code referring to the local variables and region of i1. How-
ever, the evaluation of any field expressions referring to ob-
jects outside i1 raises an exception.

Note that assemblies never directly reference other as-
semblies during execution. In particular, merges happen on
object references, not assembly references.

2.1.4 Example: Delaunay mesh refinement
Let us now go back to the Delaunay mesh refinement prob-
lem briefly mentioned in Section 1. Given a set of points
M, a Delaunay triangulation partitions the convex hull ofM
into a set of triangles such that: (1) the vertices of the trian-
gles, taken together, areM, and (2) no point inM lies in any
triangle’s circumcircle (the empty circle property). In many
applications [11], there are further qualitative constraints on
the resulting triangles. In order to meet these constraints, a
Delaunay triangulation often needs to be refined. We black-
box the requirements and suppose there is a function that
identifies “bad” triangles.

Pseudocode for a sequential algorithm for refining the
mesh is in Figure 1. Initially, the worklist is populated by
bad triangles from the original mesh. For each bad triangle
t, the algorithm proceeds as follows2:

• A point p at the center of the circumcircle of the triangle
is inserted.

2 For ease of presentation, we suppose here that the bad triangle is not near
the boundary of the whole mesh.

• All the triangles whose circumcircle contains p are col-
lected. These triangles form a contiguous region in the
mesh called a cavity of t (Figure 2). As cavities are con-
tiguous, a breadth-first search algorithm (c.expand())
touching only a region in the heap containing the bad tri-
angle can be used to find a cavity.
• The cavity is then retriangulated by connecting p with all

the points at the boundary of the cavity (this is done by
c.retriangulate()).

The Delaunay property (the empty circle property) is
guaranteed to hold for the newly created triangles. The qual-
itative constraint may not hold for all the new triangles, so
the size of the worklist might increase in certain steps. The
algorithm, however, is guaranteed to terminate. Also, retri-
angulation of a cavity is a local operation, and the order in
which the cavities are retriangulated is not important.

We have parallelized this application using JChorus (see
Section 4). For now, we show how to capture its essence in
Chorus. Here, the triangulation at any point is modeled by
a heap whose objects are triangles, and whose pointers con-
nect adjacent triangles. Assemblies belong to two classes:
Triangle and Cavity. Initially, every triangle in the heap
is in its own assembly (of class Triangle).

To simplify presentation, we assume that updates can call
sequential subroutines such as retriangulate. We also
assume that a Triangle can use a boolean variable called
isBad that, at any point, is true iff it is bad, and that a
Cavity can use a boolean variable isComplete that, at
any point, is true iff the cavity needs no further expansion.
Finally, we let each assembly i have a local variable v whose
value loops through the set of objects in iwith an (f-labeled)
edge to an adjacent assembly in the mesh. We abstract out
the code maintaining these variables.

The code for our modeling is given in Figure 6. Here,
each triangle (forming an assembly of class Triangle)
checks if it is “bad.” If it is, then it merges with an arbi-
trary neighbor to create a assembly of class Cavity. The
expansion of a cavity—done in Figure 1 by the method
expand()—is captured here by a series of merges among
assemblies of class Cavity. Note that expansion is possible
only when the cavity is not yet complete. If a cavity discov-
ers that it is complete, it executes an update in which it first
retriangulates its region, and then splits into its component
triangles. The program terminates when the only assemblies
in the mesh are “good” Triangle-s.

It is worthwhile to note the speculative nature of cavi-
ties in the above encoding. As cavity expansion is captured
using a series of merges, a cavity may reach its ready state
multiple times as it expands. Therefore, the cavity can be
destroyed by another cavity before it has a chance to retri-
angulate itself. At the same time, such early termination of
cavities does not leave the heap in an inconsistent state—
the only rewriting of the heap happens within the method

Prog ::= [ADec]∗

ADec ::= assembly τ :: local [v]∗

[:: Guard : Update]∗

Guard ::= merge(v.f, τ2 [, v1 := v2]) |
merge(v.f, τ ′1, τ2 [, v′1 := v1] [, v′2 := v1]) |
merge(v.f, τ2 [, v1 := v2]) when Bexp |
merge(v.f, τ ′1, τ2 [, v′1 := v1] [, v′2 := v2])

when Bexp | Bexp
Update ::= v := Exp | v.f := Exp | Update; Update |

skip | split(τ) | splitone(v, τ)
Exp ::= v | Exp.f | error
Bexp ::= Exp = Exp | not Bexp | Bexp and Bexp

where
v, v1, v2, v′1, v

′
2 ∈ Var , τ, τ1, τ2, τ ′1 ∈ T , and f ∈ F . Syntax

within square brackets is optional, and [t]∗ denotes zero or
more occurrences of t.

Figure 7. Syntax of Core Chorus

retriangulate(), which is executed atomically in one up-
date.

2.2 A core language for Chorus
Now we present Chorus more formally using a core pro-
gramming language called Core Chorus. As our goal is to
capture the essence of concurrency in Chorus, assemblies
here do not call methods on objects or create new objects,
and only execute straight-line code. Also, we let objects be
untyped, assume that all objects are shared, and do not ac-
count for read-only data that can be freely accessed concur-
rently. Finally, objects do not have distinct data fields—all
data is encoded by pointers and accessed by fields, which
programs are allowed to update. These restrictions are all
lifted in the full language.

2.2.1 Syntax
Let us assume a universe Var of assembly variables, and a
universe T of assembly classes that contains a designated
initial class ι. The syntax of programs in Core Chorus is
given in Figure 7. Here:

• Prog represents programs.
• ADec represents declarations of assembly classes. The

declaration consists of a sequence of local variable dec-
larations and definitions of guarded updates.
• Guard represents guards; Update represents updates.
• Exp and Bexp respectively represent pointer expressions

and boolean expressions.

We require that each variable used in a pointer or boolean
expression is declared within the relevant assembly class,
that no assembly class is declared twice, and that there is
a declaration for the initial class ι. Also, we denote:

• the set of local variables in the class τ by Var(τ)

• the set of guarded updates in τ by Act(τ).

2.2.2 Semantics
Now we give a formal semantics of Core Chorus. In this
presentation, we assume a fixed but arbitrary program P
and identify assemblies with unique IDs. However, these IDs
appear only in the lower-level representation and are not part
of the programming abstraction.

First we define heaps formally. Letting Loc be a set of
abstract locations and F a set of field names, we have:

Definition 1 (Heap). A heap is an edge-labeled directed
graph G = (O ⊆ Loc, E ⊆ O × F × O), where O is
the node set and E is the F -labeled edge set, such that for
each u ∈ O, f ∈ F , there is at most one edge of the form
(u, f, v) in E. Nodes and edges of G are respectively known
as objects and pointers.

A heap H is a region in another heap G if it is a subgraph
induced by a subset of the nodes of G.

Letting I be a universe of assembly IDs, we have the
following definitions for assemblies and their states:

Definition 2 (Assembly). An assembly is an element i ∈ I.
For a heap G, an assembly state of i in G is a tuple N =
〈i, τ,H, µ, S〉, where τ is an assembly class, H is a region
in G, µ : Var(τ)→ (H ∪ error), and S is either an update
or the special symbol ε.

Two assembly states N1 = 〈i1, τ1, H1, µ1, S1〉 and N2 =
〈i2, τ2, H2, µ2, S2〉, where i1 6= i2, are disjoint ifH1 andH2

do not have nodes in common.

Intuitively, in the definition of the assembly stateN of the
assembly i, H is the region on which i operates, µ provides
mappings from the local variables of τ to objects inH (or the
“uninitialized” value error), and S gives the control state of
i (at a lower level of abstraction than Figure 4). If S = ε, then
i is currently at the ready control state. Otherwise, it is the
update that i must execute before it can return to ready-state
behavior of τ . For an assembly state N = 〈i, τ,H, µ, S〉, we
write Id(N) = i.

The global program state comprises the states of a set of
assemblies whose regions partition the heap:

Definition 3 (Program state). A state σ of P is a tuple
σ = 〈G,Γ〉, where G is a heap and Γ is a set of assembly
states such that each object u in G belongs to the region of
some N ∈ Γ, and for each N1, N2 ∈ Γ with N1 6= N2, we
have: (1) Id(N1) 6= Id(N2), and (2) N1 and N2 are disjoint.

Now we present an interleaving operational semantics
of Core Chorus. The semantics defines a transition relation
−→ between states 〈G,Γ〉, where G is any heap. The graph
G is not required to be the complete heap of the parallel
program—it can be any region in the complete heap. A
transition 〈G,Γ〉 −→ 〈G′,Γ′〉 says that G′ is obtained by
repeatedly rewriting G in isolation—i.e., without requiring

(ASSEMBLY-STEP)
N = 〈i, τ,H, µ, S〉 ∈ Γ 〈H, {N}〉 −→ 〈H ′,Γ′〉

〈G,Γ〉 −→ 〈G[H H ′],Γ \ {N} ∪ Γ′〉

(MERGE-1)
N1 = 〈i1, τ1, H1, µ1, ε〉 ∈ Γ N2 = 〈i2, τ2, H2, µ2, ε〉 ∈ Γ i1 6= i2 v, v1 ∈ Var(τ1) v2 ∈ Var(τ2)

(merge(v.f, τ2, v1 := v2) : S) ∈ Act(τ1) µ(v) = u u
G,f−→ v v is in H2

〈G,Γ〉 −→ 〈G,Γ \ {N1, N2} ∪ {〈i1, τ,H1 tG H2, µ1[v1 7→ µ2(v2)], S〉}〉

(MERGE-2)
N1 = 〈i1, τ1, H1, µ, ε〉 ∈ Γ N2 = 〈i2, τ2, H2, µ2, ε〉 ∈ Γ i1 6= i2 v′

1, v
′
2 ∈ Var(τ ′

1) v1 ∈ τ1, v2 ∈ τ2
(merge(v.f, τ ′

1, v
′
1 := v1, v

′
2 := v2) : S) ∈ Act(τ1) µ1(v) = v v

G,f−→ w w is in H ′

〈G,Γ〉 −→ 〈G,Γ \ {N,N ′} ∪ {〈i, τ ′, H tG H ′, µInit(τ
′, w)[v′

1 7→ µ1(v1), v
′
2 7→ µ2(v2)], ε〉}〉

(EXP-1)
N = 〈i, τ,H, µ, S〉 µ(v) = u

〈N, v〉 99K u
(EXP-2)

N = 〈i, τ,H, µ, S〉 〈N, e〉 99K u u
H,f−→ v v is in H

〈N, e.f〉 99K v

(EXP-3)
〈N, e〉 99K error
〈N, e.f〉 99K error

(EXP-4)
N = 〈i, τ,H, µ, S〉 〈N, e〉 99K u u

H,f−→ v v is not in H
〈N, e.f〉 99K error

(GUARDS-WITHOUT-MERGES)
N = 〈i, τ,H, µ, ε〉 (g : S) ∈ Act(τ) 〈N, g〉 99K true

〈H, {N}〉 −→ 〈H, {〈i, τ,H, µ, S〉}〉

(ASSIGN-1)
N = 〈i, τ,H, µ, v := e〉 〈N, e〉 99K u
〈H, {N}〉 −→ 〈H, {〈i, τ,H, µ[v 7→ u], ε〉}〉

(ASSIGN-2)
N = 〈i, τ,H, µ, v.f := e〉 µ(v) = u 〈N, e〉 99K v H ′ = H[(u, f,) (u, f, v)]

〈H, {N}〉 −→ 〈H ′, {〈i, τ,H ′, µ, ε〉}〉

(SEQUENCE)
N = 〈i, τ,H, µ, S〉 〈H, {N}〉 −→ 〈H ′, {〈i, τ,H ′, µ′, ε〉}〉
〈H, {〈i, τ,H, µ, (S;S′)〉}〉 −→ 〈H ′, {〈i, τ,H ′, µ′, S′〉}〉

(SPLIT)
N = 〈i, τ,H, µ, split(τ ′)〉 H has objects u1, . . . , un iu1 , . . . , iun are globally unique fresh IDs

〈H, {N}〉 −→ 〈H, {〈iuj , τ
′, {uj}, µInit(τ

′, uj), ε〉 : 1 ≤ j ≤ n}〉

Figure 8. Structural operational semantics of Core Chorus. Rules for some constructs omitted.

information about objects outside of G. Thus, the semantics
is in a sense modular over space.

Values in this semantics can be objects, true , false , or
error. We use the following additional notation.

• An auxiliary term is either a value or a term 〈N, e〉, where
N is an assembly state and e is a pointer or boolean ex-
pression. We use a transition relation 99K over auxiliary
terms.
• Let G = (O,E) be a heap with a region H; consider

another region H ′ with the same node set as H . Then
G[H H ′] denotes the graph obtained by removing all
edges in H from G, then adding to it all edges in H ′.
Also, H[(u, f,) (u, f, v)], for u, v ∈ O′, denotes the
graph obtained by removing the outgoing edge from u
labeled f and adding the edge (u, f, v) to H .

• We write u
G,f−→ v if (u, f, v) is an edge in the heap G,

and {u} for the heap with the single node u and no edge.

• For regions H = (O,E) and H ′ = (O′, E′) in a heap
G, (H tG H ′) denotes the union of H and H ′—i.e.,
the subgraph induced on G by (O ∪ O′). Also, (G \H)
denotes the graph obtained by removing the subgraph H
from G.
• Let µ map a set of variables V to a set of objects. We

denote by µ[v 7→ u], for v ∈ V , the function µ′ that
satisfies µ′(v) = u, and agrees with µ otherwise.

Our operational semantics for Core Chorus is presented
in Figure 8 (we omit rules for several constructs). Evaluation
here is parameterized by an initial heap Gin and begins
with the state 〈Gin, {N}〉, where N is the assembly state
〈0, ι, Gin, µInit(ι), ε〉.

Note that updates to assemblies happen in isolation from
the rest of the heap. The interleaving of these updates is
captured by the rule ASSEMBLY-STEP, which propagates the
effect of an (atomic) assembly update on the larger heap.

An execution of a program P from an initial state σ0 =
〈G,Γ〉 is a sequence π = σ0σ1 . . . where for each i, σi −→
σi+1.

Termination. A terminating program state in our model is
one where each assembly is in the ready state, and yet the
program cannot carry out a merge. This can happen only
when every assembly i is in a ready state and satisfies one
of the following properties: (1) i has no outgoing edges; (2)
each merge that i can perform is constrained by a boolean
condition, and all such conditions evaluate to false . (An
assembly i as above is said to be in an inactive state.)

Our implementation of Chorus supports termination de-
tection (see Section 5).

2.3 Race- and deadlock-freedom
Race-freedom. A data race happens when two threads
concurrently access a shared object, and at least one of
these accesses is a write. Updates in Chorus are data-race-
free as they operate on disjoint regions in the heap. As
for merges, our semantics guarantees that an assembly can
merge only with assemblies that are in the ready control
state—i.e., assemblies where control is not inside an update.
Thus, programs in Chorus are free of data races.

Deadlock-freedom. Recall the classical definition of a
deadlock: a deadlock arises when a process i1 waits for a
resource from a process i2 and vice-versa, preventing the
system from progressing. To see what deadlocks mean in
our setting, consider a guard g that involves a merge. This
guard is locally enabled on the edge (u, f, v) out of an as-
sembly i1, in state N , if one of the following holds: (1) g
does not use a boolean constraint, and (2) g uses a boolean
constraint, and this constraint evaluated to true in N . The
guard g is enabled if, in addition, the assembly i2 containing
v is currently in a ready state.

We can now adapt the classical definition of deadlocks
as follows: “A deadlock arises when assemblies i1 and i2
are both forbidden from further progress for the following
reasons: (a) i1 has a locally enabled merge along an edge
into assembly i2, and vice-versa. (b) Neither i1 nor i2 can
progress otherwise—i.e., they do not have other enabled
guards.”

Assuming the evaluation of each update and boolean ex-
pression terminates, the above deadlock scenario is impossi-
ble in our setting. This is because in Chorus, an assembly in
a ready control state cannot prevent itself from being merged
even if it has locally enabled merges. Therefore, in a scenario
as above, the runtime system nondeterministically executes
one of the requested merges (say the one invoked by i1),
causing i2 to terminate, and bringing its entire region in the
possession of i1.

Of course, the above justification, while reasonable for
an interleaving semantics implemented on a uniprocessor, is
unsatisfactory in the distributed context lacking a centralized
runtime system, which is what we target. Deadlock-freedom

in this setting can be established with a language specifica-
tion closer to the implementation. See Section 5 for more
details.

3. The JChorus language
The JChorus language embeds the Chorus model into the
sequential subset of Java. Instead of presenting the complete
syntax and semantics of the language, we outline its main
differences from Core Chorus and sequential Java using
examples.

Object classes. Unlike in Core Chorus, where objects were
untyped, objects in JChorus are declared using Java-style
class declarations. We distinguish between shared objects,
for which assemblies contend, and objects that are private
to assemblies. Accordingly, object classes are explicitly de-
clared as shared using the keyword shared. Also, objects
here support method calls.

For example, consider Figure 9, which shows part of a
JChorus implementation of Delaunay mesh refinement (the
essence of the program was previously shown in Figure 6).
Here, the class TriangleObject represents triangles in
the mesh, which are shared objects. A triangle supports a
method isBad(), which says whether it is “bad.”

Assembly classes. In addition to object classes, JChorus
allows declarations of assembly classes. For example, the
code in Figure 9 declares two assembly classes Cavity and
Triangle, respectively representing assemblies consisting
of a cavity and a single triangle. Each assembly has a set
of typed assembly variables, some private procedures, and a
block demarcated by the keyword action that contains all
the guarded updates.

Unlike in the core language, transfer of local state be-
tween assemblies during merges and splits is now captured
via structured parameter-passing. Specifically, the declara-
tion of an assembly class τ now contains a constructor of
the form τ(f1, . . . , fk){. . . }. Here, the fi-s are the formal
parameters of the constructor, which are used to initialize
the local variables of newly created assemblies of this class.
A command for creating a new assembly (e.g., a split or a
“reflective” merge) now also carries actual parameters eval-
uated in the context from which creation happens.

Transfer of local state during a merge is performed using
the following mechanism. We declare some local variables
in assemblies as public in their class definitions. If an assem-
bly i1 merges with another assembly i2, the public variables
of i2 are accessible to i1 after the merge (note that i2 dies
during the merge).

Guarded updates in JChorus have the Java-style syntax
Guard : { Update }. In addition to the forms of merges
shown earlier, we also permit the syntax merge(L, τ, x) :
{Update} for merges, where L is a collection (e.g., list or
set) of references pointing outside the current assembly. The
semantics is that the assembly can merge along any edge

1: assembly Triangle {
2: Triangle(TriangleObject t) {
3: if (t.isBad())

4: become(Cavity, t); // become a Cavity

5: }
6: } /* end Triangle */

7: assembly Cavity {
8: action { // expand cavity

9: merge(outgoingedges, Cavity, TriangleObject t) : {
10: outgoingedges.remove(t);

11: frontier.add(t);

12: build(); }
13: }

14: Set members; Set border;

15: Queue frontier; // current frontier

16: List outgoingedges; // outgoing edges on which

// to merge

17: TriangleObject initial;

18: Cavity(TriangleObject t) {
... initialize data fields....

19: frontier.enqueue(t);

20: build(); }
...

21: void build() {
22: while (frontier.size() != 0) {
23: TriangleObject curr = frontier.dequeue();

24: try {
25: if (isMember(curr)) members.add(curr);

26: else border.add(curr);

// add triangles using BFS

27: for (TriangleObject n: curr.neighbors())

28: if (notSeen(n)) frontier.add(n);

29: } catch(NonLocalException e)

{ // triangle not in assembly,

// add to merge list

30: outeredges.add(e.getObject()); }
31: }
32: if (outeredges.isEmpty()) {
33: retriangulate(); split(Triangle);

34: }
35: }

36: void retriangulate() { ... }
37: boolean isMember(TriangleObject t) {... }
38: boolean notSeen(TriangleObject t) {... }
39: } /* end Cavity */

40: shared TriangleObject {
41: Point p1, p2, p3;

42: Triangle s1, s2, s3;

43: Point circumCenter() {...}
44: }

50: assembly Loader {
51: Loader(String filename) {
52: ...

53: ... new Triangle(p1, p2, p3);

54: ...

55: split(Triangle);

56: }
57: } /* end Loader */

Figure 9. Delaunay mesh refinement in JChorus

whose target v is contained in L—the precise value of v used
for the merge is bound to the name x within the body of
Update .

As for updates, they can now call methods on objects and
procedures private to the assembly, and use all imperative
control constructs. An access to an object outside the assem-
bly throws an exception NonLocalException. Such excep-
tions are handled using try-catch blocks as in Java—see
the code in Figure 9 for an example. As mentioned earlier,
split-operations can pass parameters, having forms such as
split(p1, . . . , pk). In addition to the standard split, we have
an operation splitmany(L, p1, . . . , pk) that splits off all ele-
ments in the collection L from the current assembly (passing
the pi-s as parameters).

Finally, in JChorus, we permit an assembly of class τ to
change its class to τ ′ via a command become(τ ′, p1, . . . , pk)
(p1, . . . , pk are parameters passed to the constructor of
the newly created assembly). For example, in Figure 9, a
Triangle becomes a Cavity this way.

Sequential and parallel phases. Most realistic parallel
applications contain stages that are inherently sequential,
during which the application does I/O, constructs global
data structures, iterates over totally ordered sets, etc. While
it is theoretically possible to model such sequential phases
by global synchronization where the entire heap is merged
into one assembly, such an encoding will be inefficient in
practice.

Consequently, we let JChorus programs have both se-
quential and parallel phases. The former is performed by the
sequential Java program into which our concurrency con-
structs are embedded. The sequential phase can invoke a
parallel phase by the call parallel(τ(p1, . . . , pk)) which
constructs a assembly of type τ (p1, . . . , pk are expressions
passed as actual parameters to the constructor) whose re-
gion is the whole heap. When all assemblies in the parallel
phase terminate, control returns to the sequential program
once again. For a sample application for this construct, see
our code for Barnes-Hut simulation (Figure 13).

Read-only data. Read-only data that can be simultaneously
accessed by multiple threads is an important source of con-
currency in many parallel applications (e.g., in Barnes-Hut
n-body simulation). In Core Chorus, for simplicity, we did
not account for such objects, which is why an object was re-
quired to belong to only one assembly at one time. In the full
language, however, we permit shared objects to be classified
as read-only via a special type qualifier. Read-only objects
can be accessed freely by multiple assemblies, and attempts
to modify them cause exceptions.

Assemblies can cast writable objects that they own into
read-only objects. For example, this is done by the call to
node.setReadOnly() in our modeling of Barnes-Hut sim-
ulation (Figure 13). This is because in Chorus, any writable
object that an assembly i can access is guaranteed to be ex-
clusively owned by i. However, the reverse, if carried out

Figure 10. A cavity in construction, its center triangle (in
dark), the cavity triangles (light gray) and the border trian-
gles (dotted lines). The white triangles are either part of the
frontier or the destination of one of the outgoing edges.

during a parallel computation, may cause races. Therefore,
we permit read-only data to be cast to a writable type only
in a sequential phase of the computation.

4. Case studies
In this section, we show how to use JChorus to program our
flagship example—Delaunay mesh refinement—as well as
Boruvka’s minimum-spanning-tree algorithm [22], Barnes-
Hut n-body simulation [5], “focused community” discovery
in social networks [21], and a problem of agent-based epi-
demiological simulation [16].

4.1 Delaunay Mesh Refinement
Now we describe in detail the implementation of Delaunay
Mesh Refinement in JChorus. Section 2.1.4 describes the
main ideas behind this algorithm using an implementation in
Core Chorus. This example illustrates some of the constructs
available in JChorus that are not present in the core version
of the language. Figure 9 shows the interesting snippets.

Lines 40–44 contain the declaration for the shared ob-
ject TriangleObject, as one would expect it contains its
data and some member functions. Lines 50–56 describe
the Loader assembly which will be the starting point for
this program. The Loader assembly will read a file (using
standard Java constructs), create all the TriangleObjects,
and end by splitting into Triangles assemblies, one for
each TriangleObject. Lines 1–6 implement the assembly
Triangle; if a triangle is “bad” then the Triangle assem-
bly becomes a Cavity assembly (line 4). As is the case
in with objects in object oriented programming, assemblies
have constructors that are executed upon creation.

The core of the algorithm resides on Lines 7–39, the
Cavity assembly. The Cavity assembly will build the
cavity by traversing TriangleObject-s in a breadth first
fashion, it starts by placing the initial “bad” triangle into
the frontier queue (lines 18–20) and start the exploration
from there.

The core construction of the cavity (lines 21–35) is done
in the build()method. It starts by taking a TriangleObject
object from the frontier queue (line 23), checking whether
it belongs to the cavity or is a border triangle (lines 25–26),

and add its neighbors to the frontier (lines 27–28). If the
TriangleObject was not local to the assembly an excep-
tion is raised and caught (lines 24, 29–30), and a merge will
be requested on this TriangleObject. If all the cavity was
explored then it proceeds to retriangulate (lines 32-34) and
split into Triangle assemblies.

Up to here we have only described the local aspects of
the algorithm. The interaction code (lines 8–13) requests a
merge on any of the outgoingedges, and upon merging
with an adjacent assembly (line 9), variable t is instantiated
to the TriangleObject selected for the merge, and expan-
sion continues through a call to build().

Observe that most of the code is identical to the pure se-
quential version. The only part needing concurrent program-
ming are the lines 8–13.

4.2 Minimum-spanning tree
Now we use JChorus to code a classic, irregular graph algo-
rithm well-known in the parallel programming literature [12,
30] : Boruvka’s algorithm for computing the minimum span-
ning tree of a graph [22]. The main idea of the algorithm is to
start with spanning trees that each consists of a single node,
then combine these small trees into larger and larger trees. At
the end we are left with a single, provably optimal spanning
tree.

The input here is a weighted graph. To model edge-
weights, we let each node u in the graph have a data field
outEdges—of type “list of integers”—that contains the
weights of all edges out of u. Each spanning tree obtained
during the computation is captured by an assembly (initially,
each such assembly contains a single node). A spanning tree
maintains a minimal outgoing edge—i.e., an edge of min-
imal length out of those that lead to a node outside of the
spanning tree.

Every spanning tree always has a merge-operation en-
abled along a minimal-weight edge. When a spanning tree
m1 merges with a spanning tree m2, they form a new span-
ning tree m3. The set of nodes of the spanning tree m3 is
the union of nodes of m1 and m2; the edge set consists
of the edges of m1 and m2, as well as the edge on which
the merge happened. The minimum outgoing edge from m3

needs to be found as well—this is done using a method
computeNewMinEdge().

It can be shown that this greedy algorithm constructs an
optimal minimum spanning tree. Once again, merging and
local updates are the only operations needed. JChorus code
for it is presented in Figure 11.

4.3 Barnes-Hut n-body Simulation
Now we consider the Barnes-Hut algorithm for n-body sim-
ulation [5], an application in the Lonestar benchmarks [2].
The algorithm simulates movements of N bodies (for ex-
ample stars grouped in galaxies). The simulation algorithm
proceeds in timesteps. Every timestep, in order to calculate
the new position where each body moves, the gravitational

1: shared Node {
2: List edges;

3: List weights; }

4: assembly ComputeSpanningTree {
5: Tree currentTree;

// set of outgoing edges, sorted by weight

6: SortedList outgoingEdges;

7: Edge minOutEdge;

8: action {
9: merge(minOutEdge, ComputeSpanningTree) :

10: computeNewMinEdge();

11: }
// computes the minimal edge of the merged tree

12: void computeNewMinEdge() { ...}
}

Figure 11. Minimum spanning tree

forces they exert on each other need to be calculated. This
suggests an O(n2) algorithm, which for each body directly
calculates the force exerted upon it by all the other bodies.

Barnes and Hut [5] introduced an O(n log n) time based
on the idea that the forces that a group of bodies exerts on
a body laying at a sufficiently far distance can be approxi-
mated by placing all mass at single point (center of gravity)
representing the group.

The Barnes-Hut algorithm proceeds in timesteps, simi-
larly to the quadratic algorithm sketched above. The com-
putation in every time step has two phases. First, the bodies
are inserted into a data structure called octree. Second, the
data structure is used for efficient computation of the forces
between the bodies.

An octree is a tree in which each internal node has eight
children. Each node represents a cube in three-dimensional
space, and the children of an internal node represent the di-
vision into eight sub-cubes. Each leaf of the octree contains
exactly one body. The insertion of a body b starts at the root
and proceeds towards the descendants until a leaf l represent-
ing a region where b is physically is found. By construction,
l contains exactly one other body b2. The leaf is therefore
successively subdivided until b and b2 are in different leaves.
Upon construction, the octree is summarized, i.e. for each of
its internal node the center of gravity is calculated.

Once the octree is constructed, the forces on each body
b can be calculated. The octree data structure is traversed
again. For cells C that are close to b, the force between b
and all bodies in C is calculated. On the other hand, for cells
D that are sufficiently far away, a single point can be used
to approximate the force - the center of gravity for the cell.
Note that during the computation of the forces, that octree is
read-only, that is, it is not being modified.

The pseudocode for the sequential algorithm is in Fig-
ure 12. For more details on the algorithm and the octree data
structure, the reader is referred to [5].

1: List bodylist = ...

2: foreach timestep do {
3: Octree octree;

4: foreach Body b in bodylist {
5: octree.Insert(b);

6: }
7: octree.SummarizeSubtrees();

8: foreach Body b in bodylist {
9: b.ComputeForce(octree);

10: }
11: foreach Body b in bodylist {
12: b.Advance(); } }

Figure 12. n-body simulation

The computations in different timesteps are not possible
to parallelize, as the computation in a timestep depends
on the results of the previous timesteps. However, every
timestep is itself computationally intensive and conditions
for parallelizing computation inside a timestep are much
better. Both of the phases mentioned above, the insertion into
the octree, and the computation of forces can be beneficially
parallelized.

The JChorus code for the application needs to use both
sequential and parallel computation. The outer loop from
Figure 12 stays conceptually the same – timesteps are ex-
ecuted serially. Figure 13 shows the essential snippets from
our JChorus implementation.

Lines 1-9 show the outer timestep loop. Line 7 and Line 8
are the invocation of the two parallel phases; each of which
start from a single assembly that will be split. Both phases
end when all its assemblies become inactive.

Following the style of the implementation in the Lon-
estar suite, our encoding separates the construction of the
octree from its summarization. The construction of the oc-
tree is done sequentially and is implemented in OctreeNode
(line 12). The second stage, the summarization of the oc-
tree, is the most interesting in JChorus, where irregular par-
allelism is present. Each OctreeNode maintains whether
its data has been propagated up and whether it has received
updates from all its children. This second stage starts by a
ComputeMass assembly containing each of the nodes (lines
14-22). The ComputeMass assembly will merge with its par-
ent if the node is completely updated and has not been yet
propagated. When a node is completed, it is made read-only
(line 19), and can be accessed without any restriction by any
assembly (a crucial fact for the third phase). Subsequently,
the forces acting on each body are computed. This is done by
starting in a parallel phase where teach body sits in its own
UpdateBody assembly (lines 23-30). Each UpdateBody as-
sembly needs only traverse the octree and update the body
it contains. As no merge requests are involved in the pro-
cess, this process is all implemented in the constructor (lines
25-29).

.....

1: void main() {
2: List bodylist = ...

3: foreach timestep do {
4: OctreeNode root = ...

5: foreach body in bodylist

6: root.insert(body);

7: parallel(ComputeMass(bodyList));

8: parallel(UpdateBody(bodyList)); }
9: }

10: shared OctreeNode {
11: ...data variables...

12: void insert(...) ...

13: }

14: assembly ComputeMass {
15: action {
16: merge(node.parent, ComputeMass)

17: when (!node.propagated?

&& node.complete?):{
18: propagateUp();

19: node.setReadOnly();

20: split(ComputeMass); }

21: void propagateUp() { }
22: }

23: assembly UpdateBody {
24: action {}
25: UpdateBody(OctreeNode n)

26: {
27: f = computeForce(n, root);

28: n.advance(f);

29: }
30: }

Figure 13. n-body simulation in JChorus

4.4 Agent-based models in epidemiology
A typical question in epidemiology is what type of vacci-
nation distribution is effective to prevent an outbreak from
developing to a full scale epidemic. It is well-known that
agent-based modeling that enables different type of interac-
tions between agents has advantages over models that as-
sume that there is a uniform probability of any two agents
meeting. A more detailed model allows capturing the fact
that agents interact only with a certain number of people,
those that they meet at home, at their workplace, etc. The
survey [16] describes several such approaches used for mod-
eling the spread of the smallpox virus.

We consider the model of Burke et al. [7]. It simu-
lates how a virus can spread from a single infected person
throughout a small network of towns. Each town consists of
one hospital, one school, one other workplace and house-
holds of up to seven people. The model extends the interac-
tion assumptions further and has every agent interacting with

core := R;

changed := true;

while changed do {
changed := false;

fringe := neighbors(core);

for each v in core {
if obj(core - {v}) < obj(core) {
core := core - {v};
changed := true; } }

for each v in fringe do {
if obj(core union {v}) < obj(core) {

core := core union {v}
changed := true;

} }
}

Figure 14. Focused Communities

the same (up to 8) people in public places such as the schools
and hospitals. During a “day,” an agent interacts with all of
its immediate neighbors (a fixed number of times, different
for each type of community). Transmission of a virus can
occur only during these interactions.

The computations necessary are thus again purely local,
and can be naturally captured in JChorus. The agents have a
fixed number of neighbors, up to eight per each environment
(home, school) in which they interact. An interaction is mod-
eled by a merge, update (if one of the person is infected, a
virus is probabilistically transmitted), and a subsequent split.
Modeling the interactions in this way lets us express paral-
lelism at the level of agents and their interactions. Arguably,
this also captures the natural parallelism of real-life social
networks, where information creation and propagation hap-
pen bottom-up rather than top-down.

4.5 Focused community discovery
A typical problem in analyzing social networks is focused
community discovery. Given a person p, the task is to dis-
cover the community to which the person belongs. The com-
munity around p is intended to capture information flows in
the network, thus we are interested in finding a set of people
that contains p and that is robust - i.e. connection between
them are stronger then their connection to the outside world.
How to discover communities efficiently is a topic of current
research (see [21, 4]). A data set connected to this problem
is a part of the Lonestar Benchmark Suite.

We consider an algorithm for focused community discov-
ery from [21]. Figure 14 has the pseudocode for the algo-
rithm. The algorithm greedily optimizes an objective (given
by the function obj). The algorithm keeps its current hy-
pothesis for the community (the core set). The fringe set
is the set of adjacent nodes, that is nodes that are not in the
core, but are directly connected to it. Figure 15 has a pic-
ture of the algorithm in progress. At each step, the algorithm
checks:

!"#$%&'

()"&'

Figure 15. Focused Communities: the core and the fringe.

• For each node in the core, whether removing this node
would increase the objective. If so, the node is removed.
• For each node in the fringe, whether including this node

would increase the objective. If so, the node is added to
the core.

The process continues until no change occurs or a cycle is
detected.

Let us suppose that we are given an input stream of re-
quests, each consisting of an individual p and an update that
needs to be performed on all the members of p’s commu-
nity, for example about an announcement pmakes. These re-
quests can be processed in parallel. There will be an assem-
bly called Community whose code will closely follow the
code in Figure 14. The only major difference is that the set
union and set difference operations need to be implemented
using merges and splits.

It so happens that the code resulting from the above ap-
proach is quite similar to the pseudocode in one of the origi-
nal references for this problem [21]. Yet, that paper was con-
cerned with the algorithmic rather than the programming-
language aspect of focused community discovery. We view
this as evidence that Chorus is a natural programming model
for this application.

5. Implementing JChorus
The assembly-level parallel exposed by Chorus is potentially
massive. For example, running the refinement algorithm in
Figure 1 on a mesh of over 100,000 triangles, we found
the average cavity size to be only 3.75, and the maximum
cavity size to be 12. Consequently, any runtime system for
JChorus must perform a many-to-one mapping of assemblies
to the limited number of processor cores. Managing such a
mapping is a non-trivial task leaving room for many different
approaches to design and optimization. Now we present an
implementation of JChorus based on one such approach.

5.1 The JChorus compiler and runtime system
Our implementation of JChorus consists of a prototype com-
piler and the corresponding runtime system. The compiler
translates JChorus programs into Java programs running on
the JChorus runtime system. The JChorus runtime system
consists of a lightweight layer on top of the Java runtime sys-
tem implementing scheduling, object migration and thread

synchronization policies. The tool flow of the system is out-
lined in Figure 16.

Jchorus

program

 Java

 translation

javac

compiler

Jchorus

runtime

 Class file JVM
Jchorus

compiler

front-end

Figure 16. The JChorus compiler and runtime system

Now we outline the main features of the JChorus runtime
system.

5.1.1 Divisions
The key low-level abstraction in our system is a division: a
set of proximate assemblies in the heap that is processed as
a unit by parallel processors. The job of the JChorus runtime
is to maintain the divisions in the heap as the execution
progresses, and to map them to lower-level (Java) threads.
These threads are then mapped to hardware threads by the
underlying Java runtime environment.

Divisions partition the heap at a coarser granularity than
do assemblies—while the heap may have hundreds and thou-
sands of assemblies at any time, it typically has only as many
divisions as there are hardware threads. The abstraction is
only available within the runtime system, and is invisible to
programmers. Figure 17 shows a heap and some divisions
in it. The initial divisions are roughly equal in size, and are
obtained heuristically from the input dataset.

5.1.2 Executor threads and token-passing
The JChorus runtime system assigns a native thread of exe-
cution (known as the executor) to each division. The execu-
tor for a divisionD (pseudocode in Figure 18) maintains two
queues Workq(D) and Blockq(D) storing the active assem-
blies that are currently in it.

In each iteration of a top-level loop (lines 1–33), the ex-
ecutor selects an assembly i from the work queue Workq(D)
(line 15) and tries to acquire a compare-and-swap lock on it.
If it fails, it must be because an assembly in a different di-
vision is merging with i. If it succeeds, it processes a subset
of the guarded updates of i in a round-robin manner, exe-
cuting their guards and, if the guards are enabled, their up-
dates. This subset of guarded updates to be executed is cho-
sen heuristically. In some applications, better performance
comes from executing all guarded updates in the assembly
under consideration (we call this the depth-first execution
strategy), while in some others, it is better to deschedule the
assembly after executing one or two of them (we call this
the breadth-first strategy).

As for the execution of guarded updates (lines 18–27),
the interesting case is when the guard involves a remote
merge by i on a reference o (i.e., when the object o is in
a different division). In this case, the executor does not carry

Neighborhoods

Divisions

Heap Objects

Figure 17. Divisions in a heap

out the merge right away, instead placing the pair (i, o) in
a second division-level queue Blockq(D) storing assemblies
blocked on remote merge requests. Such blocked assemblies
are temporarily removed from the work queue.

Local merges (i.e., merges within the same division) are
carried out immediately. Splits produce a set of assemblies
that are kept local to the division. If a split happens, the
new assemblies are put into Workq(D) and the next top-
level iteration starts. Otherwise, once the selected subset of
updates in i are executed, i is unlocked, and if it is still active
(this can be checked during guard evaluation), put back into
Workq(D).

The JChorus runtime uses a simple token-passing strat-
egy to manage remote merges. Divisions are assumed to be
arranged in an implicit ring in which a single global token for
remote merges is passed. At the beginning of each top-level
iteration, the executor thread for D checks if D currently
owns the token. If so, a certain number k of remote merges
are carried out in a batch (lines 5–12; see Section 5.1.3 for
explanations on Line 10). In case the target of a remote
merge is busy, the assembly seeking the merge is put back
into Blockq(D).

Note that the only synchronization needed for atomically
executing an assembly’s action is the lock acquisition on the
assembly; we do not have locks on objects. This is because
our assemblies can only access objects in their own regions.

A simple termination detection strategy (lines 3–4) is
woven into the remote access phase of the executor. Here,
we let the global token track the last active division that
owned it. If D finds that its work and blocked queues are
empty (i.e., all assemblies in it are inactive) and it is the last
division to have accessed the token, then the current parallel
phase of the program (recall that JChorus allows parallel and
sequential phases) has reached a terminating state.

Deadlock-freedom. Recall that by our definition, a dead-
lock arises when two assemblies i1 and i2 both have locally

1: while (true)

2: if (ownsToken())

3: if (token.last = D and Blockq(D) = empty

and Workq(D) = empty)

4: terminate;

5: repeat k times

6: (i,o) := dequeue (Blockq(D));

7: if Assembly(o) is busy

8: enqueue (Blockq(D), (i,o));

9: else

10: migrate assemblies;

11: performMerge(i,o);

12: enqueue (Workq(D), i);

13: update token.last;

14: passToken(D.next());

15: i := dequeue (Workq(D));

16: if (locking i fails)

17: continue;

/* We have assembly i locked */

18: for act in i.action.guardedupdates()

19: if act.guard is false

20: continue;

21: if act.guard involves merge with

remote object o

22: enqueue (Blockq(D),(i,o));

23: break;

24: else if act.guard involves merge with

local object o

25: performMerge(i,o);

26: execute act.update();

27: if i was split then break;

28: unlock i;

29: if i was a split

30: enqueue all children in Workq(D);

31: else

32: if i was not found to be inactive or

added to Blockq(D)

33: enqueue (Workq(D),i);

Figure 18. Executor thread loop for division D

enabled merges along an edge, are unable to proceed, and
yet are not terminated by a merge.

If i1 and i2 are in the same division D and i1 is picked
by the executor of D, then i1 can merge with i2 unless an
assembly in a different division is merging with i2 when i1
attempts the merge. In the latter scenario, i2 is nonexistent
from this point on, so that there is no deadlock.

Now suppose i1 and i2 are respectively in distinct divi-
sions D1 and D2, and D1 possesses the token. One scenario
is that i2 is in the blocked queue of D2. In this case, it is
not in the work queue of D2, which means that it cannot be
currently locked by D2 (since D2 does not have the token, it
cannot be executing Lines 6–8 using i2 either). In this case,
the merge goes through.

The other scenario is that i2 is currently in the work queue
ofD2. In this case, it is possible that i2 is currently locked by

D2. However, in this case the executor of D2 will eventually
discover that i2 has an enabled remote merge, and will send
it to its blocked queue, and the earlier scenario will take
effect.

Simple scheduling. As an alternative to the above execution
strategy, we allow for a simple scheduler that does not offer
the guarantee of deadlock-freedom, but has lower overheads.
Here, a division does not carry a queue of blocked assem-
blies. Instead, all assemblies in it are kept in its work queue,
and are selected and executed in a round-robin manner.

In one of the two applications on which we ran exper-
iments (Boruvka’s algorithm), this strategy led to signifi-
cantly better performance due to lower overheads. At the
same time, this scheduler has the potential of deadlock,
as two divisions can try to repeatedly, and simultaneously,
merge assemblies that have edges into each other (as each
assembly is locked, neither of these merges succeeds). Of
course, as divisions typically contain numerous active as-
semblies, such deadlocks perhaps extremely unlikely. In par-
ticular, we did not face deadlocks in our experiments with
this scheduler.

Perhaps this scheduler can also benefit from randomized
strategies for deadlock avoidance. Here, after an unsuccess-
ful attempt to merge along an edge, a division waits for an
increasing, randomly chosen time span before locking the
assembly in question again. The purpose is to break the sym-
metry between attempts by different divisions to synchro-
nize. We leave this direction for future research.

5.1.3 Assembly migration and load-balancing
To cope with the dynamic nature of irregular applications,
divisions in our setting need to be dynamically reconfig-
urable. To minimize communication overheads, our goal is
to maintain the divisions so that the ratio of remote accesses
to local accesses is as low as possible. Therefore, we try to
ensure that for most assemblies i, if i is in a division D, then
so are most of its neighbors.

We achieve the above goal through a simple heuristic
(invoked at Line 10 of Figure 18). Consider a merge between
a assembly i and an assembly i′, respectively on divisions
D and D′ (where D 6= D′) along an edge (u, f, v) in the
heap. Every time such a merge happens, the assembly i′, as
well as all assemblies in D′ reachable from v by a certain
number m of pointer indirections, are migrated to D. The
intuition is that just as updates in our applications happen in
local regions in the heap, merges typically happen in local
regions in the assembly graph. The heuristic dynamically
adapts divisions to exploit this locality. The quantity m is
a parameter for the runtime system, and is known as the
indirection depth.

In fact, we enrich the above heuristic with a simple form
of load-balancing. Observe that in the above scenario in-
volving i and i′, there is no inherent reason why the assem-
bly migration has to be from D′ to D and not the other way

round. This observation leads to a load-balancing heuristic.
Each division now keeps track of the number of assemblies
in it. During remote merges, migration always happens from
the division with a greater number of assemblies.

5.1.4 Use of Union-Find
The Chorus model requires that we keep track of the rela-
tionship between objects and object assemblies. Given a ref-
erence to an object, the runtime needs to determine the as-
sembly to which it belongs. This information is needed for
merges, which are requested on object references. It is also
needed whenever an assembly dereferences an object to per-
form some operation, as the runtime must then determine if
the object belongs to the assembly. Additionally, assemblies
need to determine the complete set of objects that they own.
This information is necessary when an assembly ends its ex-
ecution by splitting, where each owned object becomes the
single object of a new assembly.

The choice of data structures for maintaining ownership
information can impact the performance of the runtime in
a significant way. The operations that are at the heart our
model, namely split, merge and object dereference, impose
different constraints. Consider, first, the merge and object-
dereference operations. Given the fact that assemblies con-
stitute disjoint sets of objects, these operations can be sup-
ported by an ownership directory represented using Tarjan’s
Union-Find data structure. Our implementation allows the
optional use of this structure.

Here, given a number of disjoint sets, only two oper-
ations are performed on them: (1) set union (needed for
merges), and (2) set membership test (needed for owner-
ship lookups). The problem has a complexity lower bound
of Ω(n+mα(m+n, n)) for a sequence consisting of n− 1
unions and m finds; where α is an inverse of Ackermann’s
function [15]. If we consider single operations, there is a
tradeoff between the cost of the union and that of the find.
This lower bound is achieved by representing each set as
a tree, where each element has a pointer to its parent (and
no pointers to its children), and implementing the operation
using two techniques: (1) union by rank and (2) path com-
pression [15].

In order to implement the split operation efficiently, ob-
jects are embedded in a linked-list structure. This allows to
perform the join of two list in O(1) thus not affecting the
cost of the merge. The object list must be traversed to per-
form the split.

6. Experiments
We have performed a preliminary experimental evaluation
of our approach using the Delaunay mesh refinement and
Minimum Spanning Tree applications. These applications
were chosen because they are non-trivial and of practical
importance, and because they produce results that can be

examined for correctness (the last of these is not true, for
example, for the Focused Communities application).

We wrote complete implementations of these two ap-
plications in JChorus. The baseline for performance com-
parisons was sequential Java. One of the competing ap-
proaches used hand-coded, fine-grained locking. In addi-
tion, we wanted to compare our performance with that of
a well-established, publicly available, Java-based system for
high-level parallel programming. We settled on DSTM2, a
state-of-the-art library of software transactions supporting
dynamic-sized data structures [1, 28].

The experiments were run on an 8-core (dual quad-core)
Intel Xeon X5550 with 2.66Ghz CPU speed per core, 24GB
memory, a 64-bit Linux operating system (kernel version
2.6.18), and Java version 1.6.0 14, 64-bit.3

6.1 Delaunay Mesh Refinement
The first set of experiments involved the Delaunay mesh re-
finement application. Three datasets for this application are
available in the Lonestar benchmark suite [2]—we selected
the largest one. The dataset defines a 2-dimensional input
mesh containing 100,364 triangles, approximately half of
which do not satisfy the desirability criteria.

The JChorus implementation used in the comparisons
was as in Section 4.1 and Figure 9. The initial partitioning
into divisions was spatial—i.e., the mesh resides in a unit
square and is recursively subdivided in four as many times
as needed to equal or exceed the number of threads. The
token-based scheduler in Figure 18 was used, with a depth-
first execution strategy. Assembly migration was performed
with an indirection depth of 4. The union-find data structure
was not used. For comparison purposes, we defined a conflict
to be a cavity that started executing, but could not finish its
work due to being merged by adjacent ones.

For the sequential implementation, we started with an
implementation available in the Lonestar benchmarks and
hand-optimized it, removing some inefficiencies. In the fine-
grained-locking-based implementation, locks were acquired
at the triangle level. Each thread tried to acquire locks as
it built a cavity in a non-blocking fashion. If it could not
acquire a lock on a triangle, then it released all triangles it
possessed, placed the bad triangle at the end of the worklist,
and picked a new bad triangle to work with. Each such
incident was considered to be a conflict.

Finally, the DSTM2 implementation was derived from the
lock-based implementation in the most natural way possible.
As DSTM2 permits a number of different transaction man-
agers, the one with the best performance in this application
was chosen. A conflict here is an aborted transaction.

As we worked on an 8-core system, we ran these com-
peting approaches varying the number of threads from 1 to
8. Figure 19 depicts these comparisons. The first set of mea-

3 The source code of JChorus and the datasets used in the experiments are
available at http://www.cse.psu.edu/∼swarat/chorus.

surements compared the speedup over the baseline sequen-
tial implementation. We observe that we only start getting
speedups over the sequential code at 8 cores (though DSTM
does far worse). We ascribe this to the fact that JChorus
works as a layer over Java, does not have direct access to
the JVM or hardware threads, and makes expensive method
calls for various runtime checks. In future, lower-level im-
plementations, these overheads will hopefully come down.

1 2 3 4 5 6 7 8

threads

0.0000

1.0000

2.0000

3.0000

4.0000

sp
ee

du
p

JChorus
Fine-grained Locking
Baseline
DSTM2

Speedup over sequential version

1 2 3 4 5 6 7 8

threads

1.0000

2.0000

3.0000

4.0000

5.0000
sp

ee
du

p
JChorus
Fine-grained Locking
Baseline
DSTM2

Self-relative Speedup

1 2 3 4 5 6 7 8

threads

0%

20%

40%

60%

80%

100%

co
nf

lic
ts

JChorus
Fine-grained Locking
DSTM2

% conflicts

Figure 19. Delaunay Mesh Refinement

The next set of measurements compared the self-relative
speedup of the competing approaches—i.e, the ratio of the
performance of an approach at n threads, to that of the same
approach at 1 thread. This measure tries to eliminate the
effects of constant overheads in a runtime. We observe that
the self-relative speedups of DSTM and our approach are
comparable.

The third set of measurements compared the amount of
contention in the two systems as the number of threads in-
creased. Here, we used the definition of conflicts given ear-
lier, and plotted the change in the percentage of conflicts to

1 2 3 4 5 6 7 8

threads

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

sp
ee

du
p

JChorus
Fine-grained Locking
Baseline

Speedup over sequential version

1 2 3 4 5 6 7 8

threads

0.5

1

1.5

2

2.5

sp
ee

du
p

JChorus
Fine-grained Locking
Baseline

Self-relative Speedup

Figure 20. Boruvka’s algorithm

the total number of initiated retriangulation tasks (cavities)
as the number of threads increased.

6.2 Boruvka’s algorithm for minimum spanning trees
Our experiments with the minimum spanning tree applica-
tion used a graph dataset from the 9th Dimacs implemen-
tation challenge for shortest paths. The graph represents a
road network of the Western US and has 6,262,104 nodes
and 15,248,146 edges.

The JChorus implementation used was as in Figure 11.
The initial partition of the graph into divisions was random.
The simple scheduler, with a breadth-first strategy, was used.

The fine-grained-locking implementation locked the graph
at the level of components (recall that Boruvka’s algorithm
is based on repeatedly merging the components in a graph).
If a component tried to acquire the lock for the component
to merge and could not, then it placed the current component
at the end of the worklist, released its lock, and proceeded
to the next component. The DSTM2 version was built from
this implementation.

In this case, the DSTM2 implementation aborted due to
lack of memory. Figure 20 shows the speedup over the base-
line sequential implementation as well as the self-relative
speedup. Note the bizarre behavior of fine-grained locking at
8 threads. We suspect that this behavior is due to the garbage
collector; however, as we do not have a performance model
of this version of Java, we are unsure of its exact cause.

7. Related work
We itemize the work related to ours as follows.

The Galois project. Of related work, the closest to us is
Kulkarni, Pingali et al’s Galois project, which also aims to
parallelize irregular, data-intensive applications (indeed, the
Lonestar benchmarks came out of this project). The solu-
tions there [27, 26] are to enhance thread-based, optimistic
parallelism with data-types for unordered and partially or-
dered sets, which give the runtime information about data
dependencies [27], and heuristics for data partitioning [26].
While these papers were inspirations for our work, they do
not have a language design where structures like assemblies
actively drive a parallel computation.

A more recent paper from the project [24] proposes amor-
phous parallelism—the combination of locality and dy-
namism that we also exploit—as the essence of parallelism
in irregular applications, and establishes this with a profiling
tool. A subsequent technical report [30] proposes an ap-
proach to amorphous parallelism using operators that morph
and update local regions in a graph, substantiating this with
a masterly review of irregular applications. However, these
papers do not offer a concrete, high-level language, and do
not have analogs of assemblies, merges and splits. In fact,
our paper may be seen as a response to the hope expressed in
the conclusion of [30]: “...that insights into amorphous data-
parallelism in irregular algorithms will spur research into the
design of abstract data types, concrete representations, and
synchronization mechanisms.”

PGAS languages. Also related are Partitioned Global Ad-
dress Space languages like X10 [10, 9] and Chapel [8],
which allow each thread to only access certain partitions
in the heap (for example, in X10, accesses outside a task’s
“place” lead to exceptions, just like our out-of-region ac-
cesses). However, these languages do not offer high-level
abstractions for dynamic creation and/or reconfiguration of
places, and are thus unable to capture the dynamic growth
and shrinkage of assemblies that is essential to our model.

Actors. The Actor model [20, 3] is one of the earliest data-
centric models of concurrency, and is the backbone of con-
currency in Erlang, Scala, and Singularity. Actors are active,
concurrent entities that encapsulate some private data and
communicate via asynchronous message-passing. One point
of difference between Chorus and Actors is that the latter,
in general, permits the transmission of references via mes-
sages, and is therefore not race-free. On the other hand, in
a version of the Actor model where passing of references is
disallowed, shared-memory applications such as ours would
require copying of data. Finally, Chorus operates at a high-
level, and does not need hand-coded message-passing.

More recent work on isolation-typed, ultralightweight ac-
tors [32] presents an actor framework where mutable mes-
sages do not have internal aliases, and can only be owned
by a single actor at a time. This system—called Kilim—

bears some similarities with ours. One difference is that it
does not offer guarantees of deadlock-freedom. More im-
portantly, isolation here is statically enforced, obtained by
keeping the set of mutable objects reachable from one ac-
tor’s local variables disjoint from another’s. It seems that
this would make Kilim unsuitable for irregular applications,
where parallelism is highly instance-dependent, and involves
complex data-structures like meshes and graphs that are al-
most impossible to analyze statically (the same critique ap-
plies to other static approaches to isolation, including own-
ership types [6, 13] and linear types [23]). In contrast, we
forgo the static route altogether, instead building an execu-
tion model that maintains and reconfigures isolation dynam-
ically via merges and splits.

Language-level transactions. The language-level transac-
tion [18, 19, 28] is a composable, declarative abstraction for
atomicity that is typically implemented using transactional
memory. This abstraction, however, was not designed with
locality of heap access in mind—as Kulkarni et al. [27, 26]
point out, most implementations of transactional memory
track reads and writes to the entire memory to detect con-
flicts, and consequently perform poorly in irregular appli-
cations. Proposals to overcome these shortcomings include
those for privatizing transactions [31] and combining them
with data-centric synchronization [34]. While these systems
share some design intentions with us, they do not have any-
thing akin to our assembly-level parallelism or merge and
split abstractions.

8. Conclusion
We have proposed a programming model called Chorus, and
a language called JChorus, for expressing and exploiting
the locality of effects in irregular parallel applications. The
essence of our model is parallelism at the level of assem-
blies in large, shared data structures; our main concurrency
abstraction is an assembly of objects that can split or merge
with other assemblies.

As for future work, a more efficient implementation of
JChorus is at the top of our agenda. Simultaneously, we want
to expand the set of benchmark applications coded using
Chorus and release them to the community for feedback
on usability. On the language design end, we are currently
investigating ways to integrate Chorus with the abstractions
of Habanero Java, a cousin of X10 [10].

On the theoretical end, we want to develop a foundational
process calculus for Chorus, where processes are assemblies
in a graph and able to merge and split. Such a calculus will
aim to capture the essence of local concurrent computation
in graphs. We would also like to develop a framework for
automated reasoning about invariants within and across as-
semblies. Preliminary investigations on these questions are
under way.

Acknowledgements: We thank Vivek Sarkar, Mahmut Kan-
demir, Zoran Budimlić, Yi Guo, and Milo Martin for valu-
able discussions and suggestions.

References
[1] DSTM 2.1 beta. Available from

http://www.cs.brown.edu/∼mph/.

[2] The Lonestar Benchmark Suite. Available from
http://iss.ices.utexas.edu/lonestar/.

[3] G. Agha, I. Mason, S. Smith, and C. Talcott. A foundation
for actor computation. Journal of Functional Programming,
7(1):1–72, 1997.

[4] W. Aiello, Ch. Kalmanek, P. McDaniel, S. Sen, O. Spatscheck,
and J. van der Merwe. Analysis of communities of interest in
data networks. In PAM, pages 83–96, 2005.

[5] J. Barnes and P. Hut. A hierarchical O(NlogN) force-
calculation algorithm. Nature, 324(4):446–449, December
1986.

[6] C. Boyapati, R. Lee, and M. Rinard. Ownership types for
safe programming: preventing data races and deadlocks. In
OOPSLA, pages 211–230, 2002.

[7] D. Burke, J. Epstein, D. Cummings, J. Parker, K. Cline,
R. Singa, and S. Chakravarty. Individual-based computational
modeling of smallpox epidemic control strategies. Academic
Emergency Medicine, 13(11):1142–1149, 2006.

[8] B. Chamberlain, D. Callahan, and H. Zima. Parallel
programmability and the chapel language. Int. Journal of
High Performance Computing Applications, 21(3):291–312,
2007.

[9] S. Chandra, V. Saraswat, V. Sarkar, and R. Bodı́k. Type
inference for locality analysis of distributed data structures.
In PPOPP, pages 11–22, 2008.

[10] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar. X10: an object-
oriented approach to non-uniform cluster computing. In
OOPSLA, pages 519–538, 2005.

[11] P. Chew. Guaranteed-quality mesh generation for curved
surfaces. In Symposium on Computational Geometry, pages
274–280, 1993.

[12] S. Chung and A. Condon. Parallel implementation of
Boruvka’s minimum spanning tree algorithm. In IPPS, pages
302–308, 1996.

[13] D. Clarke, T. Wrigstad, J. Östlund, and E. Johnsen. Minimal
ownership for active objects. In APLAS, pages 139–154,
2008.

[14] E. de Sturler and D. Loher. Parallel iterative solvers for
irregular sparse matrices in high performance Fortran. Future
Generation Computer Systems, 13(4-5):315–325, 1998.

[15] Z. Galil and G. Italiano. Data structures and algorithms for
disjoint set union problems. ACM Comput. Surv., 23(3):319–
344, 1991.

[16] T. Grune Yanoff. Agent-based models as policy decision
tools: The case of smallpox vaccination. Technical report,

Royal Institute of Technology, Sweden.

[17] F. Guidec, P. Calégari, and P. Kuonen. Parallel irregular
software for wave propagation simulation. Future Generation
Computer Systems, 13(4-5):279–289, 1998.

[18] T. Harris and K. Fraser. Language support for lightweight
transactions. In OOPSLA, pages 388–402, 2003.

[19] T. Harris, S. Marlow, S. L. Peyton Jones, and M. Herlihy.
Composable memory transactions. In PPOPP, pages 48–60,
2005.

[20] C. Hewitt, P. Bishop, and R. Steiger. A universal modular
actor formalism for artificial intelligence. In IJCAI, pages
235–245, 1973.

[21] K. Hildrum and P. Yu. Focused community discovery. In
ICDM, pages 641–644, 2005.

[22] D. Jungnickel and M. Swamy. Graphs, Networks, and
Algorithms. Springer, 2004.

[23] N. Kobayashi, B. Pierce, and D. Turner. Linearity and the
pi-calculus. In POPL, pages 358–371, 1996.

[24] M. Kulkarni, M. Burtscher, R. Inkulu, K. Pingali, and
C. Cascaval. How much parallelism is there in irregular
applications? In PPOPP, pages 3–14, 2009.

[25] M. Kulkarni, M. Burtscher, K. Pingali, and C. Cascaval.
Lonestar: A suite of parallel irregular programs. In ISPASS,
2009.

[26] M. Kulkarni, K. Pingali, G. Ramanarayanan, B. Walter,
K. Bala, and L. Chew. Optimistic parallelism benefits from
data partitioning. In ASPLOS, pages 233–243, 2008.

[27] M. Kulkarni, K. Pingali, B. Walter, G. Ramanarayanan,
K. Bala, and P. Chew. Optimistic parallelism requires
abstractions. In PLDI, pages 211–222, 2007.

[28] J. Larus and C. Kozyrakis. Transactional memory. Commu-
nications of the ACM, 51(7), 2008.

[29] E. A. Lee. Are new languages necessary for multicore?,
2007.

[30] K. Pingali, M. Kulkarni, D. Nguyen, M. Burtscher,
M. Mendez-Lojo, D. Prountzos, X. Sui, and Z. Zhong. Amor-
phous data-parallelism in irregular applications. Technical
Report TR-09-05, University of Texas at Austin, 2009.

[31] M. F. Spear, V. J. Marathe, L. Dalessandro, and M. L. Scott.
Privatization techniques for software transactional memory.
In PODC, 2007.

[32] S. Srinivasan and A. Mycroft. Kilim: Isolation-typed actors
for java. In ECOOP, pages 104–128, 2008.

[33] H. Sutter and J. Larus. Software and the concurrency
revolution. ACM Queue, 3(7):54–62, 2005.

[34] M. Vaziri, F. Tip, and J. Dolby. Associating synchronization
constraints with data in an object-oriented language. In
POPL, pages 334–345, 2006.

[35] M. Wolfe. High-Performance Compilers for Parallel
Computing. Addison Wesley, 1995.

