
Delegated Isolation

Roberto Lublinerman
Pennsylvania State University

rluble@psu.edu

Jisheng Zhao
Rice University

jisheng.zhao@rice.edu

Zoran Budimlić
Rice University
zoran@rice.edu

Swarat Chaudhuri
Rice University
swarat@rice.edu

Vivek Sarkar
Rice University
vsarkar@rice.edu

Abstract
Isolation—the property that a task can access shared data
without interference from other tasks—is one of the most
basic concerns in parallel programming. In this paper, we
present Aida, a new model of isolated execution for par-
allel programs that perform frequent, irregular accesses to
pointer-based shared data structures. The three primary ben-
efits of Aida are dynamism, safety and liveness guarantees,
and programmability. First, Aida allows tasks to dynam-
ically select and modify, in an isolated manner, arbitrary
fine-grained regions in shared data structures, all the while
maintaining a high level of concurrency. Consequently, the
model can achieve scalable parallelization of regular as well
as irregular shared-memory applications. Second, the model
offers freedom from data races, deadlocks, and livelocks.
Third, no extra burden is imposed on programmers, who ac-
cess the model via a simple, declarative isolation construct
that is similar to that for transactional memory.

The key new insight in Aida is a notion of delegation
among concurrent isolated tasks (known in Aida as assem-
blies). Each assembly A is equipped with a region in the
shared heap that it owns—the only objects accessed byA are
those it owns, guaranteeing race-freedom. The region owned
by A can grow or shrink flexibly—however, when A needs
to own a datum owned byB,A delegates itself, as well as its
owned region, to B. From now on, B has the responsibility
of re-executing the task A set out to complete. Delegation
as above is the only inter-assembly communication primi-
tive in Aida. In addition to reducing contention in a local,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA’11, October 22–27, 2011, Portland, Oregon, USA.
Copyright c© 2011 ACM 978-1-4503-0940-0/11/10. . . $10.00

data-driven manner, it guarantees freedom from deadlocks
and livelocks.

We offer an implementation of Aida on top of the Ha-
banero Java parallel programming language. The implemen-
tation employs several novel ideas, including the use of a
union-find data structure to represent tasks and the regions
that they own. A thorough evaluation using several irreg-
ular data-parallel benchmarks demonstrates the low over-
head and excellent scalability of Aida, as well as its benefits
over existing approaches to declarative isolation. Our results
show that Aida performs on par with the state-of-the-art cus-
tomized implementations of irregular applications and much
better than coarse-grained locking and transactional memory
approaches.

Categories and Subject Descriptors D.1.3 [Programming
Techniques]: Concurrent Programming; D.3.2 [Program-
ming Languages]: Language Classifications—Concurrent,
distributed, and parallel languages

General Terms Languages, Design

Keywords Isolation, Programming abstractions, Irregular
parallelism, Contention

1. Introduction
Isolation1—the property that a task can access shared data
without interference from other tasks—has always been a
fundamental concern in shared-memory parallel program-
ming. It is also the topic of much recent research [19, 22,
35]. Much of this research is driven by the observation that
the traditional approach to enforcing isolation—lock-based
synchronization—has some serious shortcomings, and falls
short of the demands made by everyday programmers in an
era of multicore computers. On one hand, low-level, fine-
grained locking is too complex and error-prone, and requires

1 In the parallel programming literature, the terms “isolation” and “atomic-
ity” are often conflated. As advocated in [19], we use isolated to indicate a
statement that executes without interference from other isolated statements,
as opposed to atomic which implies strong atomicity.



an effort on the part of the programmer that does not scale
well with software size. On the other hand, coarse-grained
locking leads to scalability bottlenecks. Consequently, nu-
merous research groups have embarked on quests for declar-
ative and scalable approaches to isolation.

At the language level, a declarative approach to isola-
tion lets the programmer demarcate blocks of code that are
to be executed in an isolated manner—the complexity of
maintaining isolation is thereby pushed into the compiler
and the runtime system. As might be expected, proper de-
sign and implementation of such compilers and runtimes is
highly nontrivial. A primary concern here is scalable per-
formance on challenging, real-world applications. A second
goal is programmability: the programming interface for the
construct should be as simple, as general, and as modular
as possible. A third goal is the ease of reasoning about pro-
grams that the model provides and the availability of high-
level correctness guarantees, such as freedom from dead-
locks and livelocks.

Meeting the above goals is especially daunting in settings
where the goal is to parallelize applications that make fre-
quent dynamic accesses to large, potentially sparse shared-
memory data structures [25]. Such sparse graph applica-
tions appear in a wide range of domains including data min-
ing, scientific computing, compilers, graphics, network sci-
ence, and system modeling [32]: concrete examples include
classic graph algorithms like shortest-paths or minimum
spanning trees, algorithms for ray-tracing, Delaunay trian-
gulation, mesh refinement [10], epidemic simulations [4], N-
body simulations, and solutions of partial differential equa-
tions. These applications operate on large shared data struc-
tures, are resource-intensive and contain large amounts of in-
trinsic parallelism. However, building scalable runtime sys-
tems guaranteeing isolation is especially challenging in this
context, as the available parallelism is highly data-dependent
and prone to changes at runtime, with some pathological in-
stances exhibiting no parallelism at all. Not only does such
irregular parallelism confound static parallelization, it baf-
fles dynamic approaches based on transactional memory as
well [26].

In this paper, we present Aida, a new model of isolated
concurrent execution targeted at this difficult problem space.
Rather than adapting an existing model for isolated execu-
tion (such as software transactions), we aimed in this effort
for a clean operational semantics informed by a foundational
perspective on irregular parallelism. The outcome—Aida—
is a minimalistic execution model containing a single prim-
itive for data communication that lets a task A delegate its
work to a different task B. Pleasantly, the model satisfies
each of our design objectives:

• Our implementation of Aida (on top of the Habanero-
Java parallel programming language [7, 18]) performs or-
ders of magnitude better than the Java-based transaction
library DSTM2 [12] on irregularly parallel benchmarks

from the Lonestar benchmark suite [24]. Its scalability is
competitive with Galois [25], a custom library and pro-
gramming model for parallelizing loops with irregular
data accesses.
• Like transactions and unlike Galois, Aida offers a highly

general and minimalistic programming model. The pro-
grammer uses a single keyword to declare certain asyn-
chronous tasks to be isolated, and no further annotation
is demanded. Aida can support any computation in an
isolated task, and is not restricted to operations on pre-
selected data structures.
• Aida satisfies strong safety and liveness properties, guar-

anteeing, among others, deadlock- and livelock-freedom.

In the rest of this paper, we elaborate on the main ideas
in Aida (Section 2), our implementation of the model (Sec-
tion 3), and experimental results (Section 4). Related work is
discussed in Section 5; we conclude with some discussion
in Section 6.

2. The Aida Execution Model
The first basic insight behind Aida is the following:

In a problem domain where the extent of available
parallelism is data-dependent and prone to dynamic
changes, granularity of tasks, communication be-
tween tasks, and management of contention should
be dynamic as well.

In most traditional models of concurrency, the logic for orga-
nizing an application into parallel tasks, as well as the com-
munication between these tasks, is decided statically. This is
a deficiency in the context of irregular applications, where
the optimal granularity of parallelism depends intimately on
the problem instance.

For example, it is known [25, 28, 30] that while typical
irregular applications require global memory access in the
worst case, the effects of their imperative updates are often
restricted to small, local regions in shared data structures.
A natural strategy for parallelization, then, would be to let
each of these regions be processed by a distinct concurrent,
isolated task. However, because the regions in question are
highly instance-dependent, it is impossible to know statically
the number and schedule of tasks that would lead to optimal
parallelism, as well as interferences among tasks. A more
dynamic approach is needed.

To see why the principled design of such a dynamic ap-
proach is not obvious, consider a scenario that is unavoidable
in any dynamic approach to isolation. Here, tasks A and B,
executing isolated code and each owning parts of the heap,
conflict over an object u in the shared heap. (See Figure 1;
here nodes represent shared objects, edges represent point-
ers between objects, the shaded ovals represent the regions
of objects owned by the two tasks.) Clearly, only one of the
two tasks—say A—should be allowed to access u. But what



happens to B? Letting B block while maintaining owner-
ship of some data does not seem to be a good idea: not only
will tasks seeking B’s data now have to wait, in the worst
case, we will have deadlocks. Another option is to let the
task manager retry B. If we retry B too soon, we will have
unnecessary contention that will degrade performance; in the
worst case, we will have livelocks. If we do not retry B soon
enough, do we release all objects held by B? If so, what if a
task C acquires some of this data before B is retried?

We note that the “right” strategy for concurrent execution
here depends to a large extent on which thread owns which
objects, and it is imperative in these settings that task and
ownership management are somehow “coupled.” Unfortu-
nately, this is not the case in many traditional dynamic ap-
proaches to isolation. Rather than using an operational se-
mantics that relates tasks with ownership, they often resolve
conflicts using heuristics like exponential back-off [34] that
do not offer solid guarantees, are divorced from high-level
programming models, and depend on ad hoc parameters.

In contrast, the Aida execution model is based on a single
principle that ties together management of parallel, isolated
tasks and management of ownership. The fundamental ques-
tion in task management is “When should two isolated tasks
be run in parallel?” The answer provided here is:

Two isolated tasks A and B should be run in parallel
when A and B are not trying to establish ownership
over the same object in the shared heap.

Indeed, if two tasks are trying to establish ownership over
(i.e., make isolated accesses to) the same objects in heap,
then concurrency among them is not serving any useful
purpose. We would therefore be better off if A and B were
merged into a single task.

To make such a mechanism possible, we let each task in
Aida have explicit ownership of a local region in the shared
heap, and only access objects in that region. This task owner-
ship abstraction is borrowed from the Chorus programming
model [28] for irregular applications. As in Chorus [28],
such a task is called an (object) assembly. By definition, an
assembly accesses the heap in an isolated manner. However,
as discussed in Section 5, the Chorus model is more restric-
tive than Aida because it is only applicable to parallelization
of cautious applications [30] and it lacks Aida’s notion of
delegated isolation.

In case of conflicts among concurrently executing assem-
blies, the key new notion of delegation comes into play. In
particular, consider the scenario in Figure 1: A and B are
assemblies, and the shaded ovals depict their owned regions.
Now supposeB attempts to access the object u via a pointer.
In Aida, this conflict scenario is handled by letting B dele-
gate itself and its owned region toA. In essence,A andB are
now “merged,” and from now on,A: (1) owns the region that
B passed to A; and (2) has the responsibility of completing
the task that B set out to do.

!"#$%&'()*%'(+),+"-)&')./01))

1: Mesh m = /* read input mesh */ !

2: List wl = "

         new List(m.getBad());!

3: foreach Triangle t in wl { !

4:   Cavity c = new Cavity(t);!

5:   c.expand();!

6:   c.retriangulate();!

7:   m.updateMesh(c); !

8:   wl.add(c.getBad());  }!

(b) 

(a) 

! 

A

! 

B

! 

u

Figure 1. An example of conflicting tasks, A and B, due
to accesses to object u. (In the figure, nodes correspond to
objects, arrows to pointers/references, and shaded ovals to
regions.)

Delegation as above is the only inter-task communication
primitive in Aida. The delegation mechanism is accessed
by the programmer using a simple programming construct
similar to that used in software transactions. The core pro-
gramming model contains only two parallel constructs: a
two-word keyphrase “async isolated” that forks an asyn-
chronous task that is to be executed in an isolated manner,
and a keyword “finish” for synchronization. This frame-
work for scoped fork-join parallelism is derived from the
X10 [9] and Habanero Java [7] languages, but applied to
‘async isolated” tasks in Aida. While the “finish” con-
struct (akin to “sync” in Cilk [3]) is a form of task synchro-
nization, there is no data communication involved in it and it
does not introduce issues such as deadlocks or livelocks. Se-
mantically, any two tasks that join at the same program point
and operate on different parts of the shared data structure are
causally independent, and can be executed in any order.

We observe that the above programming model for del-
egated isolation is quite general and can be integrated with
any imperative parallel language; in particular, we have im-
plemented it on top of the Habanero Java [7, 18] language.
Note that the underlying programming language may have
other primitives for task creation that offer no guarantees of
isolation—for example, in Habanero Java, there is a keyword
“async” for creating such tasks without the isolated qual-
ifier. Such tasks do not fall within the ambit of Aida, and are
excluded from discussion in the rest of the paper.

Provided access to shared memory only happens from
within blocks declared “async isolated,” isolation and
race-freedom are guaranteed in Aida. This is because the
only objects accessed by an assembly A are those it owns.
Deadlocks and livelocks are ruled out because when two
assemblies conflict, one of them always delegates to the
other, and the “merged” assembly continues to progress.

Extended example: Delaunay mesh refinement To see
how the Aida programming and execution model work, let
us consider a classic irregular application: 2D Delaunay
mesh refinement [10, 26]. Given a set of points in the 2D
Euclidean space, a Delaunay triangulation partitions their
convex hull into a set of triangles such that no point lies in
any triangle’s circumcircle. In many applications [10], there



1: Mesh m = /* read input mesh */

2: List wl = new List(m.getBad());

3: foreach Triangle t in wl {
4: Cavity c = new Cavity(t);

5: c.expand();

6: c.retriangulate();

7: m.updateMesh(c);

8: wl.add(c.getBad()); }

Figure 2. Delaunay mesh refinement (sequential algorithm)

1: main () {
2: finish {
3: for (t in initial set of bad triangles)

4: processTriangle(t); } }

5: processTriangle(t) {
6: async isolated {
7: if (t in mesh) {
8: Cavity c = new Cavity(t);

9: c.expand();

10: c.retriangulate();

11: for (s in c.badTriangles())

12: processTriangle(s); }
} }

Figure 3. Delaunay Refinement in the Aida programming
model

are further qualitative constraints on the resulting triangles.
To meet these constraints, a Delaunay triangulation often
needs to be refined; triangles that do not satisfy this property
are “bad.” The mesh refinement problem is to retriangulate
the mesh so that there are no bad triangles left.

It is a property of the application that a Delaunay retrian-
gulation affects a “cavity”: a local region in the mesh. Fig-
ure 2 shows a popular sequential algorithm that uses this
property. Here, in each iteration of a loop, the algorithm
builds a cavity c consisting of a bad triangle t drawn from a
work list wl of bad triangles, expands c to the needed extent,
and locally updates it using a re-triangulation routine. The
Delaunay property is guaranteed to hold for the newly cre-
ated triangles. The qualitative constraint may not hold for all
the new triangles, so the size of the work list might increase
in certain steps. The algorithm, however, is guaranteed to
terminate [10].

In a parallel version of the algorithm, the isolation re-
quirement is that c.retriangulate() executes atomically—
logically, a cavity is a unit of isolation. In practice, cavities
are almost always small, which means that a typical instance
of the problem has a significant amount of available paral-
lelism. At the same time, there is no a priori way here to tell
if two parallel tasks carrying out retriangulations in parallel
will conflict—i.e., if during cavity expansion, one task will
demand access to a triangle under use by another. Conflict
management, therefore, has to be dynamic.

! 

B

! 

A

! 

C

! 

D

! 

u

! 

v
f 

! 

u

! 

v
f 

(a) 

(b) 

u 

u 

! 

C

! 

D

! 

A

Figure 4. Effect of delegation on ownership

In the Aida approach to the problem, the programmer
codes the application as in Figure 3. The main function is
a sequential loop that calls the method processTriangle

on each bad triangle. While executing a call to the method
processTriangle on input t, the Aida runtime notices a
block of code K marked as “async isolated”. Such a task
is executed by the Aida runtime in an isolated manner—i.e.,
as an assembly. Therefore, in the current scenario, a new
assembly B is created. This assembly contains:

• An owned region RB (initially empty)
• A queue QB , each element of which is a closure—a tu-

ple consisting of a block marked “async isolated”, as
well as the local state of this block when it starts execut-
ing. Initially, the queue has a single closure, the code part
of which is K, the body of the “async isolated” block
for B.

The closure with code K is executed following standard
sequential semantics—only, any new triangle accessed by K

is first added to RB . In the program on Figure 3, the first
triangle added to RB will be t. This way, the assembly can
only access objects in its owned region. Unless there is a con-
flict (see below), B completes the execution of K and picks
up the next closure from QB (if there is one)—the closure
whose execution just completed is said to have been com-
mitted. The challenging scenario is when K tries to access
a triangle in the owned region RA of some other assembly
A (or vice versa). In this conflict scenario, B delegates its
work (all the closures in its queue, as well as the current clo-
sure) and region RB to A. This means that from now on,
RB and QB are empty; the items formerly in these now be-
long respectively to RA and QA (Figure 4). The assembly
A must now also execute and commit the closures passed to
it by B. Thus, delegation locally coarsens the granularity of
parallelism in the heap.

Note that the closure that caused a conflict must be exe-
cuted from the beginning at a subsequent time. As our lan-
guage is imperative, this closure may, in general, already
have performed modifications to the heap; therefore, Aida
rolls back its effects.



Prog ::= Prog ;Prog | Asgn | finish {Stmt}
Asgn ::= t := x.f; | x.f := t; | x := t;
Stmt ::= [Asgn]∗ [Async]∗

Async ::= async isolated {Stmt};
where x, t ∈ Var , and f ∈ F .

Figure 5. Syntax of Core Aida. (For a nonterminal X , [X]∗

denotes zero or more successive occurrences of X .)

It is worth noting that for an important class of irregu-
lar applications that includes Delaunay refinement, all ob-
ject acquisition happens before modification. In these cases,
a need for rollback never arises (this class was identified
by Pingali et al [30], who referred to such applications as
cautious applications). In principle, we could use a static
analysis [33] that identifies an application or assembly as
cautious—given such an analysis, we could eliminate the
runtime overhead of maintaining rollback logs in many cases
(including every assembly created in Delaunay refinement).
The current implementation of Aida does not employ any
such optimization.

Also, the retriangulation triangle t may have been re-
moved from the mesh by the time A gets to executing the
delegated retriangulation. In this case,A simply skips it, and
moves on to the next closure in QA (Line 7, Figure 3) —
note that the sequential algorithm in Figure 2 does not need
to perform the (t in mesh) test.

Finally, note that a block marked “async isolated”
is in a sense an asynchronously executed transaction. The
asynchrony entails that the recursive call inside the method
processTriangles is not really a nested transaction; in-
stead, it is a new asynchronously executed assembly.

2.1 Core Aida
Aida is a minimalistic model, and most of its features are
covered by the preceding discussion. However, to under-
stand its properties, we need to formalize the model to some
degree. We do so using a foundational programming and ex-
ecution model, henceforth referred to as Core Aida.

Core Aida uses the same concurrency constructs as our
implementation of Aida; however, the former makes several
simplifying assumptions about the sequential language un-
derlying the model. For example, statements in Core Aida
do not call methods on objects, create new objects, or de-
clare new local variables. Also, we let objects be untyped
and assume that all objects are shared.

2.1.1 Syntax
Aida is implemented on top of a framework for fork-join
parallelism. In Core Aida as well as our implementation,
the programmer creates assemblies by enclosing impera-
tive code blocks within the construct “async isolated

{...}”. The construct “finish {...}” defines a scope at
the end of which all assemblies created within the scope
must join. We do not allow “finish”-blocks to be nested

within “async isolated” blocks, thus following the “flat”
model of “finish” statements studied in [2]. However, iso-
lated asynchronous blocks can be nested to an arbitrary
depth.

Formally, let us assume a universe Var of variable names
and a universe F of field names. The syntax of programs
in Core Aida is shown in Figure 5. Here, programs are
given by the nonterminal Prog , and the code executed by
an assembly is given by the nonterminal Stmt . We assume
that all variables appearing in the text of a program P are
implicitly declared at the beginning of P .

Note that Stmt is defined such that an assembly must fin-
ish all its heap updates before it can create a new assem-
bly. The semantic justification for this restriction will be pro-
vided soon.

2.1.2 Semantics
A Core Aida program P executes either in a sequential or
a concurrent mode. Initially, it executes in the sequential
mode—i.e., exactly like a sequential imperative program.
Once control enters a “finish” scope in the program, P
switches to the concurrent mode. At this point it is able to
create new assemblies using the “async isolated” construct.
These assemblies modify the heap asynchronously, possi-
bly delegating to each other. Once all the assemblies cre-
ated within the “finish” scope under consideration have ter-
minated, P resumes execution in the sequential mode, from
the control point following the “finish” block.

Heaps The central data structure in Core Aida is the
shared-memory heap, which maintains the state of all shared
mutable data accessed by a program. We abstractly view a
heap as a directed graph whose nodes are objects, and edges
are pointers labeled with field names. A region R in a heap
G is a subset of the nodes of G.

Assembly states Now we will define a notion of state for
an assembly created by a program P . Let us first define a
variable state of P over a heap G. Such a state is a function
µ that maps the variables of P either to objects in G, or to
the special symbol null. We emphasize that an assembly is
not required to own the objects to which its variables point.
However, once it tries to read from or write to such an object
u, it acquires ownership of u, or alternately delegates to the
owner of u.

Consider a code block K = S1; . . . ; Sm that can be exe-
cuted by an assembly (nonterminal Stmt in Figure 5). We
interpret such a block as a list [S1, . . . , Sm]. A closure of K
is a triple 〈K1, K2, µ〉, where K1 and K2 are the sublists of K
that, respectively, have not and have been executed (we have
K = K2; K1), and µ is a variable state of P .

Now, let us assume a universe of assembly IDs. The
assembly state of an assembly that has ID A and works
on a heap G is a tuple N = 〈A, 〈K1, K2, µ〉, R,Q〉, where
〈K1, K2, µ〉 is the closure currently being executed, R is the
region ofG currently owned byA, andQ is a list of closures



(DELEGATE)
N1, N2 ∈ σ N1 = 〈A1, 〈K1, K′1, µ1〉, R1, Q1〉 head(K1) ∈ {(x.f := t), (t := x.f)} N2 = 〈A2, 〈K2, K′2, µ2〉, R2, Q2〉

A1 6= A2 µ1(x) = u u ∈ R2 N ′ = 〈A2, 〈K2, K′2, µ2〉, R1 ∪R2, append(Q2, Q1)〉
〈G, σ〉 −→ 〈rollback(G, K′1), σ \ {N1, N2} ∪ {N ′}〉

(LOCAL-ACCESS-1)
N ∈ σ N = 〈A, 〈K1, K2, µ〉, R,Q〉 head(K1) ∈ {(x.f := t), (t := x.f)} µ(x) = u

u ∈ R or u ∈ Free(σ) µ
head(K1)−→ µ′ N ′ = 〈A, 〈tail(K1), K2;head(K1), µ′〉, R ∪ {u}, Q〉 G

head(K1)−→ G′

〈G, σ〉 −→ 〈G′, σ \ {N} ∪ {N ′}〉

(LOCAL-ACCESS-2)

N ∈ σ N = 〈A, 〈K1, K2, µ〉, R,Q〉 head(K1) has form (x := t)

µ
head(K1)−→ µ′ N ′ = 〈A, 〈tail(K1), (K2; head(K1)), µ′〉, R,Q〉

〈G, σ〉 −→ 〈G′, σ \ {N} ∪ {N ′}〉

(ASYNC-ISOLATED)
N ∈ σ N = 〈A, 〈K1, K2, µ〉, R,Q〉 head(K1) = async isolated { K3 }

N ′ = 〈A, 〈tail(K1), K2; head(K1), µ〉, R,Q〉 A′′ is a fresh assembly ID χ = 〈K3, ε, µ〉 N ′′ = 〈A′′, χ, ∅, {χ}〉
〈G, σ〉 −→ 〈G, σ \ {N} ∪ {N ′, N ′′}〉

(NEXT-CLOSURE)
N = 〈A, ε,R,Q〉 ∈ σ N ′ = 〈A, second(Q), R, tail(Q)〉

〈G, σ〉 −→ 〈G, σ \ {N} ∪ {N ′}〉

(EMPTY-QUEUE)
N = 〈A, ε,R,Q〉 ∈ σ Q = ∅
〈G, σ〉 −→ 〈G, σ \ {N}〉

(FINISH)
A is a fresh assembly ID χ = 〈K, ε, µ〉 head(K′) = finish{K} N = 〈A, 〈χ, ∅, {χ}〉〉 〈G, {N}〉 −→ 〈G′, {∅}〉

〈G,µ, K′〉 −→ 〈G′, µ, tail(K′)〉

(LOCAL-ACCESS-3)
head(K) ∈ Asgn µ

head(K)−→ µ′ G
head(K)−→ G′

〈G,µ, K〉 −→ 〈G′, µ′, tail(K)〉

Figure 6. Operational semantics of Core Aida.

such that head(Q) is the current closure, and tail(Q) is the
list of closures that A will execute in sequence once the
current closure is committed.

Two assembly states N1 and N2 are disjoint if (1) they
belong to different assemblies A1 and A2, and (2) the heap
regions R1 and R2 referenced in N1 and N2 have no nodes
in common.

Concurrent state Now we define the states of a Core Aida
program during its concurrent phases. Such a state—a con-
current state—is a pair 〈G, σ〉, where G is a heap and σ =
{N1, . . . , Nk} for disjoint assembly statesN1, . . . , Nk inG.
Thus, an object in our model is owned by at most one assem-
bly. The set of objects in G that do not belong to the regions
referenced inN1, . . . , Nk are free in σ; we denote this set by
Free(σ).

Sequential state Next we define the states of a program
during its sequential phases (in between finish scopes).
Such a state—a sequential state—is a tuple 〈G,µ, K〉, where

G is a heap, µ is a variable state, and K is a block of code
whose syntax is given by the nonterminal Prog .

Transitions Finally, we present the transition relation −→
over states that defines the operational semantics of Core
Aida. The rules defining this relation are shown in Figure 6.

Here the rule DELEGATE is used to define delegation. In
the premise,A1 andA2 are assemblies, respectively at states
N1 andN2, andQ1 is the list of closures thatA1 is obligated
to execute. Further, the first element head(Q1) of this list is
already under execution. The code for this closure is of the
form K′1; K1. Of this code, K′1 has already been executed; the
statement that is to be executed now is head(K1).

However, the statement head(K1) reads or writes an ob-
ject u that is currently owned by the assembly A2 (such an
event is defined to be a conflict). Consequently,A1 must now
delegate its work and owned region to A2. After the rule
fires, the state of A2 becomes N ′. Note that the queue of A2

is now append(Q2, Q1).



One important issue is that A1 may have modified certain
objects in its region while it was executing head(Q1). In
this case, before delegation, the runtime rolls back the effect
of the code K′1. We denote by rollback(G, K′1) the result of
atomically applying this rollback on G.

Because an assembly is required to finish all its heap up-
dates before it can create a new assembly, the code K′1 is
solely a collection of heap updates—it does not include any
“async isolated” statement. Its implementation is there-
fore straightforward. In the absence of this syntactic restric-
tion, we would gain more parallelism. However, implemen-
tation of rollbacks would be much more difficult, as we
would now have to “kill” the assemblies spawned by A1.

The rule LOCAL-ACCESS-1 formalizes read and write
accesses by an assembly A to objects not owned by others.
The local state of A changes to µ′ from µ on executing

head(K1) (this is denoted by µ
head(K1)−→ µ′); the heap changes

from G to G′ (this is denoted by G
head(K1)−→ G′). If the object

is not already in A’s region, it is added. However, there is no
delegation.

The rule LOCAL-ACCESS-2 formalizes actions that up-
date an assembly’s variable state, but do not modify the heap.

The rule NEXT-CLOSURE shows what happens when an
assembly finishes executing a closure (we denote a closure
that has executed all its code by ε)—i.e., the closure is
committed . It selects for execution the second item in its
closure queue (the first item is the closure that just finished
executing); if Q has just one element, then second(Q) is
defined to be ε.

The rule EMPTY-QUEUE says that when the queue of clo-
sures for an assembly becomes empty, the assembly can
be removed from the concurrent state of the program. In
essence, this rule specifies “garbage collection” of assem-
blies.

The rule ASYNC-ISOLATED defines the semantics of as-
sembly creation. Intuitively, the rule creates a new assembly
A′ with an empty set of owned objects. The variables of the
new assembly point to the same objects as in the parent as-
sembly.

The rule FINISH defines the semantics of “finish”-
scopes. Suppose the program enters such a scope from a
sequential state 〈G,µ, K〉. The program now moves to a con-
current phase where a single assembly is executing. This
assembly has variable state µ, owns no objects, and executes
the code enclosed within the “finish” block. Of course, this
assembly can subsequently spawn many other assemblies
through the “async isolated” construct.

Finally, the rule LOCAL-ACCESS-3 gives semantics to
the assignments executed by a program during its sequential
phases.

Note that in the above semantics, we assume that dele-
gation happens atomically. At the level of the implementa-
tion, this atomic delegation step could have been built using
straightforward, coarse-grained locking. This would make

the atomicity of delegation obvious. However, to achieve
greater performance, our implementation of delegation uses
a more sophisticated fine-grained locking approach with
rollback.

Section 3 describes this implementation and explains in
detail how delegation is handled in all conflict scenarios. The
key points are that all assemblies in the system are ordered
and can be locked, and locks on assemblies are obtained in
order. Therefore, if assembly (with ID) A tries to delegate to
assembly B just as B is trying to delegate to A, both A and
B will attempt to obtain locks onA andB in the same order,
and only one will succeed.

Executions and termination A Core Aida execution starts
from an initial sequential state π0 = 〈G,µ, K〉. A termi-
nating state of a Core Aida program is a sequential state
πn = 〈G,µ, ∅〉 from which no transition is possible. Let
−→∗ be the transitive closure of the relation −→. A Core
Aida program is said to terminate if for initial states π0, there
is a terminating state πn such that π0 −→∗ πn.

Properties of Core Aida
Now we discuss the safety and liveness guarantees that Core
Aida offers.

Isolation The property of isolation demands that a concur-
rent task read or write shared-memory objects without inter-
ference from other tasks. In Core Aida, an assembly can only
read or write objects in its own region; also, if A1 delegates
work to A2 (rule DELEGATE in Figure 6), the ability of A2

to read or write its objects is not compromised. Therefore,
Core Aida guarantees isolation. In our implementation of the
model, the guarantee of isolation holds for all memory ac-
cesses performed from within “async isolated” blocks;
as in transactional memory systems, we do not offer guaran-
tees on memory accesses made outside blocks declared to be
isolated.

Deadlock-freedom There are only two synchronization
operations in (Core) Aida: scoped joining of assemblies and
delegation. As the former operation does not depend on data
at all, it clearly does not introduce deadlocks. As for dele-
gation, the only plausible deadlock scenario involving two
assemblies is the following: “Assembly A tries to delegate
to assembly B, B tries to delegate to A, and neither can
progress.” This scenario, however, is impossible in Aida. If
A and B try to simultaneously delegate to each other, then
one of the two requests (let us say the one from B) will be
nondeterministically selected and honored. Let u be the ob-
ject that A needed to access in the statement that triggered
the delegation request from A to B. After B delegates to
A, A will have all objects that B previously owned. There-
fore, the request from A will no longer be a conflict—the
request from A to access u will succeed, and A will be able
to progress.

It is easy to generalize the above argument to cyclic dead-
locks between n assemblies. Of course, while our semantics



for Core Aida is deadlock-free, we have to ensure that our
implementation of Aida semantics is deadlock-free as well.
We do so in Sec. 3.

Livelock-freedom In Core Aida, two assemblies A1 and
A2 would be livelocked if they constantly try to delegate to
each other, none of them progressing. As an analogy, there is
always a non-zero probability that such a livelock scenario
may occur in a transactional memory system with repeated
rollback-retry operations. However, in such a scenario, Aida
would destroy one of the two assemblies, delegating its work
to the other—the other assembly would then be able to
progress.

Bound on conflicts/commit ratio Finally, a key property of
Core Aida is that in any execution, the number of conflicts
(number of delegation steps, or application of the rule DEL-
EGATE in Figure 6) is bounded by the number of commits
(the number of applications of the rule NEXT-CLOSURE).
This property works as a sort of performance guarantee
in high contention-scenarios, where, in many state-of-the-
art systems, there may be too many aborted tasks and too
few commits. As we show in Section 4, this property lets
us achieve better performance in high-contention scenarios
than other approaches to irregular parallelism, such as GA-
LOIS and software transactional memory (with DSTM2 as
an example). On the other hand, the growing ownership re-
gion created by successive delegations may induce spurious
conflicts. Consider three assemblies A1, A2 and A3 in a sce-
nario where A1 is long running and has some object x in
his ownership region, A2 has object y in his ownership re-
gion and requests object x causingA2 to be delegated toA1.
When A3, a short running assembly, requests access to y it
will be delegated to A1 as well. Note that A1 and A3 could
be run concurrently but they are serialized due to the spu-
rious conflict. A possible heuristic solution to this scenario
is to terminate a delegation sequence and release the own-
ership region after some predefined number of assemblies
have executed. On the other hand, the growing ownership re-
gion created by successive delegations may induce spurious
conflicts as exemplified in the following scenario. Consider
three assemblies A1, A2 and A3 in a scenario where A1 is
long running and has some object x in its ownership region,
A2 has object y in its ownership region and requests object
x causing A2 to be delegated to A1. When A3, a short run-
ning assembly, requests access to y it will be delegated to
A1 as well. Note that A1 and A3 could be run concurrently
but they are serialized due to the spurious conflict. These
spurious conflicts would provoke unnecessary retries. To the
extent that this phenomenon might happen, it does not seem
to affect the current set of benchmarks.

3. Implementation
A key aspect of our model, that presents challenges not
present in other concurrency models, is the fact that own-
ership changes operate on sets of objects rather than on the

Method Acquire, Input : Object obj1

objAssembly = obj.owner();2

currAssembly = this.owner();3

if objAssembly == currAssembly then go to 13;4

if acquireObject(obj, currAssembly) then go to 135

// Conflict! Delegate to other assembly

locks = orderedLock (currAssembly, objAssembly);6

// If anything changed, retry

if7
(objAssembly 6= obj.owner()∨ objAssembly.dead()∨
currAssembly 6= this.owner()) then

locks.release(); go to 2;8

rollback (); // rollback the assembly’s state9

delegateTo (objAssembly);10

locks.release();11

die ();12

if (write operation ∧ obj /∈ writeSet) then13
rollbackLog.add(obj.copyValues());14

writeSet = writeSet ∪ {obj}15

Figure 7. Algorithm for acquiring an object

individual objects themselves. This is illustrated in a conflict
scenario, where an assembly will delegate its code as well
as transfer its region of ownership to the assembly it has a
conflict with. We use a parallel version of a union-find data
structure for disjoint sets [1, 16] to implement this ownership
transfer efficiently.

Figure 8 summarizes the main abstractions in the Aida
runtime: shared objects, assemblies, and isolated code.

Here, the “Assembly” objects represent a collection of
“IsolatedCode” blocks that represent all the tasks for
whose execution the assembly is responsible. When cre-
ated using the Aida “async isolated” construct, the
“Assembly” object will contain an empty region and a sin-
gle task in the queue. As the program progresses, assemblies
either accumulate data and tasks, finish their execution and
terminate, or delegate their data and tasks to another assem-
bly and terminate.

During the execution of an “async isolated” block,
the runtime needs to perform ownership checks when ac-
cessing shared objects. These checks are performed by call-
ing “Object.acquire()” whose pseudocode is shown in
Figure 7. Note that a given “async isolated” block needs
to acquire a particular shared object only once, the first time
the object is accessed.

The algorithm for “Object.acquire” ensures that the
check for object ownership and any delegation is done atom-
ically with respect to the other assemblies in the system.
Lines 6 and 7, discussed below, are critical for guarantee-
ing this atomicity.

“Object.acquire” first checks if the assembly that is
executing the code already owns the object, in which case



class hj.lang.Object {
// owner is only changed using CAS
private Assembly owner;

// unowned objects are acquired using this method
public boolean acquireObject(Assembly newOwner);

// called on the first access to this object by the current owner
public acquire();

// get the owner by navigating the union−find data structure
public Assembly owner();

// methods for rollback and restore
public Copy copyValues();
public void restoreValues(Copy v);

}

class hj.runtime.wsh.Assembly {
private Assembly parent; // parent pointer in the union−find tree
long rank; // for union by rank

private long id; // a unique assembly id

// a queue of delegated isolated code
private Queue<IsolatedCode> delegatedCodeQueue;

public Assembly find(); // find the representative assembly

// An assembly that finished the execution of all its tasks
// Free objects are represented by belonging to a dead assembly
public boolean dead();

// implements the delegation through union
public void delegateTo(Assembly to);

// next IsolatedCode to run
public IsolatedCode next();

// acquire assemblies a1 and a2 in order
static Locks orderedLock(Assembly a1, Assembly a2);

}

class hj.runtime.wsh.IsolatedCode {
// points to an Assembly in the union find structure
private Assembly owner;

// get the owner by navigating the union find data structure
public Assembly owner();

// holds information on how to restore objects on roll back
private List<Copy> rollbackLog;

// actual code from the user program is run through this method
public void run();

// the commit action, done in constant time
public void commit();

// restore all accessed object to their pre−execution state
public void rollback();

}

Figure 8. Principal abstractions in the Aida implementation

it can continue execution (adding the object to its write set
if necessary) on line 13. The assembly then tries to acquire
the object (line 5), which will succeed if the object is not
currently owned by any other assembly. If successful, the
assembly can continue (line 13).

Otherwise, there is a conflict and the assembly needs to
delegate itself to the one that holds the ownership of the
object. It first acquires the locks on the current assembly
and on the assembly that owns the desired object (line 6).
To avoid deadlock, all assemblies that are created in the
program have a unique ID and the locks are always acquired
in order.

Upon acquiring the locks, the assembly checks on line 7
if anything has changed in the meantime. The assembly that
owned the object might have delegated its tasks to another
assembly and transferred the ownership of its objects, the as-
sembly that owned the object might have finished the execu-
tion of all its activities and died (transferring the ownership
of its objects to the unowned object pool) or the represen-
tative for the current assembly might also have changed (a
consequence of a requirement for the performance guaran-
tees in the disjoint set data structure, delegations can result
in the representative for the current assembly to change). If
any of that has happened both assemblies are released and
the process of acquiring the object is retried.

If nothing has changed, the assembly proceeds with the
delegation process. It first rolls back all the changes it has
made to the objects in its writeSet, then performs the del-
egation, which copies all the IsolatedCode tasks from
the currently assembly’s queue to the queue of the ob-
ject’s owner. This is done in constant time by concatenating
the delegation queues together. The delegation process also
transfers the ownership of all the objects owned by the cur-
rent assembly to the assembly it is delegation to. The assem-
bly then releases the locks and dies (returns the execution to
the runtime).

As already mentioned in Section 2, if all the accesses to
the shared memory in the program are done only inside the
isolated blocks, our implementation of the isolated construct
using assembly delegation as described in the algorithm in
Figure 7 guarantees isolation and race freedom.

We use a union-find data structure to track object own-
erships. This allows us to perform near-constant time ob-
ject ownership checks, and constant time ownership trans-
fers when an assembly delegates itself to another one, as
well as constant time releases of all the objects owned by
the assembly when the assembly finishes its execution.

Figure 9 show the union-find data structure we use to
track the ownership of objects. Each object has an owner
reference, which points to the assembly that owns it. Assem-
blies merged by delegation are represented as a tree with the
root being the representative assembly. Assemblies also have
a parent reference that points to their parent in this tree. On
Figure 9, object C is owned by assembly 3, while objects A



owner 

object A 

parent 

assembly 1 

parent 

dead assembly 

parent 

assembly 2 owner 
object D 

parent 

assembly 4 

owner 

object E 

owner 

object F 

owner 

object B 

owner 

object C 

parent 

assembly 3 

Figure 9. Union find data structure to track object owner-
ships

and B are owned by assembly 2. When an assembly dele-
gates to another assembly, it transfers the ownership of its
objects, which will result in setting either its parent refer-
ence to point to the assembly it delegated to or vice-versa,
depending on the shapes of their union-find trees.

To efficiently keep track of all the objects that have been
released, assemblies that have finished execution are marked
as dead. An object is free if its owner reference is NULL
(which will be the case if it has never been acquired by
anyone), or if the find algorithm determines that its owner is
dead (which will be the case if it has been acquired by some
assembly and then the assembly or its delegate has finished
execution). In Figure 9, objects F, D and E are not owned by
anyone.

Assemblies that are not at the root of the union-find tree
are eventually garbage collected when no objects point to
them. References to these assemblies are removed by find
since it is performed with path compression. Assembly 1 in
Figure 9 will become unreferenced when, for example, a find
is performed on object B.

4. Evaluation
4.1 Experimental Setup
We have used two platforms for our experimental evaluation:
(a) a 64-way (single-socket, 8 cores, 8 threads per core)
1.2 GHz UltraSPARC T2 (Niagara 2) with 32 GB main
memory running Solaris 10 and Sun JDK 1.6 64-bit version;
(b) 16-way (quad-socket, quad-core per socket) Intel Xeon
2.4GHz system with 30GB of memory and running Red
Hat Linux (RHEL 5) and Sun JDK 1.6 64-bit version. All
benchmarks were allocated 3.5 gigabytes in the JVM heap
with the exception of DSTM2 that needed a 15G heap to

1: start(nodes){
2: finish {
3: for(n in nodes)

4: mergeMinEdge(n);

5: }
6: }

7: mergeMinEdge(c) {
8: async isolated {
9: c’ = c.getMinEdge();

10: // merge c into c’

11: c’.addEdges(c);

12: // change x -> c into x -> c’

13: // change c -> x into c’-> x

14: // remove c -> c’ and c -> c’

15: c’.fixEdges(c);

16: }
17: }

Figure 10. Boruvka Minimum Spanning Tree pseudocode

1: start(nodes){
2: finish {
3: for i = 1 to 40000 // 40.000 concurrent tasks

4: task()

5: }
6: }

7: task() {
8: async isolated {
9: for i = 1 to 20 {// 20 operations per task

10: v = *;

11: do * => insert(v) // 5%

12: * => delete(v) // 5%

13: * => contains(v) // 90%

16: } } }

Figure 11. HashTable and RBTree pseudocode

complete. Each benchmark was run 7 times within the same
JVM process for each platform/programming model. The
results reported are the average of the later 6 runs, excluding
the first run to factor out just-in-time compilation effects.

We evaluate our approach on a set of four different bench-
marks described below.

Boruvka minimum spanning tree. We consider a classi-
cal algorithm for computing the minimum spanning tree of
an undirected graph [23]. The main idea is to proceed by re-
peatedly fusing nodes through their minimal weight edge.
Each node u obtained by such fusion represents a set of
nodes Su in the original graph; we associate with u a mini-
mal spanning tree for the subgraph induced by Su. As the
algorithm progresses it builds larger and larger minimum
spanning trees, one for each node remaining in the graph,
until only one node remains.



In the parallel version of the algorithm, initially a par-
allel task is spawned for each node in the graph. As they
grow their local minimal spanning trees, the tasks need to
merge their local tree with the tree of their minimal weight
edge neighbor. This algorithm starts with the maximum par-
allelism available and the parallelism decreases as the tree is
built. For evaluation we used a graph representing the road
network for the state of New York from [11]. The road net-
work graph consists of 264,346 nodes and 733,846 edges.
A pseudocode for the algorithm is shown in Figure 10. This
benchmark is part of the Lonestar Benchmark Suite [27].

Delaunay mesh refinement. As mentioned earlier, this al-
gorithm refines a 2D Delaunay mesh so that each of the tri-
angles satisfy a quality constraint. In our evaluation, we start
with a triangle mesh consisting of 100,770 triangles of which
47,768 do not satisfy the quality constraint. This benchmark
and the dataset used are part of the Lonestar Benchmark
Suite [27].

Hash table and Red-black tree. These benchmarks are
based on the red-black tree and hash table benchmark im-
plementations in DSTM2 [12], and are used to evaluate sce-
narios where several clients access shared data structures
concurrently. The pseudocode for the algorithm used in the
benchmarks is shown in Figure 11. In these benchmarks,
we model 40,000 concurrent tasks performing 20 operations
each in an isolated manner. Operations are chosen at ran-
dom with a 90% chance of an operation being a query, 5%
being an insert and 5% being an update. The values are also
chosen at random. In the RBTree benchmark operations are
performed on a red-black tree, while in HashTable they are
performed on a 256-bucket hash table.

Methodology. We compare our approach with several al-
ternate parallel programming models :

• Chorus: As mentioned earlier, Aida’s object assembly
abstraction is borrowed from Chorus [28]. However, the
Chorus model is more restrictive than Aida because it
is only applicable to parallelization of cautious applica-
tions [30] and it lacks Aida’s notion of delegated isola-
tion. The Chorus results reported in this paper were ob-
tained from the benchmark implementations used in [28].
• DSTM2: DSTM2 [12] provides an implementation of

dynamic software transactional memory. The red-black
tree and hash table benchmarks are provided in the
DSTM2 distribution. We also ported the Chorus versions
of Delaunay mesh refinement and Boruvka minimum
spanning tree to DSTM2.
• HJ (SEQ): The sequential baseline versions of all bench-

marks were implemented as single-task Habanero-Java [7,
18] programs, using the Aida data structures and runtime
system.
• HJ (CGL): The Coarse Grained Locking (CGL) versions

of the benchmarks using the same Habanero-Java source

0

2

4

6

8

10

12

14

1 2 4 6 8 10 12 14 16

ti
m

e 
in

 s
ec

o
n

d
s 

 

# threads 

HJ (CGL)

Chorus

Java (FGL)

Galois

Aida

HJ (SEQ) 

Figure 12. Delaunay mesh refinement on a 16-core Xeon
(Note: For reasons of scale DSTM2 is left out of the plot.
DSTM2 -1 thread: 962s, 16 threads: 177s)

code as the Aida versions, but with the use of a single
lock to implement HJ’s “isolated” construct. Coarse-
grained locking is the default approach for implementing
isolation in the current HJ release [18].
• Java (FGL) The Java-based fine-grained locking imple-

mentations of the Delaunay and Boruvka benchmarks
were the same as those used for comparison with Chorus
in [28]. In these implementations, several worker threads
obtain work units from a global first-in-first-out work list,
and attempt to acquire all needed shared objects for a
work unit. If an attempt fails, the work unit is returned
to the work list. This version cannot be implemented in
HJ because HJ does not support explicit locking.
• Galois: In the Galois programming model [17], algo-

rithms are expressed as sequential operations on un-
ordered work lists. The runtime executes the loop bodies
in parallel, and through annotations the programmer can
specify locking and logging policies as well as many pol-
icy options for the implementation of the abstract work
list. The Delaunay mesh refinement and Boruvka min-
imum spanning tree benchmarks used in this evaluation
were obtained from the Galois distribution. The red-black
tree and hash table benchmarks where implemented by
us for this paper, using the graph data structures from the
Galois distribution.

4.2 Experimental Evaluation
A comprehensive collection of all timing results is shown in
Table 1. We extracted some of the interesting trends from the
raw data, and plotted them in the graphs discussed below.

Execution times Figure 12 and Figure 13 show the exe-
cution times for Delaunay mesh refinement on the 16-core
Xeon and the 64-way UltraSPARC T2 respectively. Aida



0.1

1

10

100

1 2 4 8 16 32 64

ti
m

e 
in

 s
ec

o
n

d
s 

 

# threads 

DSTM2

HJ (CGL)

Chorus

Java (FGL)

Galois

Aida

HJ (SEQ) 

0

1

2

3

4

5

6

1 2 4 8 16 32 64

ti
m

e 
in

 s
ec

o
n

d
s 

 

# threads 

Java (FGL)

Galois

Aida

HJ (SEQ) 

Figure 15. Boruvka minimum spanning tree on a 64-way UltraSPARC T2 (left: logarithmic scale; right: inset of the bottom 6
seconds )

10,000

100,000

1,000,000

2 4 6 8 10 12 14 16

# 
R

o
llb

ac
ks

 

# threads 

Galois

DSTM2

Aida

40000 

1,000

10,000

100,000

1,000,000

10,000,000

2 4 6 8 10 12 14 16

# 
R

o
llb

ac
ks

 

# threads 

Galois

DSTM2

Aida

40000 
 

(a) RBTree (b) HashTable

Figure 16. Impact of speculative execution

shows a speedup of 3.9× over sequential HJ at 16 threads
compared to the next best approach which is Galois at 3.3×
over sequential HJ at 14 threads (where Galois has a max-
imum speedup) on the Xeon architecture. The self-relative
speedups are 6.5× for Aida and 4.2× for Galois. On the
UltraSPARC T2 architecture, Aida peaks at 12.2× speedup
against sequential HJ at 64 threads whereas Galois again is
the next best and peaks at 12× with 64 threads.

Figure 14 and Figure 15 show the performance numbers
for Boruvka minimum spanning tree on the on the 16-core
Xeon and the 64-way UltraSPARC T2 respectively. Aida
shows a speedup of 1.1× over sequential HJ at 16 threads
being the third best approach bettered by Java fine-grained
locking at 1.5× (at 10 threads) and also by Galois at 1.4×
(at 14 threads). The self-relative speedups are 3.4× for Aida,

2.6× for Java FGL and 2.4× for Galois. On the UltraSPARC
T2 architecture, on the other hand, Aida peaks at 1.74×
speedup against sequential HJ at 32 threads whereas Galois
is at 1.72× at 32 threads and both are bettered by Java FGL
at 2.9× at 16 threads. The self-relative speedups are 7.6×
for Aida, 7.4× for Galois and 4.23× for Java FGL.

The speedups and performance numbers indicate that
Aida is a very competitive approach for parallelizing ir-
regular applications, especially when compared with other
JVM based systems. The reduced speedup of Aida and Ga-
lois over Java fine-grained locking on Boruvka tree is due
to the overhead involved in keeping track of ownerships,
conflicts and the maintenance of rollback logs, compared to
a much lighter-weight implementation in Java using fine-
grained locks. In Boruvka, the transactions perform very



16-core Xeon 64-way UltraSPARC T2
Benchmark Model 1 2 4 8 16 1 2 4 8 16 32 64

RBTree
Aida 0.48 0.48 0.50 0.55 0.51 2.81 4.05 4.65 5.50 5.92 5.208 6.867
Galois 8.07 7.49 7.84 8.38 10.06 89.24 86.32 87.01 82.89 85.89 87.34 87.85
DSTM2 4.25 4.64 7.32 11.11 11.40 9.18 18.16 30.78 16.38 35.68 43.87 44.96

HashTable
Aida 1.40 0.64 0.55 0.55 0.53 22.40 19.92 24.27 23.78 24.94 24.93 24.31
Galois 33.95 33.95 34.46 33.42 35.52 169.97 135.93 125.48 124.15 124.152 123.05 127.04
DSTM2 0.51 1.042 1.24 1.66 2.23 2.877 2.90 .64 2.78 3.39 5.08 6.26
HJ (SEQ) 5.27 23.87
Aida 8.78 5.43 3.46 2.06 1.34 25.43 15.77 8.90 4.48 2.72 2.09 1.47

Delaunay Galois 6.58 4.15 2.94 1.77 1.70 25.27 15.76 8.38 4.58 2.70 2.11 1.88
Mesh Java (FGL) 7.41 4.84 3.03 2.09 2.33 26.11 17.83 10.44 6.40 4.96 4.88 4.95
Refinement Chorus 13.18 8.92 6.67 5.73 6.02 44.98 35.82 24.65 21.19 20.15 19.87 21.02

HJ (CGL) 10.37 9.02 10.74 10.46 10.41 50.30 48.23 48.58 48.99 49.00 48.78 48.83
DSTM2 1058.45 279.96 243.41 205.68 181.60 792.34 425.39 286.07 193.43 136.84 110.54 85.92
HJ (SEQ) 0.64 1.26
Aida 1.98 1.20 0.91 0.70 0.58 5.52 2.81 1.75 1.21 0.73 0.72 0.78

Boruvka Galois 1.09 0.83 0.73 0.69 0.57 5.42 3.51 2.26 1.49 1.04 0.74 0.87
Minimum Java (FGL) 1.18 0.82 0.57 0.47 0.52 1.78 1.26 0.71 0.52 0.42 0.61 01.20
Spanning Chorus 2.16 1.52 1.09 0.82 0.95 6.33 5.32 3.63 2.83 4.14 4.97 5.78
Tree HJ (CGL) 5.45 5.56 6.49 8.08 10.27 37.74 37.30 37.75 38.14 41.19 46.32 50.25

DSTM2 4.821 6.453 4.64 3.58 2.73 19.89 16.21 13.09 9.22 8.37 10.53 9.97

Table 1. Benchmark results (time in seconds).

0

10

20

30

40

50

1 2 4 8 16 32 64

ti
m

e 
in

 s
ec

o
n

d
s 

 

# threads 

HJ (CGL)

Chorus

Java (FGL)

Galois

Aida

HJ (SEQ) 

Figure 13. Delaunay mesh refinement on a 64-way Ultra-
SPARC T2 (Note: For reasons of scale DSTM2 is left out
of the plot . DSTM2 -1 thread: 795s, 64 threads: 81s)

little work, so the relative impact of the bookkeeping over-
head is very high, as evidenced by the difference between
self-relative and sequential-relative speedups.

Aida is one orders of magnitude faster than both Ga-
lois and DSTM2 on the RBTree benchmark and one to two
orders of magnitude faster than Galois on the HashTable
benchmark. Since the Galois implementation of these two
benchmarks was straightforward and was done using min-
imal programming effort (about the same effort that is re-
quired to write these benchmarks in DSTM2 or Aida), we
suspect that a more careful implementation using more an-
notations and done by a Galois expert might yield better re-
sults than what we have obtained in Table 1. Either way, we
feel that these two benchmarks are much better suited to il-

0

0.5

1

1.5

2

1 2 4 6 8 10 12 14 16

ti
m

e 
in

 s
ec

o
n

d
s 

 

# threads 

Chorus

Java (FGL)

Galois

Aida

HJ (SEQ) 

Figure 14. Boruvka minimum spanning tree on a 16-core
Xeon (Note: For reasons of scale HJ (CGL) and DSTM2
are left out of the plot HJ (CGL)- 1 thread: 5.5s, 16 threads:
10.3s, DSTM2- 1 thread: 4.8 , 16-threads:2.7.s)

lustrate the effects of speculation discussed below, than for
raw speed comparisons.

Aborted speculative work. DSTM2, Galois and Aida, like
many approaches to parallelization and concurrency, rely on
speculative execution to improve performance. However, in
scenarios with relatively high contention, speculative execu-
tion might hinder performance and resource usage. Figure 16
compares the impact of speculative execution for Aida, Ga-
lois and DSTM2 in terms of the numbers of commits and
aborts for a given workload. Aida offers a lower upper bound
on the number of aborted speculative tasks compared to
most transactional memory implementations. As discussed
in Section 2, Aida guarantees that there will be only as
many aborted speculative tasks as there are successful ones,



whereas DSTM2 only bounds the number of aborted tasks
in relation to the total number of shared objects. Galois pro-
vides a probabilistic progress guarantee based on exponen-
tial back-off for conflict resolution. Figure 16(a) and Fig-
ure 16(b) show DSTM2 having an order of magnitude and
Galois having two orders of magnitude more aborts than
Aida.

We have shown the HashTable and RBTree benchmark
results with a 90% read-only and 10% write operation mix,
which is generally considered to be a realistic medium-to-
high contention scenario [14, 34]. We also tested even higher
contention scenarios, where as expected Aida fared even
better compared to Galois and DSTM2.

Overhead. Our performance numbers indicate that the se-
quential overhead of our Aida implementation is similar to
that of Galois. We note that as the work performed in iso-
lation increases, the relative overhead decreases, evidenced
by the different single thread slowdowns with respect to a
sequential code.

Programmability Figure 17 and Figure 18 contrast the
code for Delaunay Mesh Refinement in Aida and Galois
to show the differences in programmability between these
two approaches. Galois uses three different types of anno-
tations: annotations to denote the scope of the parallel loop,
performance oriented hints and annotations regarding task
scheduling policies. Lines 1-4 in In the aforementioned ex-
ample define the scope of the parallel loop. Galois provides
three performance oriented hints to annotate each access
to a shared data structure: NONE, CHECK CONFLICT and
SAVE UNDO. By default in each access to the shared data
structure the runtime checks whether the nodes are being in
use by a concurrent tasks, and saves state information in a
log to provide for an eventual undo. The NONE hint instructs
the runtime not to perform any check nor save undo data.
This flag reduces most of the overhead and is used in lines
13, 18, 19, 28 and 30. The CHECK CONFLICT hint instructs
the runtime not to save undo data and is used on line 5. Fi-
nally the annotation at line 31-32 instructs the runtime to
group activities into chunks and use a global FIFO queue
for the chunks, and a local LIFO stack for tasks in a chunk.
Aida, in contrast, requires only one declarative annotation
with respect to sequential Java code which is the fragment
“async isolated” in line 2 to denote the scope of the iso-
lated asynchronous task.

5. Related Work
We use Table 2 to guide the discussion in this section. This
table qualitatively classifies programming models according
to their attributes in the following dimensions:

• Programmability/expressiveness: how easy is it to ex-
press a wide range of parallel programming patterns in
the model?

1: void doCavity(Triangle start) {
2: async isolated {
3: if (start.isActive()) {
4: Cavity c = new Cavity(start);

5: c.initialize(start);

6: c.retriangulate();

// launch retriagnulation on new bad triangles.

7: Iterator bad = c.getBad().iterator();

8: while (bad.hasNext()) {
9: final Triangle b = (Triangle)bad.next();

10: doCavity(b);

}

// if original bad triangle was NOT retriangulated,

// launch its retriangulation again

11: if (start.isActive())

12: doCavity(start);

}
} // end isolated

}

13: void main() {
14: mesh = ... ; // Load from file

15: initialBadTriangles = mesh.badTriangles();

16: Iterator it = initialBadTriangles.iterator();

17: finish {
18: while (it.hasNext()) {
19: final Triangle t = (Triangle) it.next();

20: if (t.isBad())

21: Cavity.doCavity(t);

22: }
19: }
20: }

Figure 17. Actual code for Delaunay Refinement in the
Aida programming model

• Correctness guarantees: does the model provide cor-
rectness guarantees such as deadlock-freedom, livelock-
freedom, and progress guarantees?
• Scalability: how well does performance scale with an

increasing the number of processor cores and hardware
threads?
• Overhead: how much overhead does the model impose

relative to a sequential implementation?

Space limitations prevent us from discuss a larger set of
parallel programming models in the table due to the vast
amount of past work in this area. Instead, we include a few
representative examples for each distinct set of attributes,
and trust that the reader can extrapolate this discussion to
other programming models with similar attributes in these
dimensions.

Aida provides a high-level minimalistic programming
model similar to Transactional Memory [19], with a sin-
gle construct (async isolated) to define blocks of code to
be executed concurrently and in isolation. Aida guarantees
livelock-freedom, unlike transactional memory where live-
lock freedom is probabilistic and implementation-dependent.
One of the main objections to software implementations of



Parallel prog. model Expressiveness Expertise Safety Scalability Overhead
STM [19] High Low implementation-dependent Poor High
Java with fine-grained locking High High Very poor High Low
OpenMP reductions [8] Medium Low Poor High Low
Cilk reducers [3] Medium Medium Poor High Low
Chorus [28] Medium Low High Medium Medium
Galois [5, 25, 26] Medium Low Medium High Low
Aida [this paper] High Low High High Low

Table 2. Comparison of several parallel programming models.

// The parallel loop

1: GaloisRuntime.foreach(badNodes,

2: new Lambda2Void<... >() {
3: public void call(GNode<Element> item,

4: ForeachContext<GNode<Element>> ctx) {

5: if (!mesh.contains(item, MethodFlag.CHECK_CONFLICT))

6: WorkNotUsefulException.throwException();

7: Cavity cavity = new Cavity(mesh);

8: cavity.initialize(item);

9: cavity.build();

10: cavity.update();

//remove the old data

11: List<...> preNodes = cavity.getPre().getNodes();

12: for (int i = 0; i < preNodes.size(); i++)

13: mesh.remove(preNodes.get(i), MethodFlag.NONE);

//add new data

14: Subgraph postSubgraph = cavity.getPost();

15: List<...> postNodes = postSubgraph.getNodes();

16: for (int i = 0; i < postNodes.size(); i++) {
17: GNode<Element> node = postNodes.get(i);

18: mesh.add(node, MethodFlag.NONE);

19: Element element = node.getData( MethodFlag.NONE);

20: if (element.isBad())

21: ctx.add(node, MethodFlag.NONE);

}
24: List<...> postEdges = postSubgraph.getEdges();

25: for (int i = 0; i < postEdges.size(); i++) {
26: ObjectUndirectedEdge<...> edge = postEdges.get(i);

27: mesh.addEdge(edge.getSrc(), edge.getDst(),

28: edge.getData(), MethodFlag.NONE);

}
29: if (mesh.contains(item, MethodFlag.NONE )) {
30: ctx.add(item, MethodFlag.NONE);

}
}

31: }, Priority. first(ChunkedFIFO.class)

.thenLocally(LIFO.class)) ;

Figure 18. Delaunay Refinement in the Galois program-
ming model

transactional memory has been their inability to deliver com-
petitive performance [6]. Aida on the other hand, performs
on par with Galois, perhaps the most successful existing
approach to irregular data parallelism.

Our implementation approach has some similarities to
Recursive and Non-Recursive Helping in wait-free and lock-
free implementations of certain nonblocking algorithms [15,
29]. In recursive helping, if a transaction A detects a conflict
with transaction B, then A helps B by making loads, stores
and atomic operations on its behalf, or recursively helps a
transaction C that is currently being helped by B, and so
on. The Aida approach is far more aggressive: assembly A
transfers all the objects it owns to assembly B and delegates
its execution to B. This idea is vaguely similar to the “Work
Dealing” concept introduced by Hendler and Shavit [21].
While helping requires all transactional objects to be in a
total order, Aida only requires the assemblies to be ordered.
Helping can also be much more heavyweight than Aida
because the bound on the total number of aborts and restarts
in the system is much higher.

There is some past work on delegation in the presence
of contention that is relevant to the delegated isolation con-
cept introduced in Aida. Oyama et al. [31] protect the data
structure with a single lock and have threads form a list of
requests on the lock. The thread acquiring the lock services
the pending requests of others in LIFO order, and afterwards
removes them from the list. Flat combining by Hendler et
al. [20] and CC-BSim [13] allow a single thread that ac-
quires a global lock on a shared data structure to learn about
all concurrent access request to it, then perform the com-
bined access of all other threads to the structure. None of
these approaches provide the simple, general and high-level
programming interface of Aida.

Fine-grained Locking has long been the only method for
achieving high performance in irregular parallel applica-
tions. It is only usable by expert programmers. Programma-
bility is very poor, and there are no correctness guarantees.
The inadequacy of non-expert programmers to express com-
plex concurrent algorithms using fine-grained locking is the
main reason for the proliferation of higher-level parallel pro-
gramming models.

Programming models such as OpenMP [8] and Cilk [3]
provide efficient support for reductions in deterministic par-
allel programs, but those constructs are not applicable to the



nondeterministic, irregular parallelism supported by Aida
and the other models listed in Table 2.

The assemblies in the Chorus programming model [28]
provide a high-level mechanism for irregular data paral-
lelism and have been the main inspiration for assemblies in
Aida. The expressiveness of Chorus assemblies, however, is
restricted to cautious applications [30] due to the fact that
objects not belonging to an assembly cannot be requested
within an isolated region; a Chorus assembly can always be
preempted to abort without a retry during a request for an ob-
ject. Even though it is a data-driven execution model, Chorus
has shown inferior scalability compared to Aida on irregular
data parallel applications.

Solaris uses a synchronization scheme similar to delega-
tion in its FireEngine network stack [37]. The operating sys-
tem has a fixed number of locks that corresponds to the num-
ber of processors, and every network connection is assigned
to one of these locks using a hash. When a network connec-
tion requires processing, e.g., a packet arrives, if the current
processor cannot acquire the lock, it queues the packet for
processing by the current lock holder. Aida implements a
much more general programming model that is applicable
to a wide range of applications (not just networking), does
not require any operating system support, and the number of
tasks is not limited to the number of processors in the sys-
tem.

6. Conclusions and Future Work
Isolation has long been one of the most basic concerns in
parallel programming. Despite the recent attention paid to
software and hardware approaches to transactional memory,
achieving a practical balance between programmability, cor-
rectness guarantees, and scalability in isolated execution has
remained a thorny challenge for the community. In this pa-
per, we have taken a step towards meeting this challenge in
the context of a notoriously difficult problem domain: imper-
ative parallel computations over large, shared, irregular data
structures. Aida’s programming model offers several high-
level correctness guarantees while requiring minimal pro-
grammer expertise— indeed, the only extension needed to
a fork-join parallel framework (such as OpenMP 3.0 or Ha-
banero Java) is an isolated statement construct akin to that
used in transactional memory. However, Aida’s execution
model is shown to be orders-of magnitude faster on irreg-
ular applications than the DTSM2 software-based transac-
tional memory system, and to yield performance compara-
ble to that of fine-grain locking and the Galois system with
a simpler and more general programming model.

Regarding future work, one immediate goal is develop a
static analysis toolkit for optimizing Aida programs. For ex-
ample, some of our runtime overheads are unnecessary for
cautious applications [30], and we will benefit from static
analyses establishing that an assembly is cautious by us-
ing approaches such as [33]. On the language design end,

we would like greater integration of Aida with existing Ha-
banero Java constructs for locality and directed synchroniza-
tion, such as hierarchical place trees [38] and phasers [36].
Finally, we would like to extend our formalization of Core
Aida and build a process calculus that captures the essence
of delegation, and to use it to articulate more precisely the
guarantees offered by Aida as well as allow more sophisti-
cated reasoning (e.g., types and invariants). Preliminary in-
vestigations on some of these topics are under way.

Acknowledgments
This work was supported in part by NSF award CCF-
0964520. Any opinions, findings and conclusions or rec-
ommendations expressed in this material are those of the
authors and do not necessarily reflect those of the National
Science Foundation. We would like to thank members of the
Habanero group at Rice for valuable discussions related to
this work, and contributions to the Habanero Java infrastruc-
ture used in this research. We are grateful to the anonymous
reviewers for their comments and suggestions, to Virendra
Marathe for his detailed feedback on an earlier draft of this
paper, and to Alan Cox for pointing us to the synchroniza-
tion scheme used in the Solaris FireEngine network stack.
Finally, we would like to thank Keith Cooper for provid-
ing access to the Xeon system and Doug Lea for providing
access to the UltraSPARC T2 system used to obtain the per-
formance results reported in this paper.

References
[1] Richard J. Anderson and Heather Woll. Wait-free parallel

algorithms for the union-find problem. In Proceedings of the
twenty-third annual ACM symposium on Theory of computing,
STOC ’91, pages 370–380, New York, NY, USA, 1991. ACM.

[2] Ganesh Bikshandi, Jose G. Castanos, Sreedhar B. Kodali,
V. Krishna Nandivada, Igor Peshansky, Vijay A. Saraswat,
Sayantan Sur, Pradeep Varma, and Tong Wen. Efficient,
portable implementation of asynchronous multi-place pro-
grams. In Proceedings of the 14th ACM SIGPLAN symposium
on Principles and practice of parallel programming, PPoPP
’09, pages 271–282, New York, NY, USA, 2009. ACM.

[3] Robert D. Blumofe and Charles E. Leiserson. Scheduling
multithreaded computations by work-stealing. In Proceedins
of the 35th Annual IEEE Conference on Foundations of Com-
puter Science, 1994.

[4] Donald Burke, Joshua Epstein, Derek Cummings, Jon Parker,
Kenneth Cline, Ramesh Singa, and Shubha Charkravarty.
Individual-based computational modeling of smallpox epi-
demic control strategies. Academic Emergency Medicine,
13(11):1142–1149, 2006.

[5] Martin Burtscher, Milind Kulkarni, Dimitrios Prountzos, and
Keshav Pingali. On the scalability of an automatically par-
allelized irregular application. In José Nelson Amaral, edi-
tor, Languages and Compilers for Parallel Computing, pages
109–123. Springer-Verlag, Berlin, Heidelberg, 2008.

[6] Calin Cascaval, Colin Blundell, Maged Michael, Harold W.
Cain, Peng Wu, Stefanie Chiras, and Siddhartha Chatterjee.



Software transactional memory: Why is it only a research toy?
Queue, 6:46–58, September 2008.

[7] Vincent Cavé, Jisheng Zhao, Jun Shirako, and Vivek Sarkar.
Habanero-Java: the New Adventures of Old X10. In PPPJ’11:
Proceedings of 9th International Conference on the Principles
and Practice of Programming in Java, 2011.

[8] Robit Chandra, Leonardo Dagum, Dave Kohr, Dror Maydan,
Jeff McDonald, and Ramesh Menon. Parallel programming in
OpenMP. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2001.

[9] Philippe Charles et al. X10: an object-oriented approach
to non-uniform cluster computing. In Proceedings of the
ACM SIGPLAN conference on Object oriented programming,
systems, languages, and applications, pages 519–538, New
York, NY, USA, 2005.

[10] L. Paul Chew. Guaranteed-quality mesh generation for curved
surfaces. In Proceedings of the ninth annual symposium
on Computational geometry, SCG ’93, pages 274–280, New
York, NY, USA, 1993. ACM.

[11] 9th DIMACS Implemetation Challenge. Available from
http://www.dis.uniroma1.it/∼challenge9/.

[12] DSTM 2.1 beta. Available from
http://www.cs.brown.edu/∼mph/.

[13] Panagiota Fatourou and Nikolaos D. Kallimanis. Blocking
Universal Constructions. Technical report, University of Ioan-
nina, 2011. TR-2011-05.

[14] Peter A. Franaszek, John T. Robinson, and Alexander
Thomasian. Concurrency control for high contention environ-
ments. ACM Trans. Database Syst., 17:304–345, June 1992.

[15] Keir Fraser and Tim Harris. Concurrent programming without
locks. ACM Trans. Comput. Syst., 25, May 2007.

[16] Z. Galil and G. Italiano. Data structures and algorithms for
disjoint set union problems. ACM Comput. Surv., 23(3):319–
344, 1991.

[17] Galois. Available from
http://iss.ices.utexas.edu/galois/.

[18] Habanero java web page. http://habanero.rice.edu/hj.

[19] Tim Harris, James R. Larus, and Ravi Rajwar. Transactional
Memory, 2nd Edition. Morgan & Claypool, 2010.

[20] Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir. Flat
combining and the synchronization-parallelism tradeoff. In
Proceedings of the 22nd ACM symposium on Parallelism in
algorithms and architectures, SPAA ’10, pages 355–364, New
York, NY, USA, 2010. ACM.

[21] Danny Hendler and Nir Shavit. Work dealing. In Proceed-
ings of the fourteenth annual ACM symposium on Parallel al-
gorithms and architectures, SPAA ’02, pages 164–172, New
York, NY, USA, 2002. ACM.

[22] Maurice Herlihy, Victor Luchangco, and Mark Moir. A flexi-
ble framework for implementing software transactional mem-
ory. In Proceedings of the 21st annual ACM SIGPLAN con-
ference on Object-oriented programming systems, languages,
and applications, OOPSLA ’06, pages 253–262, New York,
NY, USA, 2006. ACM.

[23] Dieter Jungnickel. Graphs, Networks and Algorithms.
Springer Publishing Company, Incorporated, 3rd edition,
2007.

[24] Milind Kulkarni, Martin Burtscher, Calin Cascaval, and Ke-
shav Pingali. Lonestar: A suite of parallel irregular programs.
In Performance Analysis of Systems and Software, 2009. IS-
PASS 2009. IEEE International Symposium on, pages 65 –76,
april 2009.

[25] Milind Kulkarni, Martin Burtscher, Rajeshkar Inkulu, Keshav
Pingali, and Calin Casçaval. How much parallelism is there
in irregular applications? In Proceedings of the 14th ACM
SIGPLAN symposium on Principles and practice of parallel
programming, PPoPP ’09, pages 3–14, New York, NY, USA,
2009. ACM.

[26] Milind Kulkarni, Keshav Pingali, Bruce Walter, Ganesh Ra-
manarayanan, Kavita Bala, and L. Paul Chew. Optimistic
parallelism requires abstractions. In Proceedings of the 2007
ACM SIGPLAN conference on Programming language design
and implementation, PLDI ’07, pages 211–222, New York,
NY, USA, 2007. ACM.

[27] The Lonestar Benchmark Suite. Available from
http://iss.ices.utexas.edu/lonestar/.

[28] Roberto Lublinerman, Swarat Chaudhuri, and Pavol Cerny.
Parallel programming with object assemblies. In Proceedings
of the 24th ACM SIGPLAN conference on Object oriented
programming systems languages and applications, OOPSLA
’09, pages 61–80, New York, NY, USA, 2009. ACM.

[29] Virendra Marathe, William Scherer, and Michael Scott. De-
sign tradeoffs in modern software transactional memory sys-
tems. In Workshop on languages, compilers, and run-time
support for scalable systems, 2004.

[30] Mario Méndez-Lojo, Donald Nguyen, Dimitrios Prount-
zos, Xin Sui, M. Amber Hassaan, Milind Kulkarni, Martin
Burtscher, and Keshav Pingali. Structure-driven optimizations
for amorphous data-parallel programs. In Proceedings of the
15th ACM SIGPLAN symposium on Principles and practice
of parallel programming, PPoPP ’10, pages 3–14, New York,
NY, USA, 2010. ACM.

[31] Y. Oyama, K. Taura, and A. Yonezawa. Executing parallel
programs with synchronization bottlenecks efficiently. In Pro-
ceedings of the international workshop on parallel and dis-
tributed computing for symbolic and irregular applications,
PDSIA ’99, pages 182–204. World Scientific, 1999.

[32] Keshav Pingali, Milind Kulkarni, Donald Nguyen, Mar-
tin Burtscher, Mario Mendez-Lojo, Dimitrios Prountzos,
Xin Sui, and Zifei Zhong. Amorphous data-parallelism in ir-
regular applications. Technical Report TR-09-05, University
of Texas at Austin, 2009.

[33] Dimitrios Prountzos, Roman Manevich, Keshav Pingali, and
Kathryn S. McKinley. A shape analysis for optimizing parallel
graph programs. In Proceedings of the 38th annual ACM
SIGPLAN-SIGACT symposium on Principles of programming
languages, POPL ’11, pages 159–172, New York, NY, USA,
2011. ACM.

[34] William Scherer and Michael Scott. Advanced contention
management for dynamic software transactional memory. In



Proceedings of the twenty-fourth annual ACM symposium on
Principles of distributed computing, PODC ’05, pages 240–
248, New York, NY, USA, 2005. ACM.

[35] Nir Shavit and Dan Touitou. Software transactional memory.
In Proceedings of the fourteenth annual ACM symposium on
Principles of distributed computing, PODC ’95, pages 204–
213, New York, NY, USA, 1995. ACM.

[36] Jun Shirako, David M. Peixotto, Vivek Sarkar, and William N.
Scherer. Phasers: a unified deadlock-free construct for col-
lective and point-to-point synchronization. In Proceedings of
the 22nd annual international conference on Supercomputing,
ICS ’08, pages 277–288, New York, NY, USA, 2008. ACM.

[37] Sunay Tripathi. FireEngine — A New Networking Architec-
ture for the Solaris Operating System. Technical report, Sun
Microsystems, 2004.

[38] Yonghong Yan, Jisheng Zhao, Yi Guo, and Vivek Sarkar. Hi-
erarchical place trees: A portable abstraction for task paral-
lelism and data movement. In The 22nd International Work-
shop on Languages and Compilers for Parallel Computing
(LCPC’09), 2009.


