

Swarat Chaudhuri
The University of Texas at Austin

Neurosymbolic Programming for Science

^{*} Based on work with Jennifer Sun, Atharva Sehgal, Ameesh Shah, Eric Zhan, Ann Kennedy, Megan Tjandrasuwita, and Yisong Yue

Neurosymbolic Programming

Neurosymbolic Programming. Chaudhuri, Ellis, Polozov, Singh, Solar-Lezama, Yue. Foundations and Trends in Programming Languages, 2021.

Formal Methods

Neurosymbolic Programming

Swarat Chaudhuri Kevin Ellis UT Austin kellis@cornell.edu swarat@cs.utexas.edu **Oleksandr Polozov** Rishabh Singh polozov@google.com rising@google.com Armando Solar-Lezama **Yisong Yue** asolar@csail.mit.edu yyue@caltech.edu

Amal Babu

Yeming Wen

Meghana Sistla

Thomas Logan

Amitayush Thakur

Discovery

Atharva Sehgal

High-Assurance

Learning-Enabled

Systems

Sam Anklesaria

Chenxi Yang

Iosh Hoffman

Dweep Trivedi

Greg Anderson

Chenxi Yang

Arya Grayeli

Al for Scientific

Throughout history, science has required

(i) data, and (ii) human insights to make sense of the data.

Al for science

NEWS 20 February 2020

Powerful antibiotics discovered using AI

A.I. Predicts the Shape of Nearly Every Protein Known to Science ALAND UNIVERSE

The Al behind getting the first-ever picture of a 'black hole'

A celebrated AI has learned a new trick: How to do chemistry

by Marc Zimmer, The Conversation

Al for behavioral neuroscience

Mouse Action Recognition System [Segalin et al., 2021]

Data: videos depicting animal behavior

I. Interpretability rather than black-box prediction

How is gait stable vs. unstable?

2. Labels can be hard to get

> 200 million imagetext pairs

> 300 billion words

| The content of the conten

2. Labels can be hard to get

 $10^4 \sim 10^5$ of frames for training!

100 expert hours to annotate one day of recording

3. Labels can even be unknown

Lab A

Lab B

???

4. Distribution shifts

Lab A

Lab B

Lab C

Science needs systematic mechanisms for...

- (i) interpreting discovered insights
- (ii) incorporating domain knowledge to reduce need for data
- (iii) reusing code and data across labs

Data-driven discovery as programming

- (i) Neurosymbolic programs
- (ii) Neurosymbolic learning algorithms

Neurosymbolic Programming for Science. Sun*, Tjandrasuwita*, Sehgal*, Solar-Lezama, Chaudhuri, Yue, Costilla-Reyes. NeurIPS Al4Science workshop 2022.

A. Neurosymbolic Programs


```
IF (distance between noses) < A AND (facing angle) < B
```

THEN investigation | IF (acceleration of mouse 1) > C

ELSE investigation | F (distance from nose 1 to centroid 2) < D

IF (distance between noses) < A AND (facing angle) < B

THEN investigation IF (acceleration of mouse 1) > C

ELSE investigation | F (distance from nose 1 to centroid 2) < D

Features defined by experts

IF (distance between noses) < A AND (facing angle) < B

THEN investigation IF (acceleration of mouse 1) > C

ELSE investigation IF (distance from nose 1 to centroid 2) < D

Structure & parameters learned from data

IF (distance between noses) < A AND (facing angle) < B

THEN investigation IF

(acceleration of mouse 1) > C

ELSE investigation IF

(distance from nose 1 to centroid 2) < D

B. Neurosymbolic Learning Algorithms

Domain-Specific Language (DSL): "A Family of Programs"

Program syntax defined as a grammar:

Type system tracking, for example, vector and matrix dimensions

DSL is differentiable, so you can train an NN in the context of a larger program

• For example, differentiable interpretation of if-then-else statements

Neurosymbolic Program Synthesis

```
\alpha ::= x \mid c
| \oplus (\alpha_1, \dots, \alpha_k) | \oplus_{\theta}(\alpha_1, \dots, \alpha_k)
| \mathbf{sel}_S x | \mathbf{map}(\lambda x_1.\alpha_1) x | \mathbf{fold}(\lambda x_1.\alpha_1) c x
| \mathbf{if} \alpha_0 \mathbf{then} \alpha_1 \mathbf{else} \alpha_2
```

Domain Specific Language (DSL)

Learning Objective (Loss Function)

Learning Algorithm (program synthesis)

Neurosymbolic Program (α, θ)

Learning as Bilevel Optimization

- $Loss(\alpha, \theta)$ quantifies fit to the dataset
- The structural cost $s(\alpha)$ penalizes complex program structures.

Learning Strategy

- Setting lpha as a neural network ightarrow standard deep learning
- Finding lpha is analogous to neural architecture search
 - Sometimes call α the "program architecture"
- Classic program synthesis focuses on α , with θ being very simple

Enumerating programs

Program enumeration is really a graph search problem

Enumerating programs

Program enumeration is really a graph search problem

Estimating the "Cost to Go"

- P^* = partial program (non-terminal nodes)
- $\mathbb{C}(P^*)$ = completions of P^* (reachable terminal nodes)

Heuristic Estimate:
$$d(P^*) \approx \min_{P \in \mathbb{C}(P^*)} \left[\Delta s(P, P^*) + \min_{\theta} \operatorname{Loss}(\alpha_P, \theta_P) \right]$$
Additional Structure Cost Training Loss

• If $d(P^*)$ is a lower bound it becomes an "admissible heuristic"

Guiding program search

Problem: You only get ground truth on the

• Value for an intermediate node is only an estimate

Can we get a better estimate with deep learning?

Motivating Observation/Assumption: Functional Representational Power

"Neural Relaxation":

Every DSL program can be (approximately) represented by some "large" neural model.

Implication (abstract form)

We can train an admissible heuristic!

"Neural Relaxation" Every DSL program can be (approximately) represented by some "large" neural model.

Informed Search (e.g., A*)

A* Search

- Priority queue of current leaf nodes:
 - Sorted by $s(P^*) + d(P^*)$
- Pop off top program P^*
 - If P^* is complete, terminate
 - Else, expand P^* , add child nodes to priority queue

Lower bounds "Cost to Go"

- Guarantee: if $d(P^*)$ is admissible, A^* will return optimal P
 - Tighter $d(P^*)$ prunes more aggressively
 - Uninformed $d(P^*)$ (e.g., always 0) \rightarrow uninformed search

NEAR: Neural Admissible Relaxations

NEAR: Results

Order of magnitude speedup

Other uses of relaxations

Relax: Add a parameterized neural component to a program

Update: Gradient-based update to neural component

Approximation to gradient in program space

Distill: Synthesize symbolic program closest to current neurosymbolic program

Back to behavior analysis

How to describe "attack" behavior?

IF (mouse 1 & 2 acceleration) > A AND (mouse 1 & 2 velocity) < B

THEN attack, EISE not attack

Handling raw inputs

Use a complementary method (e.g., keypoints) to abstract images into symbolically interpretable features [Sun, Ryuou, et al., CVPR 2022]

Integration into existing tool (Bento)

Extension to unsupervised learning

Variational autoencoders (VAEs)

Latent representations capture semantics of inputs

In behavior analysis:

- Cluster the representations
- Create new labels that capture the clusters

Neurosymbolic encoders

$$\mathbb{1}_{[>-7.02]} \left[\begin{array}{c} \mathbf{mapaverage} \ (\mathbf{fun} \ x_t. \\ \mathbf{multiply} \ (ResidentSpeedAffine}_{[-6.28];-8.28}(x_t), \\ NoseTailDistAffine}_{[.042];-9.06}(x_t)) \ x \end{array} \right] \quad \blacksquare \quad \blacksquare$$

Cluster 0: The mice are further apart

Second term is positive, negative product is less than the threshold.

Cluster I: The mice are close together

Second term is negative, product is positive.

VAEs with neurosymbolic encoders

Results (on human-annotated behavior data)

More well-structured latent spaces

Comparable performance to expert-written programs in downstream tasks

What's ahead?

Full-stack Al-aided science through neurosymbolic programming

Challenge: Scalability

Searching for program structures is fundamentally expensive.

Possible recipes:

- Large Language Models
- Parallelism
- ...

ViperGPT: Visual Inference via Python Execution for Reasoning. Suris, Menon, Vondrick, 2023.

Challenge: Vocabulary discovery

Where does the DSL come from?

Possible recipe: Library learning

Dreamcoder: Growing generalizable, interpretable knowledge with wake-sleep Bayesian learning. Ellis et al., 2021.

Challenge: Vocabulary Discovery

Possible recipe: Symbol discovery through vision-language models

Learning Transferable Visual Models From Natural Language Supervision. Radford et al., 2021.

Neurosymbolic Programming Everywhere!

Understanding the World Through Code

Funded through the NSF Expeditions in Computing Program

[Vechev et al., 2023]

March 23, 2023

[OpenAl Plugins, 2023]

Speakers

Swarat Chaudhuri UT Austin

Armando Solar-Lezama MIT

Jennifer J. Sun Caltech

Panelists

<u>Jeevana Inala</u> Microsoft Research, Redmond

Ann Kennedy Northwestern University

Pushmeet Kohli Deepmind

<u>Sriram Rajamani</u> Microsoft Research, India

Yisong Yue Caltech (Moderator)

Acknowledgements

Yisong Yue

Armando Solar-Lezama

Jennifer Sun

Ann Kennedy

Omar Costilla-Reyes

Ameesh Shah

Eric Zhan

Megan Tjandrasuwita

Atharva Sehgal

Notebooks on neurosymbolic programming for science

bit.ly/neurosym_tutorial_popl23

> tutorial_notebook l .ipynb

Automated Programming & Reasoning

Al for Scientific Discovery

