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Hypotheses

Experiments

Throughout history, science has required

(i) data, and (ii) human insights to make sense of the data.



Al for science

Hypotheses
Machine

Learning

Experiments

o

NEWS \ 20 February 2020 Al AND UNIVERSE

Powerful antibiotics discovered The Al behind getting the first-ever picture of a
using Al ‘black hole’
A.L Predicts the Shape of Nearly Every A celebrated Al has learned a new

Protein Known to Science trick: How to do chemistry



Al for behavioral neuroscience

Mouse Action Recognition System [Segalin et al., 2021]

Data: videos depicting animal behavior



Challenges

|. Interpretability rather than black-box prediction

How is gait stable vs. unstable!?



Challenges

2. Labels can be hard to get

> 200 million image- > 300 billion words
text pairs
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Challenges

2.Labels can be hard to get

Scientists
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104 ~ 103 of frames for training!

Experiment-specific 100 expert hours to annotate one day of recording
behaviors



Challenges

3. Labels can even be unknown

Lab A Lab B

Sniff Other

>

Mount Attack

Sniff Face,
Sniff Body

Chase Bite ?77?

777



Challenges

4. Distribution shifts

Lab A Lab C

Lab A: Anderson Lab at Caltech; Lab B,C: Mazmanian Lab at Caltech



Science needs systematic mechanisms for...

Lab A Lab C

(i) interpreting discovered insights
(i) incorporating domain knowledge to reduce need for data
(iii) reusing code and data across labs



Data-driven discovery as programming
7

Insights
- 0 Code — Model
Y >
1

Priors, constraints
o Features\
:i labels
j f Data

(i) Neurosymbolic programs
(i) Neurosymbolic learning algorithms

Neurosymbolic Programming for Science. Sun*, Tjandrasuwita*, Sehgal*, Solar-Lezama, Chaudhuri, Yue,
Costilla-Reyes. Neurl|PS Al4Science workshop 2022.



A. Neurosymbolic Programs



Neurosymbolic Program: Example

IF (distance between noses) < A AND
T %X (facing angle) < B

THEN investigation IF
%X (acceleration of mouse 1) > C

ELSE investigation IF
@ (distance from nose 1 to centroid 2) <D



Neurosymbolic Program: Example
IF (distance between noses) < A AND
- B @(facing angle) < B

THEN investigation IF
%X (acceleration of mouse 1) > C

ELSE investigation |F
#{ (distance from nose 1 to centroid 2) < D
e ‘/Features defined by
e experts




Neurosymbolic Program: Example
IF (distance between noses) < A AND
- B @(facing angle) < B

THEN investigation IF
%X (acceleration of mouse 1) > C

ELSE investigation |
@ (distance from nose 1 to centroid 2) <D

Structure & parameters
learned from data




Neurosymbolic Program: Example
IF (distance between noses) < A AND
R s s %X (facing angle) < B

THEN investigation IF
%X (acceleration of mouse 1) > C

ELSE investigation |F
@ (distance from nose 1 to centroid 2) <D

Filter
weight

Time



B. Neurosymbolic Learning Algorithms



Domain-Specific Language (DSL):
“A Family of Programs”’

Program syntax defined as a grammar:

a = x|c
/ Parameterized neural
Program L Olan, - ar) [ @o(an, .y op) <« functions
structure selg X ’ map()\xl.ozl) X ‘ fold()\:vl.al) CXT
if 0%, then o; else ay Sequence
Algebraic combinators
operations

Type system tracking, for example, vector and matrix dimensions

DSL is differentiable, so you can train an NN in the context of a larger program
* For example, differentiable interpretation of if-then-else statements



Neurosymbolic Program Synthesis
4 )

a = x|c
®(ar, ..., ax) [ @olar,..., o)

sels x | map(Axi.aq) z | fold(Az1.0q) ¢ @

if ap then o; else as

k Domain Specific Language (DSL) /

Learning Objective Learning Algorithm .
[(Loss Function) ] » [(program synthesis) » Neurosymbolic Program (a, 8)




Learning as Bilevel Optimization

structure parameters

/>

min (m@in Loss(a,0) + s(a))
a

* Loss(a, ) quantifies fit to the dataset

* The structural cost s(a) penalizes complex program structures.



m;n (mgn Loss(a,0) + s(a))

Learning Strategy

Domain-Specific
Language (DSL)

[ Learning Objectlve] | [Learning Algorithm J ’ [ Neurosymbolic Program (a, 9) ]

(‘“‘Loss Function”) (aka synthesis)

* Setting a as a neural network — standard deep learning

* Finding a is analogous to neural architecture search
* Sometimes call a the “program architecture”

* Classic program synthesis focuses on a, with 8 being very simple



Enumerating programs

Program enumeration is really a graph search problem

More
complete
program

Choices on how to
extend the program

Partially
completed
program



Enumerating programs

Program enumeration is really a graph search problem

map input ??

Choices on how to
extend the program

map 17 2?



Estimating the “Cost to Go”’

* P* = partial program (non-terminal nodes)

* C(P") = completions of P* (reachable terminal nodes)

“Cost to Go”

|
| 1

Heuristic Estimate: d(P*) = P%lg [AS(P P ) + mln Loss(ap, 9p)]

| |
Additional Structure Cost Training Loss

* If d(P”) is a lower bound it becomes an “admissible heuristic”



Guiding program search

Problem: You only get ground truth on the
leaves of the search tree

* Value for an intermediate node is only an estimate

éé Can we get a better estimate with deep learning?
§&@

s(P) + mein Loss(ap, 8p)



Motivating Observation/Assumption:
Functional Representational Power

Programs in DSL

‘““Large’ Neural Models

‘““Neural Relaxation’’:

Every DSL program can be (approximately) represented by some “large” neural model.



Implication
(abstract form) feF
Slack due to approximation
Large Neural error or training ability

/ e

VP,3f € Fst.d(f) < d(P) + ¢

/ \/

From DSL Any Cost Function

We can train an admissible heuristic!

‘““Neural Relaxation” Every DSL program can be (approximately) represented by some “large” neural model.



Informed Search (e.g.,A%)

* Use d(P") to prune the search

] [ Az. foldl x (Azy. h™)] ]]

/ Can Prune This Branch!

/ Structural Cost \ Training Loss

s(C Zemapxg” ) + d(([ Zemapxg’ ]) > s(rz.z))+ Loss([ .z )

\ “Cost to Go” Heuristic

Suppose:




A* Search

* Priority queue of current leaf nodes:
 Sorted by s(P*) + d(P")

* Pop off top program P*
* If P* is complete, terminate
* Else, expand P", add child nodes to priority queue

Lower bounds “Cost to Go”
L J

* Guarantee:if d(P") is admissible, A* will return optimal P
 Tighter d(P") prunes more aggressively
* Uninformed d(P") (e.g.,always 0) — uninformed search




NEAR: Neural Admissible Relaxations

Ax.map x g~ ] [ Azx. foldl x (Azy. h™)| ]]

Fill hole with NN

If a large neural network
cannot fit this hole, then a
completion from the DSL also
cannot

Train parameters

Use training loss as admissible heuristic

Stop any time!

Learning Differentiable Programs with Admissible Neural Heuristics, Ameesh Shah* Eric Zhan*, et al., NeurlIPS 2020



. 0.45 - enum.
NEAR: Results  MC
0.40; - —— genetic
+0.35/ —— |[DDFS-NEAR
O — A*-NEAR
© .30/
N
©
o 0.25-
0.20
Order of magnitude speedup 0.15-
<—— NEAR
0.10 x ' -

0 100 200 300 400 500
Wall-clock time (min)

Learning Differentiable Programs with Admissible Neural Heuristics, Ameesh Shah* Eric Zhan*, et al., NeurIPS 2020



Other uses of relaxations

S Distillation: 0 = argmin BregmanDist(o, f)
),mboll'c ’

Update SO’(,F)
Neurosymbolic , Prs A
relaxations "\ / RN
fo(x) =a(x)+ve(x) NN N

~
S ="

Relax: Add a parameterized neural component to a program

Update: Gradient-based update to neural component
* Approximation to gradient in program space

Distill: Synthesize symbolic program closest to current neurosymbolic program

Verma, Le,Yue, & Chaudhuri. Imitation-Projected Programmatic Reinforcement Learning. NeurlPS 2019.



Back to behavior analysis 1D ConvNet  F1:0.86

How to describe “attack”
behavior? [ A

Learned Program F1:0.84

IF (mouse 1 & 2 acceleration) > A AND

Filter { @(mouse 1 & 2 velocity) < B

weight

v

Time THEN attack , EISE not attack

Interpreting Expert Differences in Annotation Behavior. Tjandrasuwita, Sun, Kennedy, Chaudhuri, Yue. CV4Animals 202 1.



Handling raw inputs

Use a complementary method (e.g., keypoints) to abstract images into
symbolically interpretable features [Sun, Ryuou, et al., CVPR 2022]



Integration into existing tool (Bento)

i
I
I
)
I
I
I
» | |
\. | |
i l/ 'n : A
Annotations \ | ||
[ Filter 1 interact lﬂ\ ‘ \ | " |
. | { ; : I| '
l{hf. rg\l‘n ’{es nose dist : / |||
I
( ] \ L
{ | 1 \ \
I l' Wiy
| e . | Iz
Edit hotkeys M : /
S h1: Filte @ NoseKeybointDistanceSeicty/
I
I
Human Labels I || i
I
Program Output :
20 15 -10 5 0 5 10 15 20 i
I
I
SETTEEN T WO | | Il U] ovoms = i
Window (sec): 20 Trace zoom: 4 - Plotting: raw (scal... v units v lines . 20 15 10 5 (l) 5 10 15 20
Channel thresholded featu...”  Add  Delete Duplicate Behaviors Add  Delete Fast Edit da MARS time (sec)
Mouse 1 v Session 1 v Trial 1 v Chi v 'min_res_nose_dist - V| [FAdd A.Add Edit Thresholds

Segalin, et al., eLife 2021



Extension to unsupervised learning

Sniff Other
Sn?ff Face, Mount Attack
Sniff Body

Chase Bite ?77?

777

Unsupervised Learning of Neurosymbolic Encoders. Zhan, Sun, Kennedy,Yue, & Chaudhuri. TMLR 2022.



Variational autoencoders (VAEs)

Latent
representation Reconstructed
Latent representations capture Pt Input
\

semantics of inputs

5
In behavior analysis: d¢ _.@

* Cluster the representations

Neural
2z
* Create new labels that capture the clusters m ¢ Decoder
X Encoder

During training, maximize ELBO := E, x) |logpe(x|z)| — Dk 1 (g4(zlx)||p(z)) < logp(x)



Neurosymbolic encoders

Li>—7.02]

mapaverage (fun x;.
multiply (ResidentSpeedAffine;_g o5). g 25(Tt),
NoseTailDistAffine; o421, _9.06(Tt)) x

Cluster 0: The mice are further apart

* Second term is positive, negative product is less than the threshold.

Cluster 1: The mice are close together

» Second term is negative, product is positive.

Unsupervised Learning of Neurosymbolic Encoders. Zhan, Sun, Kennedy, Yue, & Chaudhuri. TMLR 2022




VAEs with neurosymbolic encoders

Symbolic Encoder Reconstructed
Input Input
. Z(a,)
' Neural
¢  Decoder
Neural
Encoder I

]
. .
,,,,,,,

. "

. .

----------

----------
----------------------
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Results (on human-annotated behavior data)

Cluster purity (CalMS21) Normalized mutual information (CalMS21)
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More well-structured latent spaces

Comparable performance to expert-written programs in downstream tasks



What’s ahead?

Shared
abstractions

Insights

CE—

Priors, constraints

Featu res\ /
label

Full-stack Al-aided science through neurosymbolic programming




Challenge: Scalability

Searching for program structures is fundamentally expensive.

Possible recipes:
e Large Language Models
o Parallelism

ViperGPT:Visual Inference via Python
Execution for Reasoning. Suris, Menon,Vondrick, 2023.

Query q

“Which pet is in
the top left?”

l

Visual Input x

ViperGPT

Code LLM
T

API Specification

Generated Code 2

def process_query_function(image):
image_patch = ImagePatch(image)
pets = image_patch.find("pet")
pets_sorted = ...

return result

Code Execution ¢

Python Interpreter
+

APl Implementation

Result: “shiba inu”




Challenge:Vocabulary discovery

Where does the DSL come from?

Possible recipe: Library learning

List Processing Text Editing Regexes L e arn e d
Sum List Abbreviate Phone numbers

[1 23] —+6 Allen Newell -A.N. (555) 867-5309 T k °

[4 68 1]— 17 Herb Simon —H.S.  (50) 555-2368 asSKS lerary of
Double Drop Last Three Currency

[123] —>[246] shrdlu— shr $100.25 Concepts
[4 51] — [8 10 2] shakey — sha $4.50

Block Towers Symbolic Regression Recursive Physical Laws LOGO Graphics

Programming . 1 _
a = — F; O
f\/ Filter Red Z 1 O IE
[(AEEEE] — [HE]

e o
y=1) R (R EP @ Q/

Dreamcoder: Growing generalizable, interpretable knowledge with wake-sleep Bayesian learning. Ellis et al., 2021.



Challenge:Vocabulary Discovery

Possible recipe: Symbol discovery through vision-language models

Food101
guacamole (901%) Ranked 1out of 101 labels

v aphoto of guacamole, a type of food.
>< a ;)hoto of ceviche, a type of food.

X a photo of edamame, a type of food.
X a photo of tuna tartare, a type of food.

X a photo of hummus, a type of food.

Learning Transferable Visual Models From Natural Language Supervision. Radford et al., 2021.



Neurosymbolic Programming Everywhere!

Understanding the World Through Code

Funded through the NSF Expeditions in Computing Program

i YRICE® Penn .$.

UNIVERSITY 0f PENNSYLVANIA  University

[Vechev et al., 2023]

Scallop

[Naik et al., 2022]

Wolfram|Alpha as the Way to
Bring Computational Knowledge
Superpowers to ChatGPT

January 9, 2023

ect in 2020, And its happening now with

). And even
ChatGPT

January 9, 2023

with Wolfram| Alpha

Used Wolfram v

Here is the current configuration of Jupiter's Galilean moons:

Callisto | Europa | Jupiter | Io | Ganymede

Wolfram

' Install &

Access computation, math, curated

knowledge & real-time data through
Wolfram|Alpha and Wolfram Language

Europa
Ganymede

Callisto

Mass (kg)

Average Radius (mi)
8.9298 x 1022 1131.82

4.7987 x 10722 969.84

1.4815 x 10723 1635

1.0757 x 10723 1497.7

March 23, 2023

[OpenAl Plugins, 2023]

(as viewed from Earth)

ymede, and Callisto):

Rotation Period
4246 h
85.22h

7.155 days

16.69 days

ons of the Galilean moons are
s they orbit Jupiter. The image
at a specific point in time.

b physical properties of the

Age (billion yr)
45
45
45

45



December 5, 2022, 10 am Chicago time . PaneliSts

Neurosymbolic

Programming

Tutorial at Neural Information Processing Systems, 2022

Jeevana Inala Ann Kennedy Pushmeet Kohli

Microsoft Research, Northwestern University Deepmind
Redmond

Speakers

| e o §rira;n:?Rajama_hnil : Yisong_Yue
: icrosoft Research, India
Swarat Chaudhuri Armando Solar-Lezama Jennifer J. Sun Caltech
UT Austin MIT Caltech (Moderator)

https://neurips.cc/virtual/2022/tutorial/55804


https://neurips.cc/virtual/2022/tutorial/55804
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Notebooks on
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programming

for science

> tutorial_notebook|.ipynb E

bit.ly/neurosym_tutorial _popl23
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