
Neurosymbolic
Programming
for Science

Swarat Chaudhuri
The University of Texas at Austin

Trustworthy Intelligent Systems @ UT

Trustworthy Intelligent Systems @ UT
trishul.cs.utexas.edu

* Based on work with Jennifer Sun, Atharva Sehgal, Ameesh Shah, Eric Zhan, Ann Kennedy, Megan Tjandrasuwita, and Yisong Yue

Neurosymbolic Programming

(Deep) Machine
Learning

Programming
Languages &

Formal Methods

Neurosymbolic
Programming

Neurosymbolic Programming. Chaudhuri, Ellis, Polozov, Singh, Solar-Lezama, Yue.
Foundations and Trends in Programming Languages, 2021.

Automated
Programming
& Reasoning

AI for
Scientific
Discovery

High-Assurance
Learning-Enabled

Systems

Neurosymbolic
Programming

Trustworthy Intelligent Systems @ UT

Trustworthy Intelligent Systems @ UT
trishul.cs.utexas.edu

Dweep Trivedi

Greg Anderson

Chenxi Yang

Yeming Wen Josh Hoffman

Meghana Sistla

Atharva Sehgal

Amitayush
Thakur

Thomas
Logan

Sam Anklesaria Chenxi Yang Arya
Grayeli

Amal
Babu

Throughout history, science has required

(i) data, and (ii) human insights to make sense of the data.

Data

Hypotheses
Thought Experiments

Data

Hypotheses

Experiments

AI for science

Machine
Learning

AI for behavioral neuroscience

Mouse Action Recognition System [Segalin et al., 2021]

Data: videos depicting animal behavior

How is gait stable vs. unstable?

Challenges
1. Interpretability rather than black-box prediction

Challenges
2. Labels can be hard to get

DALL-E2 ChatGPT

> 200 million image-
text pairs

> 300 billion words

104 ~ 105 of frames for training!

100 expert hours to annotate one day of recording

Scientists

Experiment-specific
behaviors

Challenges
2. Labels can be hard to get

Challenges
3. Labels can even be unknown

Sniff Other

Sniff Face,
Sniff Body

Mount

Chase Bite ???

Lab A Lab B

???

Attack

Lab A Lab B Lab C

Challenges
4. Distribution shifts

Lab A: Anderson Lab at Caltech; Lab B,C: Mazmanian Lab at Caltech

Science needs systematic mechanisms for…
Lab A Lab B Lab C

(i) interpreting discovered insights
(ii) incorporating domain knowledge to reduce need for data
(iii) reusing code and data across labs

Data-driven discovery as programming

Code

Data

Insights

Priors, constraints

Features,
labels

Model

(i) Neurosymbolic programs
(ii) Neurosymbolic learning algorithms

Neurosymbolic Programming for Science. Sun*, Tjandrasuwita*, Sehgal*, Solar-Lezama, Chaudhuri, Yue,
Costilla-Reyes. NeurIPS AI4Science workshop 2022.

A. Neurosymbolic Programs

Neurosymbolic Program: Example

IF (distance between noses) < A AND

 (facing angle) < B

THEN investigation IF
 (acceleration of mouse 1) > C

ELSE investigation IF
 (distance from nose 1 to centroid 2) < D

Neurosymbolic Program: Example

IF (distance between noses) < A AND

 (facing angle) < B

THEN investigation IF
 (acceleration of mouse 1) > C

ELSE investigation IF
 (distance from nose 1 to centroid 2) < D

Features defined by
experts

Neurosymbolic Program: Example

IF (distance between noses) < A AND

 (facing angle) < B

THEN investigation IF
 (acceleration of mouse 1) > C

ELSE investigation IF
 (distance from nose 1 to centroid 2) < D

Structure & parameters
learned from data

Neurosymbolic Program: Example

IF (distance between noses) < A AND

 (facing angle) < B

THEN investigation IF
 (acceleration of mouse 1) > C

ELSE investigation IF
 (distance from nose 1 to centroid 2) < D

Filter
 weight

Time

B. Neurosymbolic Learning Algorithms

<latexit sha1_base64="pHGhRkF8HDb+S6UzuUoHjZrYrxs=">AAADhXicfVLfb9MwEHYTYCP8WAePvFhUqzo0qqSaxjQJMYkXHoeg26S6ihzn0lp1nGA7U6so+0f4r3jjv8Fps9F1MEuJvvvuuzvf+aJccG18/3fLcR89frK1/dR79vzFy5327qtznRWKwZBlIlOXEdUguISh4UbAZa6AppGAi2j2ufZfXIHSPJPfzSKHcUonkiecUWOpcLf1k0Qw4bKEH5IqRRfvKo9QkU8p7uKTk4/2P8ck5TFmmBCv210ZJMtFoXsrZRgckDgz+gA39mwfY29NF5bETMHQ6oGAOjm+yW5gbqKktG1V4bfr+V02pXmFe0TYJmOK52HQv8m6vylNMhH/V8tqNfH2lmX/5rbjS/j8oQrrN02pmdo4nlTXS8xN2Wj9hrFe27y0VpPjlgah4ZYe1HkJyHjtJcJ2x+/7y4Pvg6ABHdScs7D9y86VFSlIwwTVehT4uRmXVBnOBNiXLTTklM3oBEYWSpqCHpfLLarwnmVinGTKftLgJbseUdJU60UaWWXdgN701eS/fKPCJMfjksu8MCDZqlBSCGwyXK8kjrkCZsTCAsoUt3fFbEoVZcYurmeHEGy2fB+cD/rBUf/w66BzetSMYxu9QW9RDwXoAzpFX9AZGiLmOE7PCZyBu+W+dw/dRuu0mpjX6M5xP/0BhDkbqg==</latexit>

↵ ::= x | c
| �(↵1, . . . ,↵k) | �✓(↵1, . . . ,↵k)

| selS x | map(�x1.↵1) x | fold(�x1.↵1) c x

| if ↵0 then ↵1 else ↵2

Program syntax defined as a grammar:

Parameterized neural
functions

Domain-Specific Language (DSL):
“A Family of Programs”

Algebraic
operations

Program
structure

Type system tracking, for example, vector and matrix dimensions

Sequence
combinators

DSL is differentiable, so you can train an NN in the context of a larger program
• For example, differentiable interpretation of if-then-else statements

Neurosymbolic Program Synthesis

Domain Specific Language (DSL)

Learning Objective
(Loss Function) Neurosymbolic Program (", $) Learning Algorithm

(program synthesis)

<latexit sha1_base64="pHGhRkF8HDb+S6UzuUoHjZrYrxs=">AAADhXicfVLfb9MwEHYTYCP8WAePvFhUqzo0qqSaxjQJMYkXHoeg26S6ihzn0lp1nGA7U6so+0f4r3jjv8Fps9F1MEuJvvvuuzvf+aJccG18/3fLcR89frK1/dR79vzFy5327qtznRWKwZBlIlOXEdUguISh4UbAZa6AppGAi2j2ufZfXIHSPJPfzSKHcUonkiecUWOpcLf1k0Qw4bKEH5IqRRfvKo9QkU8p7uKTk4/2P8ck5TFmmBCv210ZJMtFoXsrZRgckDgz+gA39mwfY29NF5bETMHQ6oGAOjm+yW5gbqKktG1V4bfr+V02pXmFe0TYJmOK52HQv8m6vylNMhH/V8tqNfH2lmX/5rbjS/j8oQrrN02pmdo4nlTXS8xN2Wj9hrFe27y0VpPjlgah4ZYe1HkJyHjtJcJ2x+/7y4Pvg6ABHdScs7D9y86VFSlIwwTVehT4uRmXVBnOBNiXLTTklM3oBEYWSpqCHpfLLarwnmVinGTKftLgJbseUdJU60UaWWXdgN701eS/fKPCJMfjksu8MCDZqlBSCGwyXK8kjrkCZsTCAsoUt3fFbEoVZcYurmeHEGy2fB+cD/rBUf/w66BzetSMYxu9QW9RDwXoAzpFX9AZGiLmOE7PCZyBu+W+dw/dRuu0mpjX6M5xP/0BhDkbqg==</latexit>

↵ ::= x | c
| �(↵1, . . . ,↵k) | �✓(↵1, . . . ,↵k)

| selS x | map(�x1.↵1) x | fold(�x1.↵1) c x

| if ↵0 then ↵1 else ↵2

Learning as Bilevel Optimization

min! (min" %&'' (, * + ' ()

• !"##(%, ') quantifies fit to the dataset
• The structural cost #(%) penalizes complex program structures.

structure parameters

Learning Strategy

• Setting # as a neural network → standard deep learning

• Finding # is analogous to neural architecture search
• Sometimes call ! the “program architecture”

• Classic program synthesis focuses on #, with % being very simple

Learning Objective
(“Loss Function”)

Neurosymbolic Program (", $) Learning Algorithm
(aka synthesis)

Domain-Specific
Language (DSL)

min& 	(min' &'((), + +	 ())

Enumerating programs

Program enumeration is really a graph search problem

Choices on how to
extend the program

Partially
completed
program

More
complete
program

Enumerating programs

Program enumeration is really a graph search problem

Choices on how to
extend the program

map ?? ??

map input ??

Estimating the “Cost to Go”

•)∗ = partial program (non-terminal nodes)
• ℂ()∗) = completions of)∗ (reachable terminal nodes)

Heuristic Estimate: d .∗ ≈ min)∈ℂ)∗ Δ(., .∗ +min' Loss()), +))

• If +)∗ is a lower bound it becomes an “admissible heuristic”

Additional Structure Cost Training Loss

“Cost to Go”

Guiding program search

Problem: You only get ground truth on the
leaves of the search tree
• Value for an intermediate node is only an estimate

Can we get a better estimate with deep learning?

(. +	min' 	Loss()), +))	

!!∗

!

!#∗

!$∗

Motivating Observation/Assumption:
Functional Representational Power

“Large” Neural Models

Programs in DSL

Every DSL program can be (approximately) represented by some “large” neural model.

“Neural Relaxation”:

Implication
(abstract form)

Any Cost Function

Slack due to approximation
error or training ability

∀., ∃0 ∈ 2 s.t. 3 0 ≤ 3 . + 5

Large Neural

Every DSL program can be (approximately) represented by some “large” neural model.“Neural Relaxation”

From DSL

,
- ∈ .

We can train an admissible heuristic!

Informed Search (e.g., A*)

• Use 4 .∗ to prune the search �x. f⇤

�x. [] �x. foldl x (�zy. h⇤)[]�x. x !".map	"	(∗

" .	 + Loss(.)>

Suppose: Structural Cost

“Cost to Go” Heuristic

Training Loss

Can Prune This Branch!

" .	 + + .	"#.%&'	#)∗ "#.%&'	#)∗

A* Search

• Priority queue of current leaf nodes:
• Sorted by (.∗ + 4(.∗)

• Pop off top program)∗
• If .∗ is complete, terminate
• Else, expand .∗, add child nodes to priority queue

• Guarantee: if +()∗) is admissible, A* will return optimal)
• Tighter 4(.∗) prunes more aggressively
• Uninformed 4 .∗ (e.g., always 0) → uninformed search

Lower bounds “Cost to Go”

"∗

�x. f⇤

�x. [] �x. foldl x (�zy. h⇤)[]�x. x !".map	"	(∗

NEAR: Neural Admissible Relaxations

Learning Differentiable Programs with Admissible Neural Heuristics, Ameesh Shah*, Eric Zhan*, et al., NeurIPS 2020

Fill hole with NN

Train parameters

Use training loss as admissible heuristic

If a large neural network
cannot fit this hole, then a
completion from the DSL also
cannot Stop any time!

NEAR: Results

NEAR

Learning Differentiable Programs with Admissible Neural Heuristics, Ameesh Shah*, Eric Zhan*, et al., NeurIPS 2020

B E T T E ROrder of magnitude speedup

Other uses of relaxations
Symbolic programs ' (Update Distill

Distill: Synthesize symbolic program closest to current neurosymbolic program

Update: Gradient-based update to neural component
• Approximation to gradient in program space

Relax: Add a parameterized neural component to a program

Neurosymbolic
relaxations

)) (= ' (+ ,)(()

Distillation: / = argmin
!

	 BregmanDist(/, -)	

Verma, Le, Yue, & Chaudhuri. Imitation-Projected Programmatic Reinforcement Learning. NeurIPS 2019.

IF (mouse 1 & 2 acceleration) > A AND

 (mouse 1 & 2 velocity) < B

THEN attack , ElSE not attack

1D Conv Net

How to describe “attack”
behavior?

…

Learned Program

F1: 0.86

F1: 0.84

Filter
 weight

Time

Interpreting Expert Differences in Annotation Behavior. Tjandrasuwita, Sun, Kennedy, Chaudhuri, Yue. CV4Animals 2021.

Back to behavior analysis

Handling raw inputs

Use a complementary method (e.g., keypoints) to abstract images into
symbolically interpretable features [Sun, Ryuou, et al., CVPR 2022]

Integration into existing tool (Bento)

Segalin, et al., eLife 2021

Extension to unsupervised learning

Sniff Other

Sniff Face,
Sniff Body

Mount

Chase Bite ???
???

Attack

Unsupervised Learning of Neurosymbolic Encoders. Zhan, Sun, Kennedy, Yue, & Chaudhuri. TMLR 2022.

Variational autoencoders (VAEs)

!!

Latent
representation

Latent representations capture
semantics of inputs

In behavior analysis:
• Cluster the representations

• Create new labels that capture the clusters

During training, maximize

Neurosymbolic encoders

Cluster 0: The mice are further apart
• Second term is positive, negative product is less than the threshold.

Cluster 1: The mice are close together
• Second term is negative, product is positive.

: :

Unsupervised Learning of Neurosymbolic Encoders. Zhan, Sun, Kennedy, Yue, & Chaudhuri. TMLR 2022

VAEs with neurosymbolic encoders

Results (on human-annotated behavior data)

Comparable performance to expert-written programs in downstream tasks

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ra
nd

om TV
AE

TV
AE +

 k-
mea

ns

VQ
-T

VAE

Be
ta-

TVA
E

Our
s (

1 p
ro

gr
am

)

Our
s (

2 p
ro

gr
am

s)

Our
s (

3 p
ro

gr
am

s)

Cluster purity (CalMS21)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ra
nd

om TV
AE

TV
AE +

 k-
mea

ns

VQ
-T

VAE

Be
ta-

TVA
E

Our
s (

1 p
ro

gr
am

)

Our
s (

2 p
ro

gr
am

s)

Our
s (

3 p
ro

gr
am

s)

Normalized mutual information (CalMS21)

More well-structured latent spaces

B E T T E R

What’s ahead?

Code

Data

Insights

Priors, constraints

Features,
labels

Model

Shared
abstractions

Full-stack AI-aided science through neurosymbolic programming

Challenge: Scalability
Searching for program structures is fundamentally expensive.

Possible recipes:
● Large Language Models
● Parallelism
● ...

ViperGPT: Visual Inference via Python
Execution for Reasoning. Suris, Menon, Vondrick, 2023.

Challenge: Vocabulary discovery
Where does the DSL come from?

Possible recipe: Library learning

Dreamcoder: Growing generalizable, interpretable knowledge with wake-sleep Bayesian learning. Ellis et al., 2021.

Learned
Library of
Concepts

Tasks

Challenge: Vocabulary Discovery

Possible recipe: Symbol discovery through vision-language models

Learning Transferable Visual Models From Natural Language Supervision. Radford et al., 2021.

Neurosymbolic Programming Everywhere!

[OpenAI Plugins, 2023]

[Vechev et al., 2023]

[Naik et al., 2022]

https://neurips.cc/virtual/2022/tutorial/55804

https://neurips.cc/virtual/2022/tutorial/55804

Yisong
Yue

Omar
Costilla-Reyes

Armando
Solar-Lezama

Ameesh
Shah

Eric
Zhan

Megan
Tjandrasuwita

Atharva
Sehgal

Acknowledgements

Jennifer
Sun

Ann
Kennedy

Notebooks on
neurosymbolic
programming

for science

bit.ly/neurosym_tutorial_popl23

> tutorial_notebook1.ipynb

Automated
Programming
& Reasoning

AI for
Scientific
Discovery

High-assurance
Autonomy

Neurosymbolic
Programming

Trustworthy Intelligent Systems @ UT

Trustworthy Intelligent Systems @ UT
trishul.cs.utexas.edu

