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Abstract
In this paper, we investigate the problem of semi-automated in-
version of imperative programs, which has the potential to make
it much easier and less error prone to write programs that natu-
rally pair as inverses, such as insert/delete operations, compres-
sors/decompressors, and so on. Viewing inversion as a subprob-
lem of program synthesis, we propose a novel synthesis technique
called Path-based Inductive Synthesis (PINS) and apply it to inver-
sion. PINS starts from a program P and a template T for its inverse.
PINS then iteratively refines the space of template instantiations by
exploring paths in the composition of P and T with symbolic ex-
ecution. PINS uses an SMT solver to intelligently guide the refine-
ment process, based on the paths explored so far. The key idea mo-
tivating this approach is the small path-bound hypothesis: that the
behavior of a program can be summarized with a small, carefully
chosen set of its program paths.

We evaluated PINS by using it to invert 14 programs such
as compressors (e.g., Lempel-Ziv-Welch), encoders (e.g., UUEn-
code), and arithmetic operations (e.g., vector rotation). Most of
these examples are difficult or impossible to invert using prior tech-
niques, but PINS was able to invert all of them. We also found that
a semi-automated technique we developed to mine a template from
the program to be inverted worked well. In our experiments, PINS
takes between one second to thirty minutes to synthesize inverses.
We believe this proof-of-concept implementation demonstrates the
viability of the PINS approach to program synthesis.

Categories and Subject Descriptors I.2.2 [Automatic Program-
ming]: Program Synthesis; D.2.5 [Testing and Debugging]: Sym-
bolic Execution

General Terms Languages, Algorithms, Theory

Keywords PINS, Program Inversion, Inductive Synthesis, Sym-
bolic execution, Testing-inspired Synthesis

1. Introduction
Recently, there has been significant interest in program synthe-
sis, in which an automated tool helps the programmer derive pro-
gram source code from its specification [28, 27, 38, 33, 26, 13].
One particularly interesting synthesis subproblem is program in-
version, which is the task of constructing a P−1 given a pro-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’11, June 4–8, 2011, San Jose, California, USA.
Copyright c© 2011 ACM 978-1-4503-0663-8/11/06. . . $10.00

gram P such that executing P followed by P−1 is the identity
function. Pairs of inverses are quite common in software, e.g.,
insert/delete operations on data structures, encryption/decryption,
compression/decompression, rollback in transactions, etc.. Auto-
matic program inversion could potentially allow programmers to
write only one of each inverse pair, halving the time required to
write and maintain such code and eliminating bugs due to inconsis-
tencies between the inverses.

However, existing program synthesis techniques are not well-
suited to the inversion task. Proof-theoretic synthesis [38] requires
inferring loop invariants, which are unrealistic for programs such
as compressors or encoders. Counterexample-guided inductive syn-
thesis [33] requires finitizing the domain (e.g., specifying a bound
on loop unrollings and lengths of arrays), and we have found this
is a significant burden. Other approaches that are specifically for
inversion, rather than general program synthesis, are either hard to
implement [8, 12] or are quite restricted in the programs that can
be inverted [11, 24, 41, 11].

In this paper, we present a new program synthesis algorithm,
Path-based inductive synthesis (PINS), that takes a major step in
addressing these challenges. At a high level, the PINS algorithm is
straightforward. It iteratively uses symbolic execution to simulate
paths through a known program P concatenated with a template of
an unknown program P−1. The template contains an ordinary pro-
gram, except it can contain unknown expressions and predicates,
i.e., “holes” that need to be filled in. The template also includes
sets Πe of candidate expressions and Πp of candidate predicates
that can instantiate unknowns. PINS uses the path conditions gener-
ated from symbolic execution to create a query for an SMT solver,
and the solution of the query assigns elements of Πe and Πp to
the unknowns such that P followed by P−1 is an inverse along the
corresponding paths.

The key idea that underlies PINS is what we call the small path-
bound hypothesis: for many programs, all behavior can be sum-
marized by examining a small, carefully chosen set of its program
paths. This same hypothesis underlies program testing, and just as
in testing, it is critical that PINS picks the right set of paths to
explore—and this is potentially quite challenging in synthesis, in
which we are trying to find useful paths through a program with
unknowns. Thus, PINS includes a heuristic technique that tries to
guide symbolic execution down program paths likely to reinforce
correct solutions and eliminate incorrect solutions. This heuristic
helps ensure that when PINS finishes, its output is highly likely
(though not guaranteed) to be correct. To further validate correct-
ness, the programmer can use a range of techniques. In our ex-
periments, we used manual code inspection, testing with concrete
instantiations of the paths explored by PINS, and bounded model
checking [1] to validate PINS’s output.

PINS has a number of attractive features compared to other
synthesis approaches. First, by using symbolic execution, PINS is
able to reason about program paths precisely, but without needing



strong loop invariants that prove functional correctness. Second,
PINS need not finitize the problem domain, since it relies on SMT
solving. Finally, SMT solving has another benefit: it allows PINS to
model external library functions with axioms, rather than needing
source code. For example, we can add axioms about string library
functions such as ∀s, c : strlen(append(s, c)) = strlen(s)+1,
where s and c are string and character types, respectively. This
makes the synthesis task smaller and more modular.

One challenge in using PINS, or any other template-based
synthesis approach (e.g., proof-theoretic synthesis [38], invariant-
based synthesis for hybrid systems [39] or Sketching [33]), is de-
termining what template to use. For program inversion, we have
developed a semi-automated technique for mining the template
from the program to be inverted. In our approach, an automated
tool generates initial guesses for Πp and Πe based on the original
program text, and the programmer similarly constructs a template
program based on the control flow of the original program. The
user then runs PINS, using its output to further guide manual re-
finement of the template. We have found that this approach is much
easier than other synthesis techniques that require constructing a
template from scratch [38, 39, 33].

We implemented PINS and used it to invert 14 small but
complex programs ranging in size from 5 to 25 lines of code.
Our benchmarks include several compressors (e.g., Lempel-Ziv-
Welch), encoders (e.g., UUEncode), and arithmetic operations
(e.g., rotation of a vector). For these benchmarks, PINS worked
well in reducing the huge space of possible template instantiations
to only a few final candidates. In 11 cases, PINS produced 1 can-
didate inverse, which was correct. In the remaining 3 cases, PINS
produced at most 4 candidates, at least one of which was correct.

For these benchmarks, we found that our semi-automated tem-
plate mining strategy worked well; we needed only a few changes
from the initial template for synthesis to succeed. We also found
that the ability to add axioms was critical for our benchmarks, 8 of
which called external libraries.

Our results also support the small path-bound hypothesis. Syn-
thesizing inverses for our benchmarks required exploring between
1 and 14 paths, with a median of 5 paths. The running time of PINS
varied significantly, ranging from 1 second to 30 minutes. The high
variability is due to the large semantic differences between pro-
grams and the unpredictable nature of SMT/SAT solving. More en-
gineering may reduce these times much further, but we think that
for a prototype, these times are still encouraging, especially as pro-
grammer time is far more expensive than processing time.

We believe that PINS takes an important step forward in pro-
gram synthesis, and presents a promising new approach to the pro-
gram inversion program.

2. Path-based Inductive Synthesis
We begin our presentation by describing the PINS algorithm. As
a running example, we will consider synthesizing an inverse to the
function shown in Figure 1, which performs in-place run-length en-
coding of an input array A of length n. The function imperatively
updates the arrays A (destructively) and N to hold the compressed
output and the count of how often each compressed element ap-
peared in the input, respectively. The output variable m gives the
length of the compressed output. Our aim is to invert this function,
i.e., to produce code that generates a new A′ to contain the original
contents that were in A, using the counts in N .

2.1 Synthesis templates
To constrain the search space for synthesis, PINS uses a synthesis
template supplied by the programmer. In PINS, a template is a triple
(P ,Πe,Πp), where P is a program that may contain unknown
expressions ε and unknown predicates ρ, and Πe and Πp are sets

runlength(inout datatype *A, in int n,
out int *N, out int m)

{
int i, r;
assume(n ≥ 0);
i:=0;
m:=0;
while (i < n)

r := 1;
while (i+ 1 < n ∧A[i] = A[i+ 1])

r := r + 1; i := i+ 1;
A[m] := A[i];
N [m] := r;
m := m+ 1;
i := i+ 1;

}

Figure 1. In-place run length encoding of an array A of n data
elements, where the encoded output is of length m. Another output
array N holds the counts.

of expressions and predicates (without unknowns) that ε and ρ,
respectively, may range over. Formally, template programs P are
defined by the following language:

P , s ::= x, . . . , x := e, . . . , e | s; s | if(∗) s else s
| while(∗) s | assume(p) | exit | in(x, . .) | out(x, . .)

e ::= ε | x | e opa e | sel(e, e) | upd(e, e, e) | f(~e)
p ::= ρ | ∗ | e opr e

Program statements consist of parallel assignments to variables, se-
quencing, conditionals, while loops, and assume statements. We
also add a form exit, to mark the exit of the program, and in and
out, which indicate which program variables are inputs and out-
puts, respectively. These last two forms are used to help construct
the synthesis template (Section 3).

Note that conditionals and loops are non-deterministic in our
language. As is standard, we can encode if(p) s1 else s2 in
our language as if(∗) (assume(p); s1) else (assume(¬p); s2),
and while(p) s as (while(∗) (assume(p); s)); assume(¬p). For
notational convenience, we may use the skip statement as well,
which can be modeled in the language as assume(true).

Expressions may either be unknown expressions ε, variables x,
arithmetic operations e opa e , array reads sel(e1, e2) (read ele-
ment e2 from array e1), non-destructive array writes upd(e1, e2, e3)
(return a new array that is the same as e1, except element e2 has
value e3), and uninterpreted function symbols f (used to model
external library calls). Similarly, predicates used in assume ex-
pressions may be unknown ρ or known predicates p, which are
known expressions compared with relational operators opr . Then
Πe is a set of expressions that do not contain occurrences of ε, and
analogously for Πp.

As mentioned in the introduction, for program inversion we
construct a template for the inverse and then concatenate that to the
original program to produce the synthesis template for PINS. We
defer discussion of exactly how the inverse template is constructed
until Section 3. For our running example, the input to PINS is
shown in Figure 2. For clarity, we have written while loops with
guards, though as mentioned above we actually encode these with
non-deterministic choice and assume. Lines 1–11 are the same
as in Figure 1, except they have been translated into our formal
language. Lines 12–18 contain the inverse template. Notice that
in this particular example, the inverse template has essentially the
same shape as the original program, and that the primed variables
used by the inverse arise from (unprimed) variables used in the
original program. The sets Πe and Πp range over expressions
extracted from the original program, but translated to work over
both primed and selected unprimed variable names.



1 in(A,n);
2 assume(n ≥ 0);
3 i,m:=0, 0;
4 while (i < n)
5 r := 1;
6 while (i+ 1 < n ∧ sel(A, i) = sel(A, i+ 1))
7 r, i := r + 1, i+ 1;
8 A := upd(A,m, sel(A, i));
9 N := upd(N,m, r);

10 m, i := m+ 1, i+ 1;
11 out(A,N,m);
12 i′,m′ := ε1, ε2;
13 while (ρ1)
14 r′ := ε3;
15 while (ρ2)
16 r′, i′, A′ := ε4, ε5, ε6;
17 m′ := ε7;
18 out(A′, i′); exit;

Πe =

{
0, 1,m′ + 1,m′ − 1, r′ + 1, r′ − 1, i′ + 1, i′ − 1,

upd(A′,m′, sel(A, i′)), upd(A′, i′, sel(A,m′)), sel(N,m′)

}
Πp =

{
m′ < m, r′ > 0, sel(A′, i′) = sel(A′, i′ + 1)

}
Figure 2. Program from Figure 1 composed with the template.

2.2 Symbolic execution of templates
As discussed in the introduction, PINS iteratively uses symbolic
execution to simulate chosen paths through a template. Symbolic
execution has been studied extensively in the literature [25], but
our use of symbolic execution has an interesting twist: we need to
simulate programs containing unknowns. What makes this possible
is that the only unknowns we permit are expressions and predicates,
both of which are pure, and thus their evaluation does not affect the
program state.

At each step of symbolic execution, we maintain a path condi-
tion φ that describes the path taken and the current and past state
of all program variables. To distinguish different definitions of the
same variable, we maintain a version map V that assigns a version
number to each variable. As variables are reassigned, their version
numbers monotonically increase, similarly to variable renaming in
static single assignment form. As a slight abuse of notation, we will
use the version map 0 to denote assigning all variables the version
number 0. When an unknown expression ε or predicate ρ is eval-
uated, we simply pair it with the version map V at that program
point, which we write as εV or ρV . Then at the end of symbolic
execution, since the path condition contains the history of all vari-
ables, it gives us sufficient information to interpret uses of ε and
ρ at any point during the prior execution. For notational conve-
nience, we use the same evaluation strategy for known expressions
and predicates, and we write eV or pV for the (known or unknown)
expression or predicate evaluated under version map V .

As symbolic execution is a subroutine in PINS, it takes two
auxiliary inputs. First, our symbolic executor is given a solution S,
which is an assignment from unknown expressions and predicates
to known expressions and predicates, respectively. The solution
arises from a previous iteration of PINS, and is used to guide
symbolic execution down paths that tend to more quickly refine
the solution space; we discuss this further in Section 2.3. Second,
our symbolic executor is given a path condition set Φ, which is the
set of path conditions that have been previously explored and hence
should not be simulated again.

Figure 3 formalizes our symbolic executor as a judgment of
the form S; Φ ` 〈s;φ;V 〉 → 〈φ′;V ′〉, which says that, using
solution S and avoiding path condition set Φ, evaluating statement

ASSN
vi = V (xi) + 1 V ′ = V [xi 7→ vi] ∀i ∈ 1..n

φ′ = φ ∧
∧

j∈1..n
(x
vj
j = eVj )

S; Φ ` 〈(x1, . . . xn := e1, . . . , en);φ;V 〉 → 〈φ′;V ′〉

ASSUME
φ ∧ (S(p))V 6⇒ false φ′ = φ ∧ pV

S; Φ ` 〈assume(p);φ;V 〉 → 〈φ′;V 〉

SEQ
S; Φ ` 〈s1;φ;V 〉 → 〈φ1;V1〉
S; Φ ` 〈s2;φ1;V1〉 → 〈φ2;V2〉

S; Φ ` 〈(s1; s2);φ;V 〉 → 〈φ2;V2〉

EXIT
φ 6∈ Φ

S; Φ ` 〈exit;φ;V 〉 → 〈φ;V 〉

COND
S; Φ ` 〈si;φ;V 〉 → 〈φ′;V ′〉 i = 1 or 2

S; Φ ` 〈(if(∗) s1 else s2);φ;V 〉 → 〈φ′;V ′〉

LOOP
S; Φ ` 〈if(∗) (s; while(∗) s) else skip;φ;V 〉 → 〈φ′;V ′〉

S; Φ ` 〈while(∗) s;φ;V 〉 → 〈φ′;V ′〉

INOUT
io ∈ in, out

S; Φ ` 〈io(x, . .);φ;V 〉 → 〈φ;V 〉

Figure 3. Symbolic execution with unknowns.

s beginning with path condition φ and version map V yields a new
path condition φ′ and version map V ′.

We discuss the rules briefly. In Rule ASSN, we increment the ver-
sion numbers of all assigned variables to yield a new version map
V ′, and we create a new path condition φ′ containing equalities for
the newly assigned variables. Notice here we pair the expressions
ej with the old version map V , since the ej are evaluated at the
start of the assignment.

In Rule ASSUME, we write S(p) to mean the predicate p with
unknowns replaced according to S. Note that S may be a partial
map, and if S does not provide a mapping for p then S(p) equals
p. Thus, this rule requires that the conjunction of the current path
condition and the assumed predicate is satisfiable according to the
solution. In our implementation, we use an SMT query to determine
the satisfiability of this constraint.

Rule SEQ is standard. Rule EXIT ensures that the path has not
previously been explored. Rule COND non-deterministically exe-
cutes one of its branches. Rule LOOP unrolls a loop one time. Fi-
nally, Rule INOUT ignores in and out expressions, which are only
used for constructing the synthesis template and the specification
formula for inversion.

2.3 Synthesis algorithm
Given a synthesis template P , the goal of PINS is to find a solu-
tion S that assigns known expressions and predicates to unknown
expressions and predicates, such that S(P) satisfies a given spec-
ification. For program inversion, the specification is particularly
simple—at a high level, the program should be the identity func-
tion. In our running example, at the end of execution, the array A
should contain the same elements as at the beginning. While in this
paper our focus is on program inversion, PINS is a general algo-
rithm, and we believe it can also be used for other synthesis prob-
lems.

The PINS algorithm is shown as Algorithm 1. The input to
the algorithm is a synthesis template (P ,Πe,Πp), a specification
spec, and a bound m on the number of solutions to request from



Input: Synthesis template (P ,Πe,Πp), specification spec,
bound m on number of solutions from solver.

Output: Solution S or “No Solution.”
begin1

Φ := ∅;2
C := terminate(P);3
while (true) do4

sols := solve(C,Πp,Πe,m);5
if sols = ∅ then6

return “No Solution”; /* Refine abstraction */7

if stabilized(sols,m) then8
return sols;9

S := pickOne(sols);10
S; Φ ` 〈P ; true; 0〉 → 〈φ;V ′〉;11
Φ := Φ ∪ {φ};12
C := C ∧ safepath(φ, V ′, spec);13

end14
Algorithm 1: The PINS algorithm.

the solver (discussed below). We next give an overview of the
algorithm, deferring details of the subroutines terminate, solve,
stabilized, pickOne, and safepath until after the overview.

Throughout its execution, PINS maintains a set Φ of program
paths that have been symbolically executed so far, and a constraint
C that includes constraints gathered from prior symbolic execu-
tions. As the algorithm progresses, Φ increases and C accumulates
additional constraints. Φ is initially empty, and C is initially set to
terminate(P), which constrains loops in P to terminate.

The main loop of PINS iteratively refines the space of solutions
as follows. On line 5, we compute (at most) m solutions to the
constraints C, using Πp and Πe for the possible values of unknown
predicates and expressions in C. If the resulting set of solutions
sols is empty, then there is no valid template instantiation that
satisfies spec. Typically this means the template needs to be refined;
we describe this process in Section 3.

If sols has stabilized, meaning it did not change from the
last iteration, then we exit and return sols . Otherwise, we refine
the solution space. On line 10, we set S to be one of the computed
solutions, chosen by the heuristic pickOne. Then we symbolically
execute P , using the solution S to guide the execution, and begin-
ning with the path condition true and the version map that assigns
version 0 to all variables, which we write simply as 0. Recall that in
Rule ASSUME of Figure 3, we require that the guard p is satisfiable
according to S—thus, the path taken in the symbolic execution on
line 11 is a feasible path in the program S(P). As we will discuss
below, this means that the path taken will tend to generate con-
straints that either reinforce S if it is a valid solution, or contradict
S if it is an invalid solution.

Finally, we add the path condition φ from the symbolic execu-
tion to Φ, and we add to C the constraint safepath(φ, V ′, spec),
which specifies that the path taken meets the specification spec. We
then repeat this process until no solutions are possible, or the set of
solutions has stabilized.

Next, we discuss the subroutines used by PINS in more detail
and how PINS handles uninterpreted functions.

Safety constraints The constraint generated by safepath on
Line 13 specifies that the symbolic execution, which generated
path condition φ and final version map V ′, satisfies spec:

safepath(φ, V ′, spec)
.
= ∀X : φ⇒ specV

′

where X is the set of all program variables at all versions. Notice
that in specV

′
, program variables in spec will be interpreted in

terms of V ′, i.e., at their final values at the end of execution.

EXAMPLE 1. Suppose in Figure 2 we take a path that immediately
exits the loop on line 4, enters the loop on line 13, exits the loop on
line 15, exits the loop on line 13, and then exits the program. The
safety constraint (left) generated for this path (right) is:

n0 ≥ 0 ∧ i1 = 0 ∧m1 = 0∧ . . . n ≥ 0; i,m := 0, 0;

i1 ≥ n0 ∧ i′1 = εV1
1 ∧m′1 = εV1

2 ∧ . . . i ≥ n; i′,m′ := ε1, ε2;

ρV2
1 ∧ r′1 = εV2

3 ∧ . . . ρ1; r′ := ε3;

¬ρV3
2 ∧m′2 = εV3

7 ∧ . . .¬ρ2;m′ := ε7;

¬ρV4
1 . . .¬ρ1

⇒ specV4

where we abbreviate the version maps as V1 = {n 7→ 0,m 7→
1, i 7→ 1}∪0, V2 = V1∪{m′ 7→ 1, i′ 7→ 1}, V3 = V2∪{r′ 7→ 1},
and V4 is V3 but with m′ 7→ 2. The identity specification spec
is derived syntactically from in(A,n) and out(A′, i′)) as n0 =
i′V4 ∧ ∀k : 0 ≤ k < n0 ⇒ A0[k] = A′V4 [k]. This path turns
out to be infeasible for the actual synthesized inverse (shown in
Section 3), but this does not mean that the path is redundant during
synthesis. To the contrary, the path imposes constraints on the
unknown expressions and predicates that eliminate any candidate
for which this path is feasible, thereby pruning the search space.

Termination constraints The termination constraints generated
on Line 3 serve two important purposes. First, they prevent syn-
thesis of programs that diverge, since such programs trivially sat-
isfy any partial specification but are uninteresting in this domain.
Second, they ensure that the symbolic execution runs on Line 11
themselves terminate, since those runs are guided by a solution to
the constraints.

We generate termination constraints by reasoning about each
loop separately. Consider a loop l = while(∗){assume(ρl);Bl},
where the guard ρl is an unknown and the body is Bl. We assume
there is a corresponding ranking function ηl that is an unknown,
ranging over a set of expressions Πr (discussed below). We impose
two kinds of constraints on ηl to ensure the loop terminates.

First, we assume the ranking function is related to the loop
guard ρl, and generate a constraint

bounded(l)
.
= ∀X. ρ0l ⇒ (ηl

0 ≥ 0)

that the guard implies a lower bound on the ranking function.
Notice that this constraint does not involve any path condition,
and hence the relationship it implies must hold across all possible
values of the program variables.

Next, we need to generate a constraint that the ranking function
decreases on every iteration through the loop. We introduce an
unknown loop invariant ρ′l, and generate the following constraints:

decrease(l)
.
=∧
〈φ,V 〉∈init ∀X. φ⇒ ρ′

V
l ∧∧

〈φ,V 〉∈body ∀X. φ ∧ ρ
′0
l ⇒ ρ′

V
l ∧∧

〈φ,V 〉∈body ∀X. φ ∧ ρ
0
l ∧ ρ′

0
l ⇒ ηl

V < ηl
0

where body is a set of tuples 〈φ;V 〉 from symbolic executions of
the loop body, and init is a set of tuples from symbolic executions
that start at the program entry and end at the loop entry. From top
to bottom, these constraints specify that the invariant holds at the
beginning of the loop; that it is maintained during an execution of
the loop body; and that the invariant and the loop guard imply that
the ranking function decreases on each iteration. Note that although
these constraints look complex, in fact the loop invariant required
for termination is often far simpler than a loop invariant required for
functional correctness. For example, typically we only required an
invariant that is a linear relation (real programs shown terminating
by others [5, 6] illustrate that linear relations typically suffice), and
we never required a quantified invariant.



To compute body and init , we use two heuristics. First, to
compute body we symbolically execute all possible paths through
the loop body (starting with the empty path conditions and empty
version map 0), always taking the exit branch of any inner loop to
keep the set of paths finite. Thus, we are assuming that inner loops
do not affect the termination of outer loops. Second, we initialize
init to be empty, and each time PINS symbolically executes some
path on Line 11, we take the prefix of that path up to the start of the
loop, and add the corresponding init-related constraint to C. Thus,
we are only constraining the invariant to hold on a finite number
of paths, rather than on every path, similar to dynamic approaches
that infer likely invariants [10].

Other than the (transition) invariant involving decrease and
bounded, in our experiments, additional inductive safety invariants
are typically not required to prove termination. (An example of
where we might need an inductive invariant, e.g., C > 0, might be
when x := x + C is the iteration counter increment.) Other work
also shows that termination for typical programs can be proven
without inductive reasoning [19].In this simpler case, the SMT/SAT
solver discovers it can set the invariant to simply be true, in which
case decrease(l) simplifies to

∧
〈φ,V 〉∈body ∀X : φ∧ρ0l ⇒ ηl

V <

ηl
0.
Putting bounded and decrease together, we have

terminate(P)
.
=

∧
l∈loops(P)

decrease(l) ∧ bounded(l)

where loops(P) is the set of all loops in P .

EXAMPLE 2. Consider the loop, let us call it l1, on Line 13 in Fig-
ure 2. The loop guard is ρ1, and we assume an unknown rank-
ing function ηl1 . For clarity we show the simplified version of
decrease (assuming a loop invariant is not required) as above.
Then the termination constraint for the loop is:

ρ01 ∧ r′1 = ε03 ∧ ¬ρ
V1
2 ∧m′1 = εV1

7 ⇒ (ηl1
V2 < ηl1

0) . . decrease(l1)
ρ01 ⇒ (ηl1

0 ≥ 0) . . bounded(l1)

where V1 = {r′ 7→ 1} ∪ 0 and V2 = {m′ 7→ 1} ∪ V1. We
will show later that the valid inverse to this program instantiates
the unknowns as {ρ1 7→ (m′ < m), ρ2 7→ (r′ > 0), ε3 7→
(sel(N,m′)), ε7 7→ (m′ + 1), ηl 7→ (m − m′ − 1)} in which
case each conjunct reduces as follows. bounded(l) reduces to the
following trivial constraint:

(m′ < m)0 ⇒ ((m−m′ − 1)0 ≥ 0)

Also, decrease(l) reduces to
(m′ < m)0 ∧ r′1 = (sel(N,m′))0 ∧ ¬(r′ > 0)V1 ∧m′1 = (m′ + 1)V1

⇒ ((m−m′ − 1)V2 < (m−m′ − 1)0)

which if we keep the relevant conjuncts simplifies to m′0 < m0 ∧
m′1 = m′0 + 1⇒ (m0 −m′1 < m0 −m′0), which holds.

One issue we have not yet discussed is how to determine Πr ,
the expressions ηl may range over. We could ask the user to supply
Πr as part of the synthesis template, but we have found that we can
derive Πr as follows: For each inequality in Πp, we convert it into
an equivalent relation of the form e ≥ 0 using simple symbolic
manipulation, and add e to Πr . For example, if (n > s) ∈ Πp, we
convert it to n−s−1 ≥ 0 and thus add n−s−1 to Πr . We found
this simple approach to be effective in practice.

Solving for and enumerating m solutions As we can see from
the definitions of safepath and terminate, the constraint C
maintained by PINS has the form ∀X.C′, where X is the set of
program variables (note that we have lifted the quantification over
X to the top level). We wish to solve for the unknown predicates
and expressions, and thus the solve procedure tries to find m
solutions for a constraint ∃ρiεjηlρl.∀X.C′ where the unknown

predicates, expressions, ranking functions, and dynamic invariants
can range over Πp, Πe, Πr , and Πp, respectively.

Our implementation of solve builds upon our earlier work,
which uses constraint-based invariant inference [36, 38, 17, 18].
The invariant inference problem is to solve a constraint of the form
∃Ik∀X.vc, where the Ik are unknowns in a template assumed
for the invariant, X is the set of program variables, and vc is a
verification condition. Notice that this constraint is similar in shape
to the constraints generated by PINS, and thus we can adapt the
solving strategy from this prior work to solve our constraints.

Very briefly, constraint-based invariant inference works by call-
ing an SMT solver a polynomial number of times to extract infor-
mation from each constraint in vc. It then uses that information to
construct a SAT formula that contains boolean indicator variables,
whose solution maps back to an assignment of each Ik to one of
the possible predicates it may range over [36].

During invariant inference using a program’s vc (which is a
conjunction of implications, each constructed from some fragment
of the program), the unknowns Ik in the invariant templates appear
at most twice in each vc implication: at the beginning of the loop,
and at the end. However, the constraints generated in PINS can
include unknown predicates and expressions that are paired with
many different version maps. We therefore needed to extend the
earlier work to handle version maps. It turns out that the core
theory and algorithm we previously developed [36] holds under
multiple versions, and so we only need to make the following
implementation changes to build solve: (a) we added version
maps to track states of variables, (b) we incorporated a stack depth
parameter so we can distinguish variable versions across recursive
calls, and (c) we replaced the verification condition generator with
the symbolic executor from Figure 3.

One nice property of using an SMT/SAT-based reduction for
solve is that we can easily ask for m different solutions from the
solver: Given one solution S for C, we can then pass the constraint
C ∧

∨
(αi 6= S(αi)) to the solver to get a different solution, where

αi ∈ dom(S). As we discuss next, we use this enumeration of
possible solutions to determine when to halt iteration of PINS.

Stabilization of solutions PINS stops iteration and returns the
current set of solutions when that set is the same as in the last
iteration and its size is less than m (Line 8). We actually perform
this check by comparing the sizes of the current and last value of
sols—since the set of constraints C is only added to, if the size
of sols is the same from one iteration to the next, the solutions
themselves must also be the same.

When PINS exits, it is not guaranteed that the returned solutions
are correct; this should be clear, because PINS typically only ex-
plores a subset of the possible paths through the template program.
In our experiments, stabilization happened when only one to four
solutions remained, and thus PINS winnowed down a very large
space of solutions to only a small set of possibilities. Given this set,
the programmer can validate the solutions using other approaches,
such as as manual inspection, test case generation, or model check-
ing. We discuss these approaches more in Section 2.5.

Picking one solution On Line 10 of the PINS algorithm, we pick
one solution out of sols for subsequent symbolic execution. Ideally,
we will choose an incorrect solution Sbad ∈ sols . Since incorrect
solutions are usually incorrect on many paths, we expect that if we
explore a path that is feasible in Sbad , the constraints generated will
show that Sbad violates spec, and thus Sbad will be pruned from the
search space (as will many more incorrect solutions, most likely).
We found that a good heuristic for picking such a solution is to
find one that contradicts many constraints in Φ. More precisely, we
define

infeasible(S) = |{φ ∈ Φ | S(φ)⇒ false}|



and then pick a solution S ∈ sols with the highest infeasible(S).
We break ties randomly.

To understand why this heuristic works, consider an incorrect
solution Sbad ∈ sols . Since Sbad has survived previous iterations
of PINS, it must agree with C, which was generated from many
paths. But as the number of paths represented by C increases, the
chance that Sbad survived because it satisfies spec along paths in Φ
diminishes. Instead, it is much more likely that Sbad survived be-
cause the paths in Φ are infeasible in Sbad , i.e., Sbad(φ) is false for
φ ∈ Φ. (Notice this makes the left-hand side of the implication in
safepath false, and hence safepath is trivially satisfied.) Thus,
if we pick a solution S with a high infeasible(S), there is a good
chance it is an incorrect solution.

Note that even if pickOne selects a solution S that is valid, it
will still tend to help PINS converge: Since S is valid, it will survive
the next round of iteration, but the additional constraints it imposes
on the symbolically executed path should help prune out invalid
solutions.

We experimentally compared using infeasible to implement
pickOne versus random selection, and we found that random selec-
tion yields runtimes that are 20% longer than with infeasible.

Axiomatization for modular synthesis Our language for template
programs includes calls of the form f(~e), where f is an uninter-
preted function. In PINS, these are used to model calls to external
libraries. Not surprisingly, library calls are common in practice—in
our experiments, 8 of 14 benchmarks use library calls.

Because PINS uses SMT/SAT solving over symbolic con-
straints, we can readily model the behavior of these library calls
as additional axioms over the uninterpreted functions, which are
passed directly through to the solver. For example, in our experi-
ments we model strings as an abstract data type with three functions
append, strlen, and empty that satisfy axioms such as:

strlen(empty()) = 0
∀x, y. strlen(append(x, y)) = strlen(x) + strlen(y)
∀x, c. strlen(append(x,‘c’)) = strlen(x) + 1

In another instance, we treat an angle as an abstract data type, with
trigonometric interface functions cos and sin. We also use such
abstract reasoning for operations that are difficult for SMT solvers,
e.g, we can add an axiom ∀x 6= 0.mul(x, div(1, x)) = 1 to allow
enhanced reasoning about multiplication and division.

Overall, we found the ability to axiomitize library calls to be
extremely useful, and as a general technique it helps split the
synthesis problem into more modular pieces.

2.4 Discussion
Now that we have presented the PINS algorithm, we can revisit the
small path-bound hypothesis described in the introduction: That for
many programs, all behavior can be summarized by examining a
small, carefully chosen set of paths.

PINS is designed around this hypothesis. In each iteration, it ex-
plores one path, and then uses the constraints safepath(φ, V ′, spec)
from that exploration to further restrict the solution space. Specifi-
cally, PINS finds a solution S to constraints C and uses S to guide
symbolic execution on the next iteration. As discussed earlier, if S
is incorrect, it will likely be eliminated, and if S is correct, it will
be reinforced and will likely eliminate other, incorrect solutions.

Contrast this with, for example, random path exploration. Sup-
pose a template program contains two nested loops in sequence,
as does the run-length example in Figure 2. For this example, a
single element array results in the identity compression. For a two
element array, the elements can be identical or different. Interest-
ing compression happens only in an array of length three or more.
So, we would want to explore the program’s behavior on such non-
trivial cases. But even if we only consider paths that traverse each

loop at most three times, there are still 7,225 unique paths. We tried
random path exploration, but we found it did not work even for the
simplest examples.

The path-bound hypothesis underlies the idea of software test-
ing as well, and we think it holds for synthesis for the same reasons:
a small set of carefully chosen paths can cover both the main be-
havior and the corner cases of a program because that is typically
how programs and algorithms are designed. While the set is small,
it needs to be carefully constructed. In the case of software testing,
these paths are either provided by a human, or possibly through
symbolic execution. For synthesis, we propose PINS’s mechanism
of directing path exploration using candidate solutions.

2.5 Validating solutions
When PINS terminates, it outputs a set of solutions that satisfy all of
the program paths explored during iteration. As discussed earlier,
this does not guarantee that the synthesized output is correct over
all possible paths, and so to gain further confidence in the output
solutions, developers can take several additional steps.

First, developers can manually inspect the solutions for correct-
ness. In our experience, this was fairly easy. For 11 out of 14 of our
benchmarks, there was a single solution to inspect, and in all 11
cases it was correct. For the other three benchmarks, there were at
most 4 remaining solutions. In one benchmark, we found that the
remaining two solutions were indeed both valid, while in the other
two benchmarks, we found that only one solution was valid. In each
of the three cases, the solutions differed in at most one assignment,
so it was no harder to understand the set of solutions than a single
solution. We believe that PINS helps the programmer because it can
be easier to check a program for correctness than create it.

Second, developers can examine the set of paths explored by
PINS. For each path condition φ, our implementation uses the SMT
solver to output a concrete input that will take that path (by solv-
ing (∃X.φ) restricted to input variables at version 0). These inputs
are concrete test cases that necessarily meet the specification, and
we found them very helpful in understanding the generated solu-
tion. More particularly, the concrete tests helped us intuitively un-
derstand the solution’s behavior, without needing to trace through
long symbolic paths.

Finally, the programmer can use formal verification techniques
to validate the solution. For example, in our experiments we tried
using the bounded model checker CBMC [1] to check the synthe-
sized inverses, and we succeeded in doing so for 6 of the 14 bench-
marks (more details in Section 4). One limitation of CBMC is that
it cannot incorporate new axioms (which we use to model library
functions); other formal reasoning techniques that can support ax-
ioms may be able to verify the remaining cases.

3. Semi-automated template mining
In this section, we discuss how we construct a synthesis template
(P ,Πe,Πp) for a program inverse. Our approach is inspired by an
insight from Dijkstra, who observed that in some cases, a program
can be inverted by reversing its control flow edges and assignment
statements [8]. Based on this observation, we help the programmer
derive the template components from the text of the program to be
inverted. We should emphasize that our approach is meant to assist
the programmer in constructing a template, but it is still up to a
human to identify the final template to use.

We begin by automatically mining candidate sets for Πp and
Πe, in three steps. First, we traverse the original program text
and return all expressions e that appear in assignments x := e ,
and all predicates p that appear in assumptions assume(p). (Re-
call this is the only place predicates can appear, since we have
transformed conditionals and while loops to use non-deterministic
choice and assume.) We also record which variables are used



with in and out. Next, to these sets we apply projections that,
given an input expression or predicate, return a set of candi-
date expressions and predicates. For inversion some of the pro-
jections we use are the identity λx.{x}; subtraction inversion
λ(e1 − e2).{e1 + e2}; addition inversion λ(e1 + e2).{e1 − e2};
copy inversion λupd(A, i, sel(B, j)).{upd(B, j, sel(A, i))}; and
array read λ(sel(A, i) opr X).{sel(A, i)}. We also have a pro-
jection that uses the out call over ints to construct a predicate as
λout(m).{m′ < m}, for integer m. In essence, these projections
capture specific domain knowledge—in this case, that program in-
version often requires inverting operations. In total, we use eight
projections, including the ones above, for inversion, and we apply
all projections to all possible inputs. For example, since identity is
one of our projections, all of the expressions and predicates in the
original program are included in the output of the projection phase.
Finally, we rename the variables after projection to fresh names.

We leave it up to the programmer to choose the structure of the
template program P . For inversion, we found that a good starting
place is to make a template program with the same control flow
structure the original program text, but replacing guards with un-
knowns. For each assignment statement, we either simply replace
its right-hand side with an unknown, or we opt to invert it, replacing
an assignment x := ewith a parallel assignment of unknowns to all
program variables in e. We also decide whether to keep sequences
as-is or reverse them. In general, we found it was not hard to use
this heuristic to come up with the inversion template. For instance,
the inverse template in our running examples (Lines 12–18 in Fig-
ure 2) corresponds to the original program, with the control flow
as-is in the outer loop and reversed in the inner loop, intuitively be-
cause the inverse needs to traverse the array in order, but then undo
the run-length encoding (flipping the direction of the inner loop).

The output of the mining procedure is candidates for Πp and Πe.
In practice, the automatically mined sets are typically too large for
synthesis to succeed if we use them directly, as the space of candi-
date programs is exponentially related to the number of unknowns
and the number of predicate and expression options. However, they
give the programmer an excellent starting place for developing the
final candidate sets for the template. Making some guesses, we
pick a subset of the mined sets and a template program, and then
attempt synthesis. If PINS succeeds, we are done. If PINS times
out, we choose a smaller or different subset. If PINS eliminates all
solutions, then we examine the paths explored by PINS (see Sec-
tion 2.5), which typically provide enough information to determine
how to change Πp and Πe—either by modifying some element in
the chosen subset, or by adding some new predicates and expres-
sions that were not mined. In rare cases, these paths also indicate
missing assignments, which leads us to add those to the program
template. In our experiments, we found that once we identified the
correct subset of Πp and Πe, we only needed to manually modify
at most a few predicates and expressions, which we easily inferred
from the paths explored by PINS.

Debugging templates using PINS The PINS approach is also a
significant step forward from previous template-based approaches,
e.g., Sketch and proof-theoretic synthesis [38], in providing user
guidance when synthesis fails. Both these previous systems simply
fail with UNSAT when the template is not expressive enough, with
little further assistance. In contrast, if PINS terminates without
finding an inverse, the paths explored by PINS provide a witness to
the non-invertibility using the template—there is no instantiation
of the template that makes all of those paths valid inverses. In
our experience, by inspecting those paths we can understand why
PINS failed, and distinguish cases in which the template needs to
be extended from cases in which inversion is impossible. In fact,
our initial implementation of LZ77 (see Section 4 and Appendix A)

had an off-by-one bug in it, and inspection of the paths generated
by PINS led us to find the bug.

Inverting a run-length encoder To give more insight into the
process of inverting a program with PINS, we describe how to
invert the running example from Figure 2. Running the first step of
template mining yields the following predicates and expressions:{

0, 1,m+ 1, r + 1, i+ 1, upd(A,m, sel(A, i)), upd(N,m, r)
sel(A, i) = sel(A, i+ 1), n ≥ 0, i+ 1 < n, i < n

}
Then applying the projections and renaming variables yields:

0, 1,m′ + 1,m′ − 1, r′ + 1, r′ − 1, i′ + 1, i′ − 1,
upd(A′,m′, sel(A′, i′)), upd(A′, i′, sel(A′,m′)),

upd(N,m′, r′), sel(N,m′)
sel(A′, i′) = sel(A′, i′ + 1), sel(A′, i′),

m′ < m, r′ > 0


Notice that since n does not have a corresponding variable in

the decoder, all expressions and predicates referring to it are au-
tomatically deleted. The last two predicates come from an inver-
sion projector that scans loop iterators and out statements. Now
we want to remove elements of this set that are unneeded, since
they will slow down the synthesis process. We can see right away
that we can remove upd(N,m′, r′), because the decoder will have
no need to modify the array of counts N , and sel(A′, i′), since A′

holds the compressed data, which the decoder should only write to
and not read from.

Next we select a template program P . Since we expect the de-
coder to scan its input starting at the beginning, we choose an outer
loop that has assignments to the same variables in the same order.
Since we expect the decoder to be reversing the compression pro-
cess for each element, we choose an inner loop where the body is
reversed, i.e., for the variables read from A, r, i, and n (A and n
are read in the loop guard) their renamed versions A′, r′ and i′ are
written to. We then try running PINS, and discover that constraint
solving has bogged down. With a little more experimentation, we
remove the assignment to i′, A′ and N that corresponds to assign-
ments between lines 8–10 in Figure 2, yielding the template pro-
gram at the bottom of that figure.

We run PINS again, and this time it terminates but claims no
solution exists. It provides the three paths that were used to elimi-
nate all solutions. We examine the paths, and notice that the third
one enters the inner loop of the template program and assigns to
A′. We examine of current Πe, and we notice that it contains no
expressions that read from A, the array containing the compressed
data—thus clearly there is a problem, since A′ should contain data
expanded from A.

As a fix, we opt to change occurrences of sel(A′, x) to sel(A, x)
within the upd expressions in Πe, yielding a Πp ∪Πe of 0, 1,m′ + 1,m′ − 1, r′ + 1, r′ − 1, i′ + 1, i′ − 1,

upd(A′,m′, sel(A, i′)), upd(A′, i′, sel(A,m′)),
sel(N,m′), sel(A′, i′) = sel(A′, i′ + 1),m′ < m, r′ > 0


Using the current template, PINS then takes 7 iterations and 36

seconds total to prune the search space down to one candidate:

i′,m′ := 0, 0;
while (m′ < m)

r′ := sel(N,m′);
while (r′ > 0)

r′, i′, A′ := r′ − 1, i′ + 1, upd(A′, i′, sel(A,m′));
m′ := m′ + 1;

This is a dramatic reduction in the search space; for this particular
example, there were 117 × (23)2 ≈ 230 possible inverses given
the synthesis template. (Note that each unknown predicate can be
instantiated with a subset, denoting conjunction, from Πp.)



We then manually inspected the inverse to ensure it was correct,
and we also verified it using CBMC with bounds of 10 loop un-
rollings and at an array A of length at most 4 (n ≤ 4). We also
attempted to synthesize the inverse using the Sketch tool [33]. We
rewrote our template as a sketch (it takes 53 lines of code in that
format), and Sketch was able to synthesize the solution in 156 sec-
onds, using the same bounds of 10 unrollings and n ≤ 4. (See
Section 4.3 for more discussion.)

4. Experiments
We implemented a symbolic executor based directly on rules in
Figure 3, and used it to implement PINS.1 As discussed earlier, our
implementation of solve is an extension of our prior work [36, 37].
We use Z3 [7] as an SMT solver.

Recall that PINS is parameterized by the number of solutionsm
to request from the solver. In our experiments, we chose m = 10,
which we found worked well—it provided enough solutions so that
our pickOne heuristic could work effectively, while not requiring
too much solver time.

Benchmarks We used PINS to synthesize inverses for the 14
programs listed in the leftmost column of Table 1. All of these
programs are small, but they are also complex. PINS succeeded in
inverting all of these programs, and we should emphasize that, to
our knowledge, no other automated technique is able to do so given
the same information.

The first group of programs is compressors. We have already
discussed the run-length encoder, and we include two variants, one
that compresses and decompresses in place, as in Figure 1, and one
that uses a separate array for the compressed data. We also invert
two well-known compression algorithms, Lempel-Ziv 77 (LZ77)
and Lempel-Ziv-Welch (LZW) [42, 40]. We coded the compressors
in C from a description of the algorithm [2].

The second group of programs convert among different formats.
The Base64 program converts binary input to printable ASCII char-
acters. UUEncode outputs four printable characters for every three
bytes of binary input, plus adds a header and a footer to the output.
Again, we coded the compressors in C from their standard descrip-
tions. Pkt wrapper wraps a data object (with a set of fields inside)
into a variable length packet format by traversing the fields and
adding a preamble (the length of the field) to the data bytes for the
field. Serialize is a toy data structure serialization program that re-
cursively walks over data objects (recursing into any non-primitive
types) and writes out a flattened representation. Our serializer is
small because it relies on external functions to check whether a
field is primitive, get the next field, etc.. We encode the behavior of
these external functions using axioms.

The last group of programs perform arithmetic computations.∑
i is a simple iterative computation that adds i to a running sum

in the ith iteration. (Our inverse works by iteratively subtracting i
from the sum, rather than trying to solve the quadratic n(n+1)/2.)
Vector shift, Vector scale, and Vector rotate perform the named
operation on a set of points on the Euclidean plane, represented
as a pair of arrays X and Y . In practice, a programmer would
realize that these computations can be reversed by negating the
inputs to the program, but that is domain-specific knowledge the
synthesizer does not have. Instead, the synthesizer discovers a
specialized un-shifter, -scaler, and -rotater that iterate through the
vectors, semantically negating the operation performed. This is
non-trivial for scaling, where the synthesizer needs to be able to
reason about 1/x, and for rotation, where the inverse of (x′, y′ :=
xcos(t)− ysin(t), xsin(t) + ycos(t)) is (x′′, y′′ := x′cos(t) +
y′sin(t), y′cos(t)− x′sin(t)).

1 Our implementation of PINS is available on the web [3]

LoC Πp ∪Πe Inv. Num.
Benchmark Mined Subset Mod LoC Axms
In-place RL 12 16 14 1 10 0
Run length 12 16 10 0 10 0
LZ77 22 16 10 3 13 0
LZW 25 20 15 4 20 15
Base64 22 13 10 2 16 3
UUEncode 12 8 7 4 11 3
Pkt wrapper 10 12 8 1 16 2
Serialize 8 7 7 1 8 6∑
i 5 8 6 2 5 0

Vector shift 8 11 7 0 7 0
Vector scale 8 9 7 2 7 1
Vector rotate 8 13 7 0 7 1
Permute count 11 12 7 2 10 0
LU decomp 11 14 9 0 12 2

Table 1. Template mining characteristics.

The Permute count program is Dijkstra’s permutation program
from his original note on program inversion [8]. He considered a
program that, given a permutation π, computes for the ith element
of π the number of elements between 0 . . i that are less that π(i).
The inverse program computes the permutation from an array of
these counts. Dijkstra manually derived it from the original pro-
gram, while PINS synthesizes the inverse from the template.

Finally, LU-decomposition performs that operation in-place on
a matrix using the Doolittle algorithm [30]. The inverse, which
has been manually derived before [4] and which we synthesize
using the synthesis template, is a program that multiplies the lower
triangular and upper triangular matrices in-place.

4.1 Template construction
Table 1 summarizes the results of the template mining process on
our benchmarks. For each benchmark, we first list its size in terms
of lines of code, followed by three columns that measure the size
of Πp ∪ Πe. First, we list the size of the candidate sets mined
from the original program; then, we give the size of the subset we
guessed initially; and lastly, we list the number of modifications we
needed to make to elements within the chosen subset for successful
synthesis. The second-to-last column lists the size of the portion
of the template program containing the inverse (e.g., Lines 12 and
below in Figure 1). In this measure, we count loop guards as being
on their own line, and we count a parallel assignment to k variables
as k lines (since that is what it will ultimately be expanded to).

We found that picking the subset of Πp∪Πe was fairly straight-
forward, as we could easily eliminate obviously redundant or use-
less elements. Then an initial run of PINS gave us enough infor-
mation to infer the few changes to Πp ∪ Πe we needed to make.
Overall, the template mining process proved tremendously helpful
in coming up with a synthesis template. Although it was still non-
trivial to find the correct final template, we found it was much easier
to tweak a candidate template than come up with one from scratch.

The rightmost column in Table 1 reports the number of axioms
we used during synthesis, as discussed in Section 2.3. These ax-
ioms are quite generic over the uninterpreted functions we were
abstracting, e.g., the axioms over strings from Section 2.3, and can
be reused across many different program synthesis problems that
use the same ADTs. In the current implementation, we select ax-
ioms for each benchmark because of current limitation of SMT
solvers—specifically, quantifier instantiation is expensive, and so
we limit how often it occurs by limiting the number of axioms.
However, SMT solvers are evolving rapidly, and we expect in the
future to write standard libraries of axioms once and use the same
libraries across many different synthesis problems.



Benchmark Srch. Sp. Num. Total
Redn Iter. Time (s) |SAT|

In-place RL 230→1 7 36.16 837
Run length 225→1 7 26.19 668
LZ77 225→2 6 1810.31 330
LZW 231→2 4 150.42 373
Base64 237→4 12 1376.82 598
UUEncode 220→1 7 34.00 177
Pkt wrapper 220→1 6 132.32 2161
Serialize 211→1 14 55.33 69∑
i 215→1 4 1.07 51

Vector shift 216→1 3 4.20 187
Vector scale 216→1 3 4.41 191
Vector rotate 216→1 3 39.51 327
Permute count 23→1 1 8.44 4
LU decomp 25→1 1 160.24 10

Table 2. Performance of PINS

4.2 Performance
Table 2 shows the performance for PINS on our benchmarks. The
second column reports the approximate size of the search space
and the number of solutions returned when PINS terminates. For
example, for the in-place run-length encoder, the synthesis template
has roughly 230 possible instantiations, and PINS eliminates all
but one of them. PINS returned one solution for 11 of the 14
benchmarks, and only a few solutions in other cases. Thus, we
can see that PINS is highly effective in refining the set of possible
inverses. For all programs PINS found at least one correct solution;
we defer a more detailed discussion of correctness to Section 4.3.

The next column in Table 2 reports the number of full loop iter-
ations until PINS converges. Since PINS calls solve at the top of
the loop before deciding whether to exit, i full loop iterations corre-
sponds to i+1 solver calls (see Algorithm 1). On each full iteration,
we explore one program path, so these numbers support our path-
bound hypothesis: for these programs, indeed only a small number
of paths were required to characterize the programs’ behavior.

The third column in the table lists the running times for PINS.
We can see that the time varies widely, from one second for

∑
i

up to 30 minutes for LZ77. Even so, these times may be shorter
than the time required for a programmer to manually write the
inverses. The variability of the times arises from the large semantic
differences between these programs and the vagaries of SMT/SAT
solvers. We also separately measured how much of the running time
was due to each of the various steps within PINS, and we found
that symbolic execution (which makes SMT queries) and SMT
reduction to SAT take more than 90% of the running time. The
actual SAT formulas produced are quite small, as shown in the last
column of the table, and solving those and computing our pickOne
heuristic take little of the running time. (The detailed distribution
for individual benchmarks is available in Appendix B.)

4.3 Validation
After PINS terminates, we need to validate the inverses, since PINS
does not guarantee their correctness. Table 3 shows the results of
validation following the methodology outlined in Section 2.5. The
second column counts how many solutions were correct according
to manual inspection. We can see that most of the solutions returned
by PINS were in fact correct. For the three benchmarks that yielded
multiple solutions, LZ77, LZW, and Base64, the solutions were very
similar, differing by a single assignment in most cases. Thus, after
inspecting one solution, it was easy to understand the others.

When PINS exits, it also outputs concrete test cases, which are
concrete assignments to the inputs that will cause the final solutions
to take the paths PINS explored. The third column of the table lists

Benchmark Validation Sketch
Manual Tests CBMC

In-place RL ok 2 34.59s 157s
Run length ok 2 0.62s 30s
LZ77 1 of 2 ok 5 1.93s 29s
LZW 2 of 2 ok 3 — —
Base64 1 of 4 ok 4 — —
UUEncode ok 6 — —
Pkt wrapper ok 1 — —
Serialize ok 5 — —∑
i ok 2 1.15s fail

Vector shift ok 1 113.74s 2s
Vector scale ok 1 — —
Vector rotate ok 1 — —
Permute count ok 1 1.06s 172s
LU decomp ok 1 — —

Table 3. Validating the solutions generated by PINS.

the number of such test cases; note that it might be smaller than the
number of iterations, since some of the previously explored paths
may be infeasible in the final solutions. We found these tests helpful
when doing our manual inspection.

The fourth column reports the time for running the bounded
model checker CMBC [1] to verify the final solutions. Note that
to run CBMC, we needed to bound the number of loop unrollings
and, in many cases, the sizes of arrays. Using CMBC gives us fur-
ther confidence that the synthesized programs are correct. How-
ever, most of the benchmarks needed axioms for library functions,
and we found no easy way to apply CBMC to those programs—we
would instead need to write implementations of the library func-
tions. For some axioms, such as ∀x 6= 0.mul(x, div(1, x)) = 1,
even an implementation would be insufficient, as this particular ax-
iom essentially adds a capability to the solver.

Sketch For comparison, we tried running Sketch [33] on the same
synthesis templates we used in our experiments. As with CBMC,
Sketch does not have a way to include axioms to model library
functions, and so we could only run Sketch on 6 of our bench-
marks; we felt that writing the library functions would significantly
change the input to the synthesizer, and thus would not be a mean-
ingful comparison. For instance, it dramatically changes the syn-
thesis problem to have an implementation for inv(x) = 1/x as
opposed to the axiom ∀x 6= 0.mul(x, div(1, x)) = 1, or to have
implementations for cos(t) and sin(t) as opposed to the axiom
∀t.cos2(t) + sin2(t) = 1. Sketch also requires that the user spec-
ify bounds on array sizes.

Sketch was able to synthesize an inverse for 5 out of the 6
benchmarks that did not make external calls; the running times are
reported in the rightmost column of Table 3. Sketch only failed
on one benchmark—we let it run for an hour, and even after we
eliminated all unknown predicates from the template, Sketch still
did not terminate. In this case, the program forces Sketch to unroll
a loop maxint times, which by default is 32 in Sketch (which sets
integers to be 5 bits), and this large number of unrollings seems to
cause the timeout. It may be possible to synthesize this example by
reducing the number of bits in integers below 5.

For LZ77, Sketch resolves the template an order of magnitude
faster than PINS, but note that this is only after we spent consider-
able effort getting it to terminate, which happened only when we
reduced the bound on the array size to 4.

In general, we found that using Sketch was more challenging
than we expected, as it took us a significant amount of experimen-
tation to come up with the right bounds. This bounds requirement
also highlights a key difference between PINS and Sketch: PINS
solves for all possible input values along a small set of paths, but
Sketch ensures correct synthesis on all paths within the finitized



space. The details of the parameters we found through experimen-
tation are available in Appendix B.

4.4 Limitations and future work
Our results show that PINS is promising, but it still has several lim-
itations. Scalability is clearly a challenge, both for PINS and for
other program synthesis tools. It would be interesting future work
to investigate when synthesizing small components of larger appli-
cations would be useful, and to improve the scalability of PINS it-
self. Another challenge is the need to discover templates. We think
that templates are a useful tool—they give the developer a way to
narrow the search space for synthesis, but, at least in our experi-
ence, they are much easier to develop than the programs to be syn-
thesized. For inversion in particular, our template mining approach
proved very helpful. It would be worthwhile to study whether sim-
ilar mining approaches could be used for other domains, and user
studies of synthesis could shed light on how much input a human is
willing to provide to a synthesis tool. Finally, PINS relies on SMT
solving, and more scalable and powerful SMT solvers would enable
larger, less-constrained search spaces and faster synthesis.

An interesting direction for future work is to automatically re-
fine templates, rather than requiring the user to do so. One logi-
cal starting place is CEGAR, as the paths explored by PINS are
analogous to the counterexamples used by CEGAR (although we
have observed that CEGAR’s refinement cannot be used directly).
Inverting many-to-one programs is another interesting question.
There are two formulations of the problem we could consider. First,
we could try to find an inverse that returns some, instead of all, el-
ements of the original program’s input. We believe it is possible
to handle this formulation with PINS directly, with just a different
template. Second, we could try to find an inverse that generates all
of the original inputs. This is more difficult; we believe it requires
that we specify a different specification than identity, but that the
core of PINS should still be applicable.

5. Related Work
Deriving program inverses A range of techniques for program
inversion have been previously proposed. Dijkstra [8] and Gries [12]
suggest using a set of proof rules to derive an inverse. Our tem-
plate mining approach is inspired by this idea, but it is hard to
envision this approach succeeding in an automated way on many
examples. A related proposal uses local inversion plus proof rules
that compose the locally inverted fragments into a complete pro-
gram [4, 9, 31]. These techniques work if all values in the reversed
computation can be obtained analytically, which can be a challenge.
To our knowledge, these systems have not been automated.

One very interesting inversion technique consists of approxi-
mating the behavior of the program with a grammar. If the output
of the original program can be parsed using a deterministic gram-
mar, then the inverse of the grammar (written using local inversion,
i.e., reading the grammar backwards) corresponds to the program
inverse [11, 24, 41]. Grammar-based inversion only works when
the input to the program to be inverted has the right (context-free)
form—grammar-based approaches can invert run-length encoding,
but not the dictionary-constructing compressors LZW and LZ77.
Also, grammar-based inversion has been applied to functional pro-
grams, where there are no destructive state updates and thus in-
version is arguably simpler. Additionally, it is also not clear to us if
grammar-based inversion works on any of the arithmetic examples.

Program inverses for restricted cases have been considered in
the context of some larger problems. As part of an approach to
generate divide-and-conquer parallel functional programs, Morita
et al show how to compute a weak right inverse to a program frag-
ment [29]. It is unclear whether this approach can handle loops.
Kanade et al propose a simple inversion subroutine to aid repre-

sentation dependence testing [23]. This latter approach is based on
proof rules, and seems hard to use in the general case.

Inductive and deductive program synthesis Inductive synthe-
sis generalizes from finite instances to yield an infinite state pro-
gram [21]. Deductive synthesis, in contrast, refines a specification
to derive the program [28, 32]. Our approach is mostly inductive
synthesis since we generalize from a finite set, but it has elements
of deductive synthesis because we use paths and symbolic reason-
ing. Since we use symbolic paths and not concrete traces, each ad-
ditional path captures the behavior of multiple concrete runs, and
more of the space is explored in each iteration. Additionally, while
inductive synthesis cannot provide the full formal guarantees of de-
ductive synthesis, symbolic paths provide a close approximation.
Lastly, while previous inductive synthesizers refine using either
only positive reinforcing examples or only negative counterexam-
ples, we refine using both positive and negative example paths.

Proof-theoretic synthesis [38] and similar approaches for hybrid
systems [39] are deductive synthesis techniques, which encode the
synthesis problem as a search for invariants, and therefore needs
to infer complicated invariants (and requires a formal verifier with
support for such reasoning). In contrast, PINS relies on directed
path exploration and symbolic execution-based reasoning, and does
not reason about invariants. Thus, PINS allows us to synthesize
inverses that are infeasible using proof-theoretic synthesis.

As discussed earlier, Sketching [33] is an inductive synthesis
technique that uses a model checker to refine the space of candi-
dates. PINS differs from Sketch in several ways. First, Sketch uses
domain specific reductions to finitize loops for stencil [33], con-
current [34], and bit-streaming [35] programs, and is engineered to
solve the resulting loop-finitized problem. In contrast, PINS fini-
tizes the solution space using templates, but does not finitize loops
or the input. We found that this is an important consideration, be-
cause in our experiments it was tricky to choose the right finitiza-
tion for Sketch; smaller sizes lead to faster solving, but may restrict
the space such that the synthesized candidates are correct only on
the bounded values but not for arbitrary inputs. It took us several
hours to get the finitization right for our experiments. Second, PINS
prunes using symbolic paths, while Sketch prunes using concrete
executions; since multiple concrete executions may follow a single
path, a few iterations of PINS suffice for the synthesis. Lastly, PINS
uses SMT reasoning to generate concise SAT instances that are eas-
ily solved; Sketch uses bit-blasting, which generates large formulas
that may be hard to solve [15].

Some previous synthesis techniques can successful synthesize
acyclic programs. Gulwani et al have developed SMT-based tech-
niques for synthesizing acyclic programs over a user-specified set
of components, which they apply to the synthesis of bit-vector pro-
grams [15, 22]. Gulwani et al have also shown that exhaustive
search pruned by heuristics, inspired by techniques from the ar-
tifical intelligence community, can synthesize ruler and compass-
based macros for geometrical drawings [16]. Kuncak et al have
developed decision procedures for synthesis of functions specified
within a decidable logic [26]. While these techniques do not rely
on templates, they are restricted to loop-free programs, in contrast
to PINS, which synthesizes programs with loops.

Gulwani et al have developed synthesis techniques based on
divide-and-conquer paradigm that can synthesize loopy programs
for string [14] and table manipulation [20]. However, these tech-
niques are based primarily on inductive synthesis, and are well-
suited for end-users, who find it easy to provide examples, but
would find the task of providing a formal specification quite daunt-
ing. In contrast, the technique presented in this paper can leverage
formal logical specifications.



6. Conclusion
We have presented a program synthesis approach called PINS that
synthesizes programs by exploring relevant paths in a template
program and ensuring that the program meets the specification over
those paths. PINS leverages symbolic execution and SMT solving
to synthesize programs that take unbounded inputs and may have
unbounded loops. An important consideration is finding the right
set of paths to efficiently prune the space of possible candidates,
for which PINS includes a directed path exploration strategy that is
parameterized by a remaining candidate solution. We apply PINS
to the task of semi-automated program inversion. We show that it
is possible to mine the synthesis template using domain-specific
projection operators, which significantly reduces the burden on the
user. Our results on inverting 14 small benchmarks suggest that
PINS is a promising new approach to inversion in particular, and,
we believe, to program synthesis in general.
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A. Code examples: LZ77 and LZW
To illustrate concretely the difficulty in inverting these benchmarks,
Figure 4 shows the code for LZ77 and LZW compressors that we
invert. This code and the code for the other benchmarks is available



void main(int ∗A, int n) {
int ∗P, ∗N, ∗C;
int i, j, k, c, p, r;
in(A,n);
assume(n ≥ 0);
i := 0; k := 0;
while (i < n) {

c := 0; p := 0; j := 0;
while (j < i) {

r := 0;
while (i+ r < n− 1 ∧A[j + r] = A[i+ r])

r := r + 1;
if (c < r)

c := r; p := i− j;
j := j + 1;

}
P [k] := p; N [k] := c; C[k] := A[i+ c];
i := i+ 1 + c; k := k + 1;

}
out(P,N,C, k);

}

void main(int n, BitString A) {
BitString ∗D;
int ∗B, i, p, k, j, r, size, x, go;
in(A,n);
assume(n ≥ 1);
D[0] = "0"; D[1] = "1";
i := 0; p := 2; k := 0;
while (i < n) {

j := i; r := 0; size := −1;
while (j < n ∧ r 6= −1) {

x := 0; r := −1;
while (x < p) {

if (D[x] =substr(A, i, j))
r := x;

x := x+ 1;
}
if (r 6= −1)
{ go := r; size := j − i+ 1; }

j := j + 1;
}
B[k] := go; k := k + 1;
D[p] := substr(A, i, j − 1); p := p+ 1;
i := i+ size;

}
out(B,D, k);

}
(a) (b)

Figure 4. The compressors for (a) LZ77, and (b) LZW, inverted by PINS.

Percentage of total time
Benchmark Sym. SMT SAT Total

Exe. Red. Sol. pickOne Time (s)
In-place RL 41% 51% 6% 2% 36.16
Run length 45% 45% 7% 3% 26.19
LZ77 98% 1% <0.1% <0.1% 1810.31
LZW 68% 29% <1% 3% 150.42
Base64 42% 57% <1% <1% 1376.82
UUEncode 84% 12% 1% 3% 34.00
Pkt wrapper 1% 96% 3% <1% 132.32
Serialize 92% 7% <1% <1% 55.33∑
i 50% 38% 4% 8% 1.07

Vector shift 21% 73% 2% 4% 4.20
Vector scale 21% 73% 2% 4% 4.41
Vector rotate 6% 93% <1% <1% 39.51
Permute count 96% 2% <1% 2% 8.44
LU decomp 88% 11% <0.1% 1% 160.24

Table 4. Breakdown of PINS running time.

on the web [3]. Note that for both programs, none of the dictionary
construction has been abstracted away. The only abstraction used
is in LZW to model strings, e.g., the call to substr extracts a
substring between two indices from the given string. (Also note
that we assume all pointers point to valid memory.)

B. Experimental parameters and details
This appendix contains some additional details on the reported
experimental results.

Table 4 breaks down the time taken by PINS into the four steps
of the algorithm that involve constraint solving. The second column
gives the time spent in the symbolic executor (which needs to
perform SMT queries to determine which branches are feasible;
see ASSUME in Figure 3). The third column gives the time spent in
SMT reduction in solve, which transforms the constraints into a
SAT formula, using SMT queries in the process. The fourth column
gives the time spent in SAT solving, and the fifth column gives the

CBMC Sketch
Benchmark Unroll Size Unroll Size |SAT|
In-place RL 10 4 10 5 2,183k
Run length 10 ∞ 10 8 718k
LZ77 5 4 8 4 12,456k∑
i 10 ∞ fail fail fail

Vector shift 5 ∞ 10 5 35k
Permute count 10 5 8 8 1.76k

Table 5. Parameters required and running times for CBMC and
Sketch.

time spent in pickOne. Clearly the vast majority of the time is spent
in the first two steps.

Table 5 lists the bounds we chose in running CBMC and Sketch,
discussed in Section 2.5. We only list the programs that did not need
axioms for library functions. For both tools we give the bound on
loop unrollings and the bound on sizes of input arrays. For Sketch,
we also list the average size of the SAT formula it produces (these
are averages of the “find” values, as opposed to the “check” values,
across the algorithm).

We arbitrarily started with 10 as the number of unrollings, and
then reduced that sufficiently to ensure termination. For CBMC, in
half of the benchmarks we had to specify a bound on the size of
the input arrays, to get it to terminate. We experimentally found a
low enough size for verification, which was 5 in one case and 4 in
two others. Sketch always requires the input arrays be bounded. We
arbitrarily tried a value of 8, which worked for two programs, but
had to come down to 5 and 4 for others. Note these bounds are on
the sizes of the input arrays. Sketch internally also bounds the bit-
widths of all primitive types, e.g., integers are 5 bit wide. Because
these systems bit-blast the formula, they are also susceptible to the
types of the variables used. For instance, loops can be unrolled
much more if instead of ints we use chars. PINS explores the
right set of paths that allow it to effectively search as vast a space
as explored through bit-blasting over a small finitized space.


