
Isolation for Nested Task Parallelism

Jisheng Zhao
Rice University

jisheng.zhao@rice.edu

Roberto Lublinerman
Google, Inc.

rluble@google.com

Zoran Budimlić
Rice University
zoran@rice.edu

Swarat Chaudhuri
Rice University
swarat@rice.edu

Vivek Sarkar
Rice University
vsarkar@rice.edu

Abstract
Isolation—the property that a task can access shared data
without interference from other tasks—is one of the most
basic concerns in parallel programming. While there is a
large body of past work on isolated task-parallelism, the in-
tegration of isolation, task-parallelism, and nesting of tasks
has been a difficult and unresolved challenge. In this pa-
per, we present a programming and execution model called
Otello where isolation is extended to arbitrarily nested par-
allel tasks with irregular accesses to heap data. At the same
time, no additional burden is imposed on the programmer,
who only exposes parallelism by creating and synchroniz-
ing parallel tasks, leaving the job of ensuring isolation to the
underlying compiler and runtime system.

Otello extends our past work on Aida execution model
and the delegated isolation mechanism [22] to the setting of
nested parallelism. The basic runtime construct in Aida and
Otello is an assembly: a task equipped with a region in the
shared heap that it owns. When an assemblyA conflicts with
an assembly B, A transfers—or delegates—its code and
owned region to a carefully selected assembly C in a way
that will ensure isolation with B, leaving the responsibility
of re-executing task A to C. The choice of C depends on the
nesting relationship between A and B.

We have implemented Otello on top of the Habanero Java
(HJ) parallel programming language [8], and used this im-
plementation to evaluate Otello on collections of nested task-
parallel benchmarks and non-nested transactional bench-
marks from past work. On the nested task-parallel bench-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
OOPSLA ’13, October 29–31, 2013, Indianapolis, Indiana, USA.
Copyright c© 2013 ACM 978-1-4503-2374-1/13/10. . . $15.00.
http://dx.doi.org/10.1145/2509136.2509534

marks, Otello achieves scalability comparable to HJ pro-
grams without built-in isolation, and the relative overhead
of Otello is lower than that of many published data-race de-
tection algorithms that detect the isolation violations (but
do not enforce isolation). For the transactional benchmarks,
Otello incurs lower overhead than a state-of-the-art software
transactional memory system (Deuce STM).

Categories and Subject Descriptors D.1.3 [Programming
Techniques]: Concurrent Programming; D.3.2 [Program-
ming Languages]: Language Classifications—Concurrent,
distributed, and parallel languages

General Terms Languages, Design

Keywords Isolation, Programming abstractions, Irregular
parallelism, Contention

1. Introduction
The demand for parallel programming is now higher than
ever: inexpensive multicore processors are ubiquitous, and
the bottleneck is now software rather than hardware. And
yet, it is increasingly clear that current foundations for
parallel programming, such as locks and messages, are
low-level, complex, error-prone, and non-modular. Conse-
quently, many research groups in industry and academia are
seeking high-level models and languages for parallel pro-
gramming that are intuitive as well as scalable.

A critical challenge in the foundations of parallel pro-
gramming models is that of isolation: the property that a task
can access dynamic subsets of shared data structures without
interference from other tasks. A programming model pro-
viding high-level guarantees of dynamic isolation is able to
rule out the perennial dual headaches of deadlocks and data
races, while also relieving the burden of low-level reasoning
about memory consistency models.

Such high-level models of isolation have received much
attention in the research community in the last decade. Of
existing approaches to this problem, the most well-known

is the transactional memory model [20]. However, integra-
tion of these high-level models, including transactions, with
nested parallelism remains a difficult and unresolved chal-
lenge. This is unfortunate because nested parallel tasks form
a natural programming idiom in many real-life settings. For
example, suppose we declare a task A to be isolated, but
want to extract additional parallelism within it. A natural
way to do so is to letA fork parallel tasksB andC. However,
the tasks B and C may need to be isolated from each other,
and may need to synchronize (join) at some point. In general,
B andC might fork other parallel tasks as well. As yet, there
is no transactional memory solution that guarantees isolation
while supporting nested parallelism of this sort. For paral-
lel programming models that do support nested-parallelism
(e.g. OpenMP 3.0[27], Cilk [5]), locks are still the major ap-
proach for implementing mutual exclusion.

In this paper, we present a programming and execution
model, called Otello, that allows parallel tasks that are ar-
bitrarily nested, and make irregular accesses to objects in a
shared heap, to run in isolation. In our programming model,
parallel tasks are declared to be isolated by a single keyword,
and the programmer only exposes parallelism by creating
and synchronizing parallel tasks, respectively using struc-
tured async and finish constructs, as in Habanero Java [8]
and X10 [10]. The underlying compiler and runtime system
are responsible for ensuring isolation between tasks.

Otello’s implementation relies on extensions to the Aida
execution model and the delegated isolation mechanism in-
troduced in [22] to support nested isolated task-parallelism.
Specifically, the Otello runtime views each task as being
equipped with a set of shared objects that it owns. We re-
fer to this combination of a task and its owned objects as an
assembly. An assembly can only access objects that it owns,
thus guaranteeing isolation. When an assembly A needs to
acquire ownership of a datum owned by assembly B (i.e.,
a conflict happens), A transfers—or delegates—its code and
owned region to assembly C in a way that will ensure iso-
lation with B, leaving the responsibility of re-executing task
A to C. The choice of C, as well as the precise mechanics
of delegation depends on the nesting relationship between A
and B.

Aside from isolation, Otello offers some fairly strong
progress guarantees. Specifically, Otello is deadlock and
livelock-free; also, one can quantitatively bound the ratio of
conflicts (cases when delegation needs to happen) to com-
mits (cases when a control in a task reaches the task’s end
point) using a parameter based on the nesting depth of tasks.
We note that guarantees like the last one exploit the struc-
tured nature of async-finish parallelism. In fact, the obser-
vation that structured parallel constructs simplify and clean
up the semantics of nested isolated task-parallelism is a core
contribution of this paper.

From the viewpoints of programmability, Otello’s high-
level isolation construct offers many benefits. When paral-

lelizing a sequential program, the programmer only needs
to pay attention to parallel decomposition without worry-
ing about semantic issues arising from conflicting accesses
performed by concurrent tasks. Isolation also helps support
composability of parallel software, since an isolated library
function call that creates internal tasks is guaranteed to be
isolated from the task that made the call. The programmer
can reason about interleavings of tasks rather than interleav-
ings of instructions among tasks, thereby simplifying the
problem of debugging parallel programs. Further, the pro-
grammer can assume a sequential consistency model when
reasoning about task interleavings, even if the program ex-
ecutes on a platform that supports weaker memory models.
Finally, the programmer can obtain all these benefits when
using general nested parallel program structures.

As for performance, we have implemented Otello on top
of the Habanero Java parallel programming language [8],
and used this implementation to evaluate Otello on col-
lections of nested-parallel benchmarks and transactional
benchmarks. For the nested-parallel benchmarks, our re-
sults show that the low overhead of enabling ’isolation-by-
default’ in semantics Otello’s isolation-by-default makes it
a promising approach for adoption in practice. For 16-core
executions, the average slowdown resulting from turning
on Otello’s isolation-by-default semantic across six nested-
parallel benchmarks was 1.32×, with a maximum slowdown
factor of 1.75×. This is significantly lower than the rela-
tive overhead of many published data-race detection algo-
rithms [28] which only detects isolation conflicts do not
enforce isolation 1. Interestingly, one benchmark (spanning
tree) showed a speedup for Otello over the default HJ im-
plementation, due to the Otello version revealing more par-
allelism. For the transactional benchmarks, our results show
that Otello incurs lower overhead than a state-of-the-art
software transactional memory system (Deuce STM) [11].
For 16-core executions, the maximum speedup obtained
for Otello relative to Deuce was 184.09×, the minimum
speedup was 1.20×, and the geometric mean of the speedup
across seven transactional benchmarks was 3.66×.

The rest of the paper is organized as follows. Section 2
summarizes the Habanero Java task parallel model, Aida del-
egated isolation model [22], and motivates the need for isola-
tion in nested task parallelism. Section 3 introduces the core
Otello model with details of its syntax, semantics, and prop-
erties. Section 4 introduces a more general programming
language version of the core Otello model and describes our
implementation of this language. Section 5 summarizes our
experimental results. Section 6 discusses related work, and
Section 7 contains our conclusions.

1 The key reason for this difference is that a data race detector must monitor
accesses at the location level to avoid false alarms, whereas isolation can be
enforced at the object level.

2. Background
In this paper, we will use the Habanero Java (HJ) lan-
guage [8] as a representative of nested task-parallel lan-
guages, and demonstrate how it can be extended with iso-
lation using the Otello programming and execution model.
The basic ideas in Otello of adding isolation to nested task
parallelism can be applied to other nested task-parallel pro-
gramming models including Cilk [5] and OpenMP 3.0 [27].
Section 2.1 provides a brief summary of HJ’s async, finish
and isolated constructs, Section 2.2 summaries Aida’s
delegated isolation model [22], Section 2.3 contrasts tasks
in HJ with assemblies in Aida and Section 2.4 uses a sim-
ple example to illustrate the challenges that arise in ensuring
isolated execution of parallel tasks.

2.1 Async, Finish and Isolated statements in HJ
The basic primitives of task parallelism relate to creation and
termination of tasks. In HJ, these primitives are manifest
in the async and finish statements, which were in turn
derived from the X10 language [10].
async: The statement “async 〈stmt〉” causes the parent task
to create a new child task to execute 〈stmt〉 asynchronously
(i.e., before, after, or in parallel) with the remainder of the
parent task. Following standard convention, we use “ances-
tor” to refer to the transitive closure of the parent relation
on tasks. Figure 1 illustrates this concept by showing a code
schema in which the parent task, T0, uses an async con-
struct to create a child task T1. Thus, STMT1 in task T1 can
potentially execute in parallel with STMT2 in task T0.

//Task T
0
(Parent)

finish { //Begin finish

 async

 STMT1; //T
1
(Child)

 //Continuation

 STMT2; //T
0

} //Continuation //End finish

STMT3; //T
0

STMT2

async

STMT1

terminate

wait

T
1

T
0

STMT3

Figure 1. An example code schema with async and
finish constructs

finish: finish is a generalized join operation. The state-
ment “finish 〈stmt〉” causes the parent task to execute 〈stmt〉
and then wait until all async tasks created within 〈stmt〉 have
completed, including transitively spawned tasks. Each dy-
namic instance TA of an async task has a unique Immedi-
ately Enclosing Finish (IEF) instance F of a finish state-
ment during program execution, where F is the innermost
finish containing TA [29]. The IEF of TA must belong to
an ancestor task of TA. There is an implicit finish scope
surrounding the body of main() so program execution will
only end after all async tasks have completed.

As an example, the finish statement in Figure 1 is
used by task T0 to ensure that child task T1 has completed
executing STMT1 before T0 executes STMT3. If T1 created a

child async task, T2 (a “grandchild” of T0), T0 will wait
for both T1 and T2 to complete in the finish scope before
executing STMT3.
isolated: isolated 〈stmt1〉 denotes an isolated statement,
HJ provides a “weak atomicity” semantics for isolated state-
ments — any dynamic instance of an isolated statement is
guarenteed to be performed in mutual exclusion with re-
spect to all other potentially parallel dynamic instances of
isolated statement. Thus far, the only viable approach to im-
plement this isolation semantics with nested parallelism has
been through the use of locks.

pr, guarantees that each instance of 〈stmt1〉 will be per-
formed in mutual exclusion with all other potentially parallel
interfering instances of isolated statement 〈stmt〉.

2.2 Aida
Aida [22] is a programming model which provides a notion
of delegation among concurrent isolated tasks (known in
Aida as assemblies). An assembly A is equipped with a
region in the shared heap that it owns—the only objects
accessed by A are those it owns, guaranteeing isolation. The
region owned by A can grow or shrink flexibly—however,
when A needs to own a datum owned by B, A delegates
itself, as well as its owned region, to B. From now on, B
has the responsibility of re-executing the task A set out to
complete. Delegation as above is the only inter-assembly
communication primitive in Aida.

However, Aida does not permit general nesting of iso-
lated tasks. Instead, it requires all child tasks to be created
at the very end of the parent task after all accesses to shared
objects have completed and been committed.

2.3 Tasks vs. Assemblies
It is worth taking some time here to make clear the distinc-
tion between tasks and assemblies. A task is a piece of code
intended to be executed asynchronously and (potentially) in
parallel with other tasks. Habanero Java’s async and Cilk’s
spawn are example of constructs that create tasks.

An assembly is a runtime concept used to implement
delegated isolation. It is a collection consisting of the cur-
rently running task, all the data owned by the assembly,
and all the tasks that have been delegated to this assembly
through the delegation mechanism. Each assembly starts its
life with a single task, and acquires data (either through ac-
quiring individual objects or through delegation) and other
tasks (through delegation) as it executes the original task and
the tasks delegated to the assembly. Each assembly ends its
life either when it finishes the execution of all the tasks it
contains, at which point it releases all the data it owns and
dies, or when it discovers a conflict with another assembly,
at which point it delegates the tasks it contains and data it
owns to that other assembly and then terminates.

Throughout this paper, we will use the term task when
referring to chunks of code intended for asynchronous exe-
cution (specified by the programmer using async). We will

use the term assembly when referring to the runtime entities
used to implement delegation, isolation and nesting.

2.4 Example
Though the async and finish constructs provide a gen-
eral framework for expressing nested parallelism, a key chal-
lenge still remains for programmers — how to deal with con-
flicts2 among tasks that execute in parallel?

As a simple example, consider the sequential depth-first
algorithm shown in Figure 2 to compute a spanning tree of
an undirected graph. It is relatively easy for a programmer to
reason about parallel decompositions for such an algorithm.
For instance, an examination of Figure 2 may reveal that
the recursive calls to child.visit() could potentially ex-
ecute in parallel. It is then straightforward to use async and
finish constructs to obtain parallel HJ code based on this
observation, as shown in Figure 3. However, when viewed as
a pure HJ program, this is an incorrect algorithm because of
the conflict when two tasks attempt to become the parent of
the same node. This conflict arises from a potential data race
between reads/writes to the same child.parent location
by multiple tasks.

Fixing this problem is not easy. Figure 4 shows the Cilk
code for a parallel depth-first-search algorithm that uses a
global lock to avoid this conflict. The lock is used to im-
plement a critical section. It is well known that the choice
and placement of locks can be both tricky and fragile from
a software engineering viewpoint since “under-locking” and
“over-locking” can lead to data races or deadlock respec-
tively. Further, the use of a single global lock can limit the
amount of parallelism in the program.

Unlike Cilk, HJ uses an isolated construct [8] instead
of locks. Though the use of isolated guarantees the ab-
sence of deadlocks, the programmer still has to decide where
to place the isolated statements so as to expose sufficient
parallelism without creating data races. Further, the current
HJ definition does not permit new task creation in the body
of an isolated statement. Similar constraints exist in other
task parallel languages e.g., X10 does not permit new tasks
to be created within an atomic statement.

In this paper, we go beyond previous approaches and
completely remove the programmer’s burden of reasoning
about isolated statements or locks. Core Otello treats all
async tasks as being isolated by default (General Otello
allows selected tasks, denoted by async-w for “weak async”,
to be non-isolated.). With isolation-by-default semantics, the
code in Figure 3 will work correctly despite the potential for
conflicts among accesses to the same child.parent loca-
tion. It is the responsibility of the language implementation
to ensure that any two conflicting tasks execute as though
they had been performed in a sequential order that is consis-
tent with the parallel program semantics.

2 We use the standard definition of a conflict viz., two parallel operations on
a shared location such that one of the operations is a write.

1 v o i d visit() {
2 f o r (i n t i = 0;
3 i < neighbors.length; i++) {
4 Node child = neighbors[i];
5 i f (child.parent == n u l l) {
6 child.parent = t h i s ;
7 child.visit ();
8 }
9 }

10 } // visit ()
11 . . .
12 root.visit ();
13 . . .

Figure 2. Sequential depth-first algorithm in HJ

1 v o i d visit() {
2 f o r (i n t i = 0;
3 i < neighbors.length; i++) {
4 Node child = neighbors[i];
5 i f (child.parent == n u l l) {
6 child.parent = t h i s ;
7 a s y n c child.visit ();
8 }
9 }

10 } // visit ()
11 . . .
12 f i n i s h root.visit ();
13 . . .

Figure 3. Parallel algorithm in General Otello

1 Cilk_lockvar mylock; i n t ** G; i n t * parent; i n t nodes;
2 cilk v o i d dfs(i n t p) {
3 f o r (i n t i=0; G[p][i]!=-1; ++i) {
4 Cilk_lock(mylock);
5 i n t visited = (parent[G[p][i]] != -1);
6 i f (! visited) parent[G[p][i]] = p;
7 Cilk_unlock(mylock);
8 i f (! visited) spawn dfs(G[p][i]);
9 } }

Figure 4. Cilk code for parallel depth-first-search (dfs.cilk)

3. Core Otello
In this section, we present the Otello programming and ex-
ecution model. For easier exposition, we use a foundational
version of Otello that focuses on the model’s essential fea-
tures. We call this model Core Otello. The main task ab-
straction in Otello (and Core Otello) is called an (object)
assembly [21, 22], or a task that has explicit ownership
of a region in the shared heap. An assembly can only ac-
cess objects in the region that it owns, hence by defini-
tion, it embodies isolation. Now we present the formal syn-
tax and semantics of the Core Otello language. Core Otello
uses the same concurrency constructs as our implementa-
tion of Otello; however, the former makes several simplify-
ing assumptions about the sequential language underlying
the model. For example, statements in Core Otello do not
call methods on objects, create new objects, or declare new
local variables. Also, we let objects be untyped and assume
that all objects are shared.

3.1 Language syntax
Otello is implemented on top of a framework of fork-join
parallelism. In Core Otello as well as our implementation,
the programmer creates assemblies by enclosing imperative
code blocks within the construct “async {...}”. The con-
struct finish {...} defines a scope at the end of which all
assemblies created within the scope must join. Generalizing
prior work on delegated isolation [22] as well prior work on
“flat” models of finish statements studied in [4], we allow
finish and async blocks to be arbitrarily nested.

Formally, let us assume a universe Var of variable names
and a universe F of field names. The syntax of programs
in Core Otello is shown in Figure 5. Here, programs are
given by the nonterminal Prog , and the code executed by
an assembly is given by the nonterminal Block . We assume
that all variables appearing in the text of a program P are
implicitly declared at the beginning of P .

Note that Core Otello imposes some restrictions on the
structure of nested async and finish blocks. For example,
the body of a finish block can only contain async state-
ments. The body of an async statement can be sequential
code, or a group of finish blocks followed by a group of
async statements. Sequential code can only appear inside of
an async. These restrictions are imposed in order to simplify
the operational semantics of the Core Otello. A more general
language called General Otello is described in Section 4.

Prog ::= Finish
Finish ::= finish {[Async;]∗}
Async ::= async {[Finish;]∗ [Async;]∗} | async {Block}
Block ::= Block Block | v := u.f; | v.f := u;

Figure 5. Syntax of Core Otello. (Here u, v ∈ Var and
f ∈ Fields . For nonterminals X and Y , [X]∗ denotes zero
or more successive occurrences of X , and (X | Y) denotes
syntax given either by X or Y .)

The source of parallelism in the constructs in Figure 5
arises from the two occurrences of [Async;]∗. From the
Otello viewpoint, the programmer can assume that the
async tasks in these two lists can execute in any order,
can leave the determination of which tasks can safely be
executed in parallel to the implementation.

3.2 Semantics: Delegation and Nesting
Conflicts between tasks (assemblies) are resolved using a
runtime mechanism called delegation. This mechanism is
a generalization of the delegation mechanism introduced in
the Aida model [22], to a setting where parallel tasks can
be arbitrarily nested. The core idea is as follows. Suppose
an assembly A detects a conflict3 while accessing an object
O owned by a different assembly B. In that case, assembly

3 In the current version of Otello, we do not have any notion of read-
only ownership of objects. Hence, a conflict includes scenarios where both
assemblies intend to read the same object. An extension of the assembly

A rolls back its effects on the heap and delegates itself to
B, which executes it sequentially at a later point in time.
Delegation could also result in the transfer of the region
owned by A to a different assembly C, depending on the
nesting relationship between A and B.

Delegation becomes especially challenging in the pres-
ence of nested parallelism. In this section, we sketch some
of the scenarios that we must consider for delegation. We use
the tree of finish scopes in Figure 6 as an example to guide
our discussion. This tree represents a snapshot of a state of
the program at any point in time. Each finish scope is a set
of assemblies. Each assembly can contain at most one ac-
tive finish scope at any point in time. Note that references to
A, B, C are intended to denote general assemblies, whereas
A1, A2, . . . and F1, F2, . . . refer to specific assemblies and
finish scopes respectively in Figure 6. Note also that each as-
sembly belongs to exactly one Immediately Enclosing Finish
(IEF) (in our example, A5 belongs to F3). The parent of an
assembly A is the assembly that created the IEF of A (in our
example, the parent of A5 is A3).

Suppose an assemblyA detects a conflict when accessing
objectO owned by assemblyB. If assemblyA and assembly
B are both in the same IEF then A will delegate to B (as-
sembly A3 will delegate itself to assembly A4 on Figure 6,
for example). If they are not in the same IEF then either 1)
assembly B is in some IEF that is nested within the IEF of
assembly A, or 2) it is not.

When assembly B is in some IEF nested within the IEF
of assembly A, then let C be the assembly that contains the
finish scope of B and it has the same IEF as assembly A.
A will then delegate itself to C. A will be executed sequen-
tially after C completes, analogously to what happens in the
absence of nesting. In our example, if A2 detects a conflict
with A6, then A2 will delegate itself to A1.

When assembly A’s IEF is nested within the IEF of B,
then let C be the parent assembly of A, containing the IEF
of A. A will delegate itself to C but will execute at the
closing of its IEF. In our example, if assembly A5 conflicts
with assembly A4, then A5 will delegate itself to A3, but the
code of A5 will be enqueued for execution after F3.

When neither A nor B are nested within each other’s
IEFs, then let C be the parent assembly of A, containing
the IEF of A. A will again delegate itself to C but will
enqueue the code for A for execution at the closing of its
IEF. In our example, if A5 conflicts with A7 (for example,
when trying to acquire object O owned by A7) then A5 will
delegate itself to A3, and schedule itself for execution after
F3. Assembly A3, when executing the code for A5 after F3,
may again conflict with A7 or one of its ancestors (when
A7 commits it will transfer the ownership of its objects to
its parent assembly) when trying to acquire O, and delegate
itself to its parent assembly (in the “cloud”), and so on, in the

abstraction with an separate category of read-only ownership is however
easy to define, and will be implemented in future versions of Otello.

A1 A2

F1

A3 A4F2 A7 A8

F4

A5 A6

F3

Figure 6. An example of a finish tree. F2 and F4 are de-
scendants of F1, with clouds representing arbitrary levels of
nesting of finish scopes.

worst case resulting in A1 delegating itself to A2. However,
if A2 (and its whole subtree of assemblies and finish scopes,
includingA7) finishes its execution beforeA3 tries acquiring
O again while executing the code for A5, then A3 will be
able to acquire O and proceed with the execution.

Now we sketch the operational semantics of Core Otello.
The central data structure in Core Otello is the shared-

memory heap, which maintains the state of all shared muta-
ble data accessed by a program. We abstractly view a heap
as a directed graph whose nodes are objects, and edges are
pointers labeled with field names.

Now consider a piece of code K = S1; . . . ; Sm that can
be executed by an assembly, where each Si is either an
assignment, or a nested async or finish-block. A closure
of K is a data structure that contains information about: (1)
the part of K that still remains to be executed, and (2) the
mapping of variables used in K to objects in the heap.

Now, let us assume a universe of assembly IDs. Consider
an assembly with ID A that we are currently executing, and
let G be the heap that A accesses. An assembly state of A is
a data structure that contains information about: (1) the clo-
sure thatA is currently executing; (2) the delegation queue of
A—i.e., a list of closures that have been delegated to A, and
will be executed by A in sequence once the current closure
finishes executing; and (3) a region—a set of nodesowned
by G.

The state of an entire Core Otello program at any given
time (called a concurrent state) is defined as a tree-shaped
structure where a node is an ID for a specific finish-scope,
and each node F is associated with a collection of assembly
IDs T (F). Intuitively, the assemblies in T (F) have F as
their immediately enclosing finish.

Unlike in usual trees, edges here go from assembly IDs
(associated with tree nodes) to tree nodes. There is a tree
edge from an assembly ID A to a tree node F if the finish-
scope represented by F is nested within the asynchronous
task represented by A. At any point of an execution, each
assembly ID is associated with a specific assembly state.
These assembly states must be such that the regions owned
by the corresponding assembly in them are disjoint. This
guarantees that an object in our model is owned by at most

one assembly. The objects in G that are not owned by any
assembly are said to be free.

The dynamics of a Core Otello program is defined by a
set of transitions between concurrent states. Most of these
transitions select an assembly from the current concurrent
state and execute the next statement in it. For an assembly
to be scheduled for execution, it must be a leaf in the tree
that is the current concurrent state. The need for delegation
arises when an assembly tries to access an object owned by
a different assembly.

Specifically, we sketch the more interesting classes of
transitions:

• Same-level conflict: We have a class of transitions that
define delegation among assemblies that are siblings of
each other in a concurrent state. Let A and B be assem-
blies, and let QA and QB be the list of closures that A
andB obligated to execute, respectively. (By convention,
let us assume that the closures that A and B are currently
executing are the first elements of these lists.)
Let the first element of QA be χ; by our convention,
this closure is currently under execution. Now suppose
χ reads or writes an object u that is currently owned by
the assembly B (i.e., a conflict happens). Consequently,
A must now delegate its work and owned region to B.
After the rule fires, the state of B becomes such that: (1)
Its owned region includes all objects owned by A or B
before the rule fired; (2) Its delegation queue is obtained
by appending QA at the end of QB .
One important issue is that A may have modified certain
objects in its region while it was executing χ. In this case,
before delegation, the runtime rolls back the effect of the
code already executed by χ. However, because A is re-
quired to be a leaf in the tree that constitutes the concur-
rent state, and also because of the syntactic restrictions
in Core Otello, this code is solely a collection of heap
updates—it does not include any async or finish state-
ments. The implementation of this rollback operation is
therefore straightforward.
• Conflict below: We have a class of transitions capturing

scenarios when an assemblyA conflicts with an assembly
B, and there is an assembly C that is a sibling of A and
an ancestor of the node containing B. In this case, A
delegates to C.
• Conflict with ancestor: We have a class of transitions

that handle the case when A tries to access an object
u owned by an ancestor B in the concurrent state. Be-
cause B is not a leaf node in the current finish-tree, it is
currently “suspended”; therefore, A can safely “steal” u
from B.
• Conflict with unrelated: These transitions handle the re-

maining conflict scenarios. Here, if A ∈ T (F) conflicts
with B, then A transfers its owned region to the parent C

of the node F . The code executed by A is now to be ex-
ecuted after all the assemblies in T (F) finish executing,
and is put in the closure queue for F .
• Async creation: These transitions define the semantics

of assembly creation. The rule creates a new assembly
with an empty set of owned objects. The assembly be-
longs to the same tree node (finish-scope) as the assembly
that created it.
• Finish: These transitions define the semantics of “finish”-

statements executed by an assembly A. Here a new tree
node F ′ is created;A is the parent of F ′, and T (F ′) = ∅.
The code inside the finish-block is transferred to the
closure queue of F .

3.3 Properties of Core Otello
Isolation The property of isolation demands that a concur-
rent task read or write shared-memory objects without inter-
ference from other tasks. In Core Otello, an assembly can
only read or write objects in its own region; also, if A dele-
gates work to B, the ability of B to read or write its objects
is not compromised. Therefore, Core Otello guarantees iso-
lation.

Deadlock-freedom There are only two synchronization
operations in Core Otello: scoped joining of assemblies and
delegation. As the former operation does not depend on data
at all, it clearly does not introduce deadlocks (The tree struc-
ture also ensures that deadlock is not possible due to join
operations.). As for delegation, the only plausible deadlock
scenario involving two assemblies is the following: “Assem-
bly A tries to delegate to assembly B, B tries to delegate to
A, and neither can progress.” This scenario, however, is im-
possible in Otello. If A and B try to simultaneously delegate
to each other, then one of the two requests (let us say the
one from B) will be nondeterministically selected and hon-
ored. This can lead to two outcomes: (a) The ownership of
all objects owned byB would be transferred toA; or (b) The
ownership of all objects owned by B would be transferred
to the parent B′ of the finish-tree node where B resides. In
the former case, the request from A is no longer a conflict—
the request from A to access u will succeed, and A will be
able to progress. In the latter case, A may conflict with B′,
in which case the ownership of u may be transferred to the
parent B′′ of the finish-scope of B′, and so on. However, the
number of times such conflicts over u may occur is bounded
by the number of hops between the root of the finish-tree
and the node to which B belongs. Formally, let us define
the finish-depth Depth(P) of a program P inductively as
follows:

• If P = finish{P1 . . . Pn}, where each Pi is an async-
block, then Depth(P) = 1 +maxi Depth(Pi)

• If P is a Block , then Depth(P) = 0

• If P = async{Q1 . . . Qm P1 . . . Pn}, where each Qi

is a finish-block and each Pi is an async-block, then
Depth(P) = max(maxi Depth(Pi),maxi Depth(Qi)).

In the above scenario, the maximum number of conflicts
between A and other assemblies B,B′, B′′, . . . over u is
bounded by Depth(P). It is easy to generalize the above
argument to cyclic deadlocks among n assemblies.

Livelock-freedom In Core Otello, two assemblies A and
B would be livelocked if they constantly try to delegate to
each other, none of them progressing. As an analogy, there
is always a non-zero probability that such a livelock sce-
nario may occur in a transactional memory system with re-
peated rollback-retry operations. However, in such a sce-
nario, Otello would destroy one of the two assemblies, del-
egating its work—the other assembly would then be able to
progress.

Bound on conflicts/commit ratio Finally, a key property of
Core Otello is that in any execution of a programP , the num-
ber of conflicts (number of applications of the delegation op-
eration) is bounded by Depth(P) times the number of com-
mits. 4 As Depth(P) is small in practice, this property works
as a performance guarantee in high contention-scenarios,
where, in many state-of-the-art transactional memory sys-
tems, there may possibly be an unbounded number of aborts
and too few commits. Naturally, our guarantee comes at a
cost; due to delegation, some tasks in Otello may be per-
formed sequentially, and in certain situations, this loss of
parallelism may be a limitation.

4. Implementation
4.1 General Otello
Core Otello is a simple and elegant language that can be
implemented using the techniques described below in Sec-
tion 4.3, and that provides important correctness guarantees.
However, in practice, such a core model is too minimalistic
for programmers. Given this, we embed our core model in
a fuller-featured parallel programming language called Gen-
eral Otello.

General Otello removes many of the syntactic restric-
tions present in Core Otello—for example, that Block can
only appear inside an Async, and that Finish can only ap-
pear at the beginning of an Async. Also, General Otello
permits non-isolated parallel tasks in addition to isolated
ones (assemblies). As before, the latter are demarcated in
the source code by keyword “async”. A block of code ex-
ecuted as a non-isolated task is marked by the keyword
“async-w” (read as “weak async”). Such non-isolated tasks
allow programmers or compilers to completely eliminate the

4 We note that commits are somewhat tricky to define in the setting of nested
parallelism. This is because a task that has been “committed” may be have
to be aborted subsequently because the parent of the task is aborted. In this
paper, we count each time control reaches the end point of a task to be a
commit.

(small, but not negligible) overhead of delegated isolation
in cases where the programmer or compiler knows in ad-
vance that the tasks will be accessing completely disjoint
parts of the data. However, this extra efficiency comes at
the cost of some guarantees. General Otello does not make
any guarantees about isolation between “async-w” tasks or
isolation between “async-w” and “async” tasks; it relies
completely on the underlying Habanero Java implementa-
tion to execute “async-w” tasks. In other words, it imple-
ments the weak atomicity semantics [24] for programs con-
taining both “async-w” and “async”. In relationship to cur-
rent HJ, General Otello’s “async-w” and “async” constructs
can be viewed as equivalent to “async” and “async isolated”
constructs in HJ. Further, HJ’s “isolated” construct can be
viewed as equivalent to “finish async” in General Otello.

The syntax of General Otello shown in Figure 7.

Prog ::= finish {Stmt}
Stmt ::= async {Stmt} | Stmt ;Stmt

| async-w {Stmt}
| finish{Stmt} | Block

Figure 7. General Otello. Block is arbitrary sequential Java
code

4.2 The General Otello compiler
Now we present a set of compiler transformations (Figure 8)
for translating programs written in General Otello into a
form that simplifies the runtime implementation described
below in Section 4.3. While most of these transformations
are self-explanatory, transformation 5 deserves special atten-
tion. This transformation moves spawning of an async{S1}
that is followed by a statement S2 to the end of the enclos-
ing async by capturing the local context of S1 (all the lo-
cal variables that are free in S1) at the original point of the
spawn (coded as C1 = C(S1)), then spawning the async
at the end of the enclosing async with the free local vari-
ables substituted with the corresponding variables from the
captured context (coded as SC=C1

(S1)). Note that this may
result in some loss of parallelism, since this transformation
always moves an async to the end of the enclosing async,
even if S1 does not conflict with S2 and the two could po-
tentially run in parallel. Transformation 5 is the only one on
Figure 8 that has a potential loss of parallelism, all the oth-
ers preserve the amount of work that is potentially done in
parallel in General Otello.

The reason for this transformation is implementation-
dependent. Since in our implementation, the assembly that
discovers the conflict always delegates itself to the assembly
that already owns the object, we cannot allow the possibility
of code in S2 discovering a conflict with S1 and attempting
to delegate the outer async to async{S2}, since the outer
async contains the spawn of async{S2}. A different im-
plementation could always decide to delegate inner async

to the outer async whenever a conflict occurs between the
two, but would require a complex synchronization mecha-
nism between the two assemblies as the outer async would
have to notify the inner async that it needs to abort, roll-
back and delegate itself to the outer async, and than wait
for that to happen before proceeding. Another approach is a
compiler analysis that will determine if S1 and S2 are com-
mutative and allow them to run in parallel, which is a subject
for future work.

The syntax of General Otello in Figure 7 does not include
control flow. To allow arbitrary control flow within a finish
block that contains arbitrary nesting of finishes and asyncs
we have implemented a simple runtime strategy. Whenever
an async is created inside of arbitrary control flow, the con-
text is captured at the point of creation, but the actual spawn-
ing of the async is delayed until the end of the enclosing
finish scope. At first glance this may look even more re-
strictive than the transformation 5 from Figure 8 that only
moves the async to the end of the outer async and not the
enclosing finish scope, but the end result will be the same,
since the resulting code will not have any effectual code be-
tween the outer async and the end of the enclosing finish.

Combined, the transformations from Figure 8 and the
runtime strategy in this section jointly ensure that all asyncs
that are created within a finish scope are spawned at the
end of that finish scope.

4.3 The General Otello runtime
In this section we present some of the key mechanisms in
our implementation of the General Otello execution model.

Rollback log. When an assembly commits, rollback logs
for all modified objects are merged with the rollback logs of
its parent. These rollback logs are needed in case the parent
assembly has to be rolled back, requiring the rollback of all
its effects, including those caused by nested asyncs. If both
the parent and the child have a rollback log for the same
object, the child’s log is discarded.

Ownership. When an assembly commits, the ownership of
all the objects it acquired is also transferred to the parent
assembly. This is to ensure proper nesting semantics, so that
no other assembly can observe the state committed by the
child assembly until the parent assembly commits. Other
assemblies running in parallel to the parent assembly will
still conflict with it if they try to acquire an object that was
modified and committed by the child assembly.

Delegated Task Queues. There are two “types” of dele-
gated task queues.

1. Assembly Queues. These are the queues that contain del-
egated tasks that are to be executed sequentially after the
current task commits, as in Aida [22]. An assembly del-
egates itself by transferring the ownership to the target
assembly, and appending its Assembly Queue to the tar-
get Assembly Queue.

1. T (finish{S1}) → finish{TA(S1)}
2. TA(async{S1};S2) → async{TFA(S1)}; TA(S2)

3. TA(B1;S2) → async{finish{async{B1}}; TFA(S2)}
4. TA(finish{S1};S2) → async{finish{TA(S1)}; TFA(S2)};
5. TFA(async{S1};S2) → finish{async{C1 = C(S1)}}; TFA(S2); async{TFA(SC=C1(S1))}
6. TFA(finish{S1};S2) → finish{TA(S1)}; TFA(S2)

7. TFA(B1;S2) → finish{async{B1}}; TFA(S2)

Figure 8. Compiler transformations to convert General Otello programs into Core Otello

2. Finish Queues. New in Otello are queues of delegated
tasks that are to be executed sequentially at the end of a
finish scope. Tasks might end up in this queue when a
conflict forces an assembly to delegate itself to the parent
assembly, as described above. The assembly delegates
itself by transferring the ownership and rollback logs to
the parent assembly, but transferring its assembly queue
to the Finish Queue of the immediately enclosing finish.

Task Queues. Every finish scope contains a queue for
assemblies spawned inside of it. This queue is different from
the Finish Queue. If an assembly cannot be moved to the end
of its outer assembly using transformation 5 from Figure 8
(i.e. if the spawning of the assembly is inside of some control
flow), then the assembly is moved to the Task Queue of
the enclosing finish. When the execution reaches the end
of the finish, it first spawns in parallel all the assemblies
from its Task Queue. These assemblies run in parallel and
in isolation. If any of them discover a conflict, they may
delegate themselves to their parent assembly and transfer
their code and their assembly queue to the corresponding
Finish Queue.

Object acquisition. When an assembly attempts to acquire
an object, the object has to fall into one of the following
categories:

1. Free. These are objects that are not owned be any assem-
bly; i.e. their owner pointer is either null or points to a
dead owner.

2. Owned by ancestor. The object is owned by an ancestor
assembly. Ancestor assembly has an active finish scope
with which the current assembly synchronizes.

3. Owned by a sibling. The object is owned by an assembly
that belongs to the same finish scope as the current
assembly.

4. Owned by an assembly that is not an ancestor or a sibling.

When an assembly requests an object that is either free or
owned by ancestor the request is successful and the current
assembly acquires the ownership of the object. Note that it
is safe to “inherit” an object that is owned by an ancestor,
as by design the ancestor is not executing meaningful code
(code that accesses ownable objects) at that time. Also note
that only one assembly may inherit this specific object, as

all subsequent acquisition attempts by other assemblies will
fall into the owned by ancestor or owned by sibling category.
When the assembly finishes, it transfers the ownership to its
parent, which will (eventually) result in the object ownership
being transferred back to ancestor from which it was inher-
ited.

When the object is owned by a sibling or owned, that
constitutes a conflict. If the object is owned by a sibling,
the current assembly delegates itself to the sibling that owns
the object. The current assembly will rollback, transfer its
ownerships to the sibling, and add its assembly queue to the
end of the sibling’s assembly queue.

Finally if the requested object is owned then the current
assembly will delegate itself to its parent assembly, perform-
ing the following steps:

1. First the assembly rolls back its changes.

2. The assembly transfers the ownership of all its objects to
its parent.

3. The assembly appends its assembly queue to the end of
the corresponding finish queue of its parent.

4. The assembly synchronizes with the finish (as if ended
normally) and ends.

Completing the assembly When a nested assembly fin-
ishes its execution (including all the assemblies in its assem-
bly queue) it transfers the ownership of all its objects to its
parent and merges its rollback log with the parent’s rollback
log, ensuring that a parent rollback includes a rollback of
the effects of nested assemblies. The merge is performed so
that the parent’s rollback information supersedes the child;
if both the parent and the child have rollback information for
the same object, the child’s rollback information for that ob-
ject is discarded, otherwise the child’s rollback information
for the object is added to the parent’s rollback log.

State backup and recover Otello uses a per-object based
log mechanism that backs up the entire object when it is ac-
quired by an assembly. For arrays, Otello backs up a chunk
of the array or the entire array when any of the array ele-
ments is acquired by an assembly.

Most of the other implementation details are similar to
what has been done in Aida [22], including a Union-Find
data structure for quick test and transfer of object ownership,

and the nonblocking implementation of the delegation mech-
anism. However, as mentioned earlier, the Aida approach
does not guarantee isolation with nested task parallelism,
which is the main motivation for Otello.

It may be tempting to implement Otello using locks for
conflict detection. However, such an implementation will
likely incur prohibitively large overhead. In addition, with-
out using reentrant locks, the implementation would also
have to handle potential deadlocks. However, this is a direc-
tion that may be worth pursuing in the future if lightweight
reentrant locks become available with hardware support.

5. Evaluation
In this section, we present an experimental evaluation of the
Otello programming model implemented as an extension to
the HJ compilation and runtime framework [8]. We used this
implementation to evaluate Otello on collections of nested-
parallel benchmarks and transactional benchmarks.

5.1 Experimental Setup
Our experimental results were obtained on a 16-core (quad-
socket, quad-core per socket) Intel Xeon 2.4GHz system
with 30GB of memory, running Red Hat Linux (RHEL 5)
and Sun JDK 1.6 (64-bit version) (with a heap size was set
to 12GB). The software transaction memory (STM) system
used for some of the performance comparisons is version
1.3.0 of the Deuce STM [11] which implements the TL2 [12]
algorithm.

We chose six benchmarks for the nested task-parallel col-
lection. One of these benchmarks is the spanning tree ex-
ample discussed in Section 2.4. The remaining five are HJ
ports of the OpenMP 3.0 BOTS benchmarks [13] health,
floorplan, strassen, fft and nqueens. These HJ ports
are not new to this paper; they have also been used in ear-
lier performance evaluation, e.g. [3] and [26]. Also, the HJ
versions of these benchmarks are fundamentally the same
as the OpenMP versions; the primary change (in addition
to translating C code to Java code) is that the OpenMP 3.0
task, taskwait and critical directives were replaced by
async, finish and isolated statements in HJ, respec-
tively. The Otello versions of these benchmarks are iden-
tical to the HJ versions with one minor syntactic change:
eliminating the isolated keyword when moving from HJ
to Otello, since all async’s were assumed to be isolated by
default in the Otello version.

To understand precisely how the Otello and HJ versions
of these codes differ, consider the code listed below, which
shows the HJ version of nqueens benchmark:

1 v o i d nqueens_kernel(f i n a l b y t e n, f i n a l b y t e j,
2 f i n a l b y t e [] a, f i n a l i n t depth) {
3 i f (n == j) {
4 i s o l a t e d { // eliminated in Otello version
5 t h i s .total_count ++;
6 }
7 r e t u r n ;
8 }

9 f i n i s h {
10 f o r (b y t e i = (b y t e) 0; i < n; i++) {
11 f i n a l b y t e i0 = i;
12 a s y n c {
13 f i n a l b y t e [] b = new b y t e [j+1];
14 System.arraycopy(a, 0, b, 0, j);
15 b[j] = i0;
16 i f (ok((b y t e)(j+1), b))
17 nqueens_kernel(n,(b y t e)(j+1),b,depth);
18 }
19 }
20 }
21 }

The isolated statement in line 4 protects shared variable
this.total count. HJ currently uses a global lock to im-
plement isolation. In the Otello version, the isolated key-
word in line 4 is eliminated, since all async tasks run in an
isolated mode by default in Otello.

For the transactional benchmarks, we used seven bench-
marks from JSTAMP [16] (a Java port of the STAMP bench-
mark suite [25]), implemented in the Deuce STM [11]. The
seven benchmarks are Bayes, Genome, Vacation, SSCA2,
Intruder, KMeans and Labyrinth3D 5.

5.2 Comparing Otello with standard HJ
To evaluate the runtime overhead of the isolation-by-default
mechanisms in Otello, we compared the execution times
of isolated-by-default Otello and the explicit-isolated-as-
needed HJ versions of the six nested task-parallel bench-
marks. Figure 9 presents results for these benchmarks run
using different numbers of worker threads. In general, Otello
shows better scalability than HJ but also fairly high over-
head when ran on a small number of threads. For 16-core
executions, the maximum slowdown resulting from turn-
ing on Otello’s isolation-by-default semantic was 1.75×,
and the geometric mean of the slowdown across six nested-
parallel benchmarks was 1.32×. Interestingly, the minimum
slowdown was 0.76× i.e., for this benchmark (spanning
tree) the execution time with Otello’s isolation-by-default
approach was faster than that of the original HJ program due
to the uncovering of more parallelism through speculative
parallelism with delegated isolation.

In summary, for the nested-parallel benchmarks, our re-
sults show that Otello can achieve comparable scalability to
standard HJ programs (without isolation-by-default seman-
tic), with a relative overhead that is much lower than that
(for example) of many published data-race detection algo-
rithms [28].

5.3 Comparing Otello with Deuce STM
In this section, we compare the performance of Otello with
the non-nested transactional parallelism approach in Deuce
STM. Figure 10 presents the performance comparison be-
tween Otello and Deuce STM, a state-of-the-art Java-based
STM implementation. Otello offers better performance and

5 We omitted the MatrixMul, and Yada benchmarks, since MatrixMul has
a simple critical section that can be implemented as a reduction and Yada

exhibits a bug when running with multiple Java threads.

Benchmark Suite. Name Has Isolation Input Size
BOTS strassen No nodes: 1,000,000

fft No elements: 1,000,000
health Yes largest size
floorplan Yes size: 15
nqueens Yes 12

HJ Bench spanning tree Yes nodes: 100,000 neighbors: 100
JSTAMP Bayes Yes vars: 32 records: 4096 numbers: 10 percent: 40% edges: 8 inserts: 2

Genome Yes gene length: 16,384 segment length: 64 segments: 1,677,216
Vacation Yes clients: 16 queries: 90 relations: 1,048,576 transactions; 4,194,304
SSCA2 Yes scale: 20 partial edges: 3 max path length: 3 incr edges: 1
Intruder Yes attacks: 10 length: 16 numbers: 1,000,000
KMeans Yes nodes: 65536 clusters: 40
Labyrinth3D Yes 128 × 128 grid

Table 1. Benchmarks and relevant input size.

!"

#"

$"

%"

&"

'"

("

)"

*"

+"

#" $" &" *" #("

,-.//,"

01"

!"

#"

$"

%"

&"

'"

("

)"

*"

+"

#" $" &" *" #("

,-.//,"

01"

!"

#"

$!"

$#"

%!"

%#"

&!"

&#"

$" %" '" (" $)"

+,--"

./"

!"

#!!"

$!!"

%!!"

&!!"

'!!"

#" $" &" (" #)"

+,--"

./"

!"

#"

$"

%"

&"

'"

#" $" &" (" #)"

+,--"

./"

!"

#"

$!"

$#"

%!"

%#"

&!"

&#"

$" %" '" (" $)"

*+"

,-.//,"

(a) strassen (b) fft (c) health

(d) floorplan (e) nqueens (f) spanning tree

Figure 9. Performance comparison between Otello and HJ. “hj”: HJ implementation; “Otello”: Otello implementation; X-axis:
number of parallel threads (cores) used; Y-axis: execution time in seconds.

scalability than Deuce STM across all benchmarks with one
exception (Bayes on 8 threads).

The performance difference is especially evident in KMeans
and Labyrinth3D, which are array-intensive programs,
where Deuce STM’s contention management backs up all
array elements, while the Otello implementation performs
backup of a chunk of the array, rather than a per-element
backup (see Section 4). For 16-core executions, the max-
imum speedup obtained for Otello relative to Deuce was
184.09×, the minimum speedup was 1.20×, and the geo-
metric mean of the slowdowns was 3.66×.

6. Related Work
We use Table 2 to guide the discussion in this section. This
table qualitatively classifies programming models according
to the following attributes:

• Programmability/expressiveness: how easy is it to ex-
press a wide range of parallel programming patterns in
the model?
• Expertise: how much expertise in concurrent program-

ming does the programmer need?
• Correctness guarantees: does the model provide cor-

rectness guarantees such as deadlock-freedom, livelock-
freedom, and progress guarantees?
• Scalability: how well does performance scale with an

increase in the number of processor cores and hardware
threads?
• Overhead: how much overhead does the model impose

relative to a sequential implementation?

(a) Bayes (b) Genome (c) Vacation (d) SSCA2

(e) Intruder (f) KMeans (g) Labyrinth3D

!"

#"

$!"

$#"

%!"

%#"

&!"

$" %" '" (" $)"

*+,-+"

./+00."

!"

#!!"

$!!"

%!!"

&!!"

'!!"

(!!"

)!!"

*!!"

#" $" &" *" #("

+,-.,"

/0,11/"

!"

#!"

$!!"

$#!"

%!!"

$" %" &" '" $("

)*+,*"

-.*//-"

!"

#!"

$!"

%!"

&!"

'!"

(!"

)!"

*!"

#" $" &" *" #("

+,-.,"

/0,11/"

!"

#!"

$!"

%!"

&!"

'!!"

'#!"

'" #" $" &" '%"

()*+)"

,-)..,"

!"

#!"

$!"

%!"

&!"

'!"

#" $" &" (" #)"

*+,-+"

./+00."

!"

#!"

$!"

%!"

&!"

'!!"

'#!"

'$!"

'" #" $" &" '%"

()*+)"

,-)..,"

Figure 10. Performance comparison between Otello and STM for JSTAMP benchmarks. “deuce”: deuce STM implementa-
tion; “otello”: Otello implementation; X-axis: number of parallel threads (cores) used; Y-axis: execution time in seconds.

Parallel prog. model Expressiveness Expertise Safety Scalability Overhead
(higher is better) (lower is better) (higher is better) (higher is better) (lower is better)

STM [15] High Very Low implementation dependent Low High
Java with fine-grained locking High High Very low High Low
Cilk reducers [5] Medium Medium Low High Low
Chorus [21] Medium Low High Medium Medium
Galois [7, 18, 19] Medium Low Medium High Low
Aida [22] High Low High High Low
Otello [this paper] High Very Low High High Low

Table 2. Comparison of several parallel programming models.

For simplicity, we focus our comparison on current ap-
proaches to parallel programming with isolation and nest-
ing.

Otello provides a high-level minimalistic programming
model similar to Transactional Memory [15], with a sin-
gle construct (async) to define blocks of code to be exe-
cuted concurrently and in isolation. All parallel tasks in Core
Otello are isolated by default, the programmer only needs
to worry about what tasks should run in parallel, and all the
conflict detection and resolution is done automatically by the
implementation. Otello guarantees livelock-freedom, unlike
transactional memory where livelock freedom is probabilis-
tic and implementation-dependent.

The assemblies in Chorus [21] and Aida [22] provide
a high-level mechanism for irregular data parallelism and
have been the main inspiration for assemblies in Otello.
The Chorus assemblies, however, are restricted to cautious
applications [23], while neither Chorus nor Aida support
nested parallelism.

The delegation mechanism in Aida [22] is the main inspi-
ration for the delegation mechanism in Otello. The delega-
tion in Aida, however, only considers the flat model, where
all tasks belong to the same finish scope. The main contribu-
tion of Otello is an execution model that performs task del-

egation in the presence of arbitrary finish and isolated task
nesting.

There has also been a lot of work in the transactional
memory community on enabling different forms of nesting
of transactions; however, very few efforts allow the integra-
tion of nested transactions with task parallelism. Agrawal et
al. [1] propose a design to support Cilk-style nested paral-
lelism inside transactions, but they do not have an implemen-
tation or evaluation. OpenTM [2] allows transactions within
OpenMP constructs, but does not allow nested parallelism
within transactions.

NePaLTM [30] is the only TM system we are aware
of that integrates nested transactions with task parallelism
(OpenMP). Otello is built on top of, and adds nested iso-
lated tasks to HJ, a more flexible and dynamic programming
model that allows creation of more general task graphs than
OpenMP. None of the STM systems mentioned use delega-
tion as the mechanism for conflict resolution, nor do they
offer an upper bound on conflict-to-commit ratio in heavily-
congested scenario as Otello does.

Programming models such as OpenMP [9] and Cilk [5]
provide efficient support for reductions in deterministic par-
allel programs. However, those constructs (or the constructs

offered by DPJ [6]) are not applicable to the nondeterminis-
tic, irregular parallel programs supported by Otello.

Orthogonal to Otello is prior work on data-race detec-
tion [14]. Otello gives the option of proceeding (with well-
defined semantics) in the presence of data races, while the
other models do not. If there is a desire to warn the user
about interference among parallel accesses to certain classes
of objects, past work on data-race detection can be applied
to Otello for that purpose.

Herlihy and Koskinen proposed a form of checkpointing
and continuations [17] to handle partial commits and roll-
back of transactions. We implemented a similar mechanism
in Otello as an optimization to allow partial commits of long-
running asyncs to avoid superficial conflicts.

7. Conclusions and Future Work
Isolation has long been one of the most basic concerns in
parallel programming. Despite the recent attention paid to
software and hardware approaches to transactional mem-
ory, there is no transactional memory solution in past work
that guarantees isolation by default for all code while sup-
porting nested parallelism. In this paper, we presented a
programming and execution model called Otello that sup-
ports an isolation-by-default approach. In our model, the
programmer only exposes parallelism by creating and syn-
chronizing parallel tasks (using async and finish con-
structs), leaving it to the Otello compiler and runtime sys-
tem to ensure isolation among parallel tasks. Otello’s pro-
gramming model offers several high-level correctness guar-
antees while requiring minimal programmer expertise. The
practicality of Otello stems from the novel compiler and
runtime techniques presented in this paper. We used these
techniques to implement Otello on top of the Habanero Java
parallel programming language, and to evaluate Otello on
collections of nested-parallel benchmarks and transactional
benchmarks. For the nested-parallel benchmarks, the maxi-
mum slowdown resulting from turning on Otello’s isolation-
by-default support was 1.75×, and the geometric mean of
the slowdown across six nested-parallel benchmarks was
1.32×which is significantly lower than the relative overhead
of many published data-race detection algorithms. For the
transactional benchmarks, our results show that Otello incurs
lower overhead than a state-of-the-art software transactional
memory system (Deuce STM). For 16-core executions, the
maximum speedup obtained for Otello relative to Deuce was
184.09×, the minimum speedup was 1.20×, and the geomet-
ric mean of the speedup across seven transactional bench-
marks was 3.66×.

Future work includes developing compiler and runtime
optimizations to further reduce the overhead of ensuring iso-
lation by default, exploration of new strategies for delega-
tion, and supporting greater integration of Otello with addi-
tional HJ constructs for task parallelism, including futures,
data-driven tasks, and phasers [29].

Acknowledgments
This work was supported in part by NSF award CCF-
0964520. Any opinions, ndings and conclusions or recom-
mendations expressed in this material are those of the au-
thors and do not necessarily reflect those of the National
Science Foundation. We would like to thank members of the
Habanero group at Rice for valuable discussions related to
this work, and contributions to the Habanero Java infrastruc-
ture used in this research. We are grateful to the anonymous
reviewers for their comments and suggestions. Finally, we
would like to thank Keith Cooper for providing access to the
Xeon system used to obtain the performance results reported
in this paper.

References
[1] Kunal Agrawal, Jeremy T. Fineman, and Jim Sukha. Nested

parallelism in transactional memory. In Proceedings of
PPoPP’08, Salt Lake City, UT, USA, pages 163-174.

[2] Woongki Baek, Chi Cao Minh, Martin Trautmann, Christos
Kozyrakis, and Kunle Olukotun. The OpenTM transactional
application programming interface. In Proceedings of PACT’07,
pages 376387.

[3] Rajkishore Barik, Jisheng Zhao, and Vivek Sarkar. Interproce-
dural strength reduction of critical sections in explicity-parallel
programs. In Proceedings of PACT’13, 2013.

[4] Ganesh Bikshandi, Jose G. Castanos, Sreedhar B. Kodali,
V. Krishna Nandivada, Igor Peshansky, Vijay A. Saraswat,
Sayantan Sur, Pradeep Varma, and Tong Wen. Efficient, portable
implementation of asynchronous multi-place programs. In
Proceedings of PPoPP’09.

[5] Robert D. Blumofe and Charles E. Leiserson. Scheduling
multithreaded computations by work-stealing. In Proceedings
of FOCS’94, 1994.

[6] Robert L. Bocchino, Stephen Heumann, Nima Honarmand,
Sarita V. Adve, Vikram S. Adve, Adam Welc, and Tatiana
Shpeisman. Safe nondeterminism in a deterministic-by-default
parallel language. In Proceedings of POPL’11, 2011.

[7] Martin Burtscher, Milind Kulkarni, Dimitrios Prountzos,
and Keshav Pingali. On the scalability of an automatically
parallelized irregular application. In Proceedings of LCPC’08,
pages 109 123.

[8] Vincent Cave , Jisheng Zhao, Jun Shirako, and Vivek Sarkar.
Habanero-Java: the New Adventures of Old X10. In Proceedings
of PPPJ’11, 2011.

[9] Robit Chandra, Ramesh Menon, Leo Dagum, David Kohr, Dror
Maydan, and Jeff McDonald. Parallel programming in OpenMP.
Morgan Kaufmann Publishers Inc., 2001.

[10] P. Charles et al. X10: an object-oriented approach to non-
uniform cluster computing. In Proceedings of OOPSLA’05,
New York, NY, USA, 2005.

[11] Deuce STM - Java Software Transactional Memory.
http://www.deucestm.org/.

[12] David Dice, Ori Shalev, and Nir Shavit. Transactional locking
II. In Proceedings of DISC’06, pages 194208, 2006.

[13] Alejandro Duran et al. Barcelona OpenMP Tasks Suite: a set
of benchmarks targeting the exploitation of task parallelism in
OpenMP. In Proceedings of ICPP’09, 2009.

[14] Cormac Flanagan and Stephen N. Freund. FastTrack: efficient
and precise dynamic race detection. In Proceedings of PLDI’09,
pages 121 133. ACM, 2009.

[15] Tim Harris, James R. Larus, and Ravi Rajwar. Transactional
Memory, 2nd Edition. Morgan and Claypool, 2010.

[16] JSTAMP. Jstamp. http://demsky.eecs.uci.edu/software.php.

[17] Eric Koskinen and Maurice Herlihy. Checkpoints and
continuations instead of nested transactions. In Proceedings
of SPAA’08, pages 160168, jun 2008.

[18] Milind Kulkarni, Martin Burtscher, Rajasekhar Inkulu,
Keshav Pingali, and Calin Cascaval. How much parallelism
is there in irregular applications? In Proceedings of PPoPP’09,
pages 314.

[19] Milind Kulkarni, Keshav Pingali, Bruce Walter, Ganesh
Ramanarayanan, Kavita Bala, and L. Paul Chew. Optimistic
parallelism requires abstractions. In Proceedings of PLDI’07,
pages 211222, New York, NY, USA, 2007. ACM.

[20] J. Larus and R. Rajwar. Transactional Memory. Morgan and
Claypool, 2006.

[21] Roberto Lublinerman, Swarat Chaudhuri, and Pavol Cerny.
Parallel programming with object assemblies. In Proceedings of
OOPSLA’09, New York, NY, USA, 2009. ACM.

[22] Roberto Lublinerman, Jisheng Zhao, Zoran Budimlic ,
Swarat Chaudhuri, and Vivek Sarkar. Delegated isolation. In
Proceedings of OOPSLA’11, NY, USA, 2011.

[23] Mario Me ndez-Loj, Donald Nguyen, Dimitrios Prountzos,
Xin Sui, M. Amber Hassaan, Milind Kulkarni, Martin Burtscher,

and Keshav Pingalil. Structure-driven optimizations for amor-
phous data-parallel programs. In Proceedings of PPoPP’10,
pages 3 14, New York, NY, USA, 2010. ACM.

[24] Vijay Menon, Ali reza Adl-tabatabai, Steven Balensiefer,
Richard L. Hudson, Adam Welc, Tatiana Shpeisman, and
Bratin Saha. Practical weak-atomicity semantics for java stm. In
Proceedings of ACM Symposium on Parallellism in Algorithms
and Architectures, 2008.

[25] Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, and
Kunle Olukotun. STAMP: Stanford transactional applications
for multiprocessing. In Proceedings of IISWC’08, pages 3546,
2008.

[26] V. Krishna Nandivada, Jun Shirako, Jisheng Zhao, and Vivek
Sarkar. A transformation framework for optimizing task- parallel
programs. ACM Trans. Program. Lang. Syst., 35(1):3, 2013.

[27] OpenMP Application Program Interface, version 3.0, May
2008. http://www.openmp.org/mp-documents/spec30.pdf.

[28] Raghavan Raman, Jisheng Zhao, Vivek Sarkar, Martin
Vechev, and Eran Yahav. Scalable and precise dynamic datarace
detection for structured parallelism. In Proceedings of PLDI’12,
pages 531 542.

[29] Jun Shirako, David M. Peixotto, Vivek Sarkar, and William N.
Scherer. Phasers: a unified deadlock-free construct for collective
and point-to-point synchronization. In Proceedings of ICS’08,
pages 277 288.

[30] Haris Volos, Adam Welc, Ali-reza Adl-tabatabai, Tatiana Sh-
peisman, Xinmin Tian, and Ravi Narayanaswamy. NePaLTM:
Design and implementation of nested parallelism for trans-
actional memory systems. In Proceedings of ECOOP’09, jun
2009.

