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Abstract
We present a method for example-guided synthesis of functional
programs over recursive data structures. Given a set of input-output
examples, our method synthesizes a program in a functional lan-
guage with higher-order combinators like map and fold. The syn-
thesized program is guaranteed to be the simplest program in the
language to fit the examples.

Our approach combines three technical ideas: inductive gener-
alization, deduction, and enumerative search. First, we generalize
the input-output examples into hypotheses about the structure of the
target program. For each hypothesis, we use deduction to infer new
input/output examples for the missing subexpressions. This leads
to a new subproblem where the goal is to synthesize expressions
within each hypothesis. Since not every hypothesis can be real-
ized into a program that fits the examples, we use a combination
of best-first enumeration and deduction to search for a hypothesis
that meets our needs.

We have implemented our method in a tool called λ2, and we
evaluate this tool on a large set of synthesis problems involving
lists, trees, and nested data structures. The experiments demonstrate
the scalability and broad scope of λ2. A highlight is the synthesis
of a program believed to be the world’s earliest functional pearl.

Categories and Subject Descriptors D.1.2 [Programming Tech-
niques]: Automatic Programming; I.2.2 [Artificial Intelligence]:
Automatic Programming—Program Synthesis; F.3.1 [Logics and
Meanings of Programs]: Specifying and Verifying and Reasoning
about Programs

Keywords Program synthesis; programming by example; data
transformations; search-based synthesis; automated deduction
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1. Introduction
The last few years have seen a flurry of research on automated
program synthesis [2, 10, 19, 30, 32]. This research area aims to
radically simplify programming by allowing users to express their
intent as nondeterministic, possibly-incomplete specifications. An
algorithmic program synthesizer is then used to discover executable
implementations of these specifications.

Inductive synthesis from examples is a particularly important
form of program synthesis [1, 11, 16, 22, 27]. Here, a specification
consists of a set of examples of the form a 7→ b, where a is a sam-
ple input and b is the output of the desired program on input a. The
synthesizer’s task is to “learn” a program from these examples. This
form of synthesis is especially appealing to end-users who need to
perform programming tasks but lack the expertise or time to write
traditional code. A prominent synthesizer of this sort is FlashFill,
a feature of Excel 2013 that can generate spreadsheet table trans-
formations from examples [11]. Example-guided synthesis has also
been applied in many other domains, ranging from computer-aided
design to game programming to text editing [22].

In this paper, we present a method for example-guided synthesis
of programs that transform recursive data structures such as lists
and trees. Such programs arise in many end-user programming
scenarios. For instance, most professionals who work with numbers
would sometimes want to programmatically manipulate lists or
tables of numbers. Trees show up in end-user applications in many
guises — concrete examples include family trees, HTML/XML
documents, and directory trees in file systems. In fact, some end-
user applications may demand data structures that are more general
than lists or trees. For instance, a user interested in family trees may
sometimes want to analyze trees for an unbounded list of families.
In a specific family tree, a node for an individual may be equipped
with a list of attributes for that person, and the user may want to
transform these lists.

Transformations of recursive data structures are naturally ex-
pressed as functional programs. Therefore, our synthesis algorithm
targets a functional programming language that permits higher-
order functions, combinators like map, fold and filter, pattern-
matching, recursion, and a flexible set of primitive operators and
constants. The input to our algorithm is a set of input-output ex-
amples that define the behavior of the target program on certain
small-sized instances. On such an input, the synthesis algorithm ei-
ther times out or returns a program that fits the examples. In the
latter case, the synthesized program is guaranteed to be the least-
cost program in our language to fit the examples, according to a
cost metric that assigns lower cost to simpler programs (for exam-
ple, programs that are free of conditional branches).

A key advantage of the above optimality guarantee is that the
synthesized program is not over-fitted to the examples. Specifically,
given input-output examples a1 7→ b1, . . . , an 7→ bn, our algo-
rithm is unlikely to return a program that does an n-way case split



on its input and returns bi whenever the input is equal to ai. Instead,
the algorithm tries to “generalize” the examples into a program that
makes minimal use of conditional branches.

Although the synthesis algorithm’s job is fundamentally diffi-
cult due to the combinatorial search space of possible programs,
our algorithm addresses this challenge using a combination of three
technical ideas: (1) type-aware inductive generalization, (2) the use
of deduction to guide the solution of subproblems; and (3) best-first
enumerative search.

Inductive generalization Rather than blindly searching for a tar-
get program, our method generalizes the user-provided examples
into a set of hypotheses about this program. A hypothesis is ei-
ther a concrete program or a “skeleton” that contains placeholders
(“holes”) for unknown programs. For instance, a hypothesis h for a
program e might be of the form λx. map f∗ x where f∗ stands for
an unknown program. To synthesize a program from a hypothesis,
we must substitute holes such as f∗ by concrete programs.

Our algorithm generates hypotheses in a type-aware manner:
We infer a type from the input-output examples and only generate
hypotheses that can be concretized to programs of this type. For
instance, our algorithm generates the hypothesis λx. map f∗ x only
if all input-output examples are of type list[τ ] → list[τ ]. This
strategy often leads to significant pruning of the search space.

Deduction Once our algorithm generates a hypothesis h in the
form of a program skeleton, we must solve one or more subprob-
lems in order to synthesize the unknown functions that appear in
h. For this purpose, our algorithm uses automated deduction to ef-
ficiently find a solution to the subproblems. In particular, we use
deductive reasoning in two ways:

• Refutation. First, deduction is used to quickly refute certain
hypotheses. For instance, consider an example of the form
[1, 1] 7→ [2, 3] and the hypothesis h ≡ λx. map f∗ x. Our
deduction engine infers that this hypothesis h cannot be appro-
priate in this case, as no function maps the number 1 in the
input list to two distinct numbers 2 and 3 in the output list.
• Example inference. Second, deduction is used to generate new

examples that guide the search for missing functions. Consider
again the hypothesis λx. map f∗ x and the example [1, 2] 7→
[3, 4]. In this case, the deduction engine uses properties of the
map combinator to infer two examples for f∗: 1 7→ 3 and
2 7→ 4. To find f∗, we invoke the synthesis algorithm on these
examples.

Best-first enumerative search Generalization and deduction are
complemented by enumerative search. For instance, suppose we
have a hypothesis λx. map f∗ x where f∗ is found to be of type
int→ int. In this case, we use enumeration to find a substitution
for f∗ from within the space of unary arithmetic expressions. Also,
in many cases, a set of examples can be generalized into multiple
distinct hypotheses. Enumerative search is used to identify the
hypotheses that can be realized into programs that fit the top-level
goals.

Using the principle of Occam’s razor, our search algorithm pri-
oritizes simpler expressions and hypotheses. Specifically, the algo-
rithm maintains a “frontier” of candidate expressions and hypothe-
ses that need to be explored next and, at each point in the search,
picks the least-cost item from this frontier. We show that this search
strategy allows us synthesize the simplest program that fits the ex-
amples.

Results We have implemented our algorithm in a tool called λ2,
and we empirically demonstrate that our technical insights can be

combined into a scalable algorithm1. The benchmarks for our ex-
periments include over 40 synthesis problems involving lists, trees,
and nested data structures such as lists of lists and trees of lists.
We show that λ2 can successfully solve these benchmarks, typi-
cally within a few seconds. The programs that λ2 synthesizes can
be complex but also elegant. For example, λ2 is able to synthe-
size a program that is believed to be the world’s earliest functional
pearl [7].

Organization The paper is organized as follows. In Section 2, we
present three motivating examples for our approach. After formal-
izing the problem in Section 3, we present our synthesis algorithm
in Section 4. An evaluation is presented in Section 5, and related
work is discussed in Section 6. We conclude with some discussion
in Section 7.

2. Motivating Examples
In this section, we illustrate our method’s capabilities using three
examples.

2.1 Manipulating Lists of Lists
Consider a high-school teacher who wants to modify a collection
of student scores. These scores are represented as a list x =
[l1, . . . , ln] of lists, where each list li contains the i-th student’s
scores. The teacher’s goal is to write a function dropmins that
transforms x into a new list where each student’s lowest score is
dropped. For instance, we require that

dropmins [[1,3,5],[5, 3, 2]] = [3, 5], [5, 3].

Our λ2 system can synthesize the following implementation of
this function in 114.65 seconds:

dropmins x = map f x
where f y = filter g y

where g z = foldl h False y
where h t w = t || (w < z)

Here, foldl, map, and filter refer respectively to the standard
left-fold, map, and filter operators 2.

Note the complex interplay between scoping and higher-order
functions in this example. For example, the occurrence of z in line
4 is bound by the enclosing definition of g, and the occurrence of y
in line 3 is bound by the enclosing definition of f.

The input-output examples used in the synthesis task are as
follows.

[] 7→ []
[[1]] 7→ [[]]
[[1, 3, 5], [5, 3, 2]] 7→ [[3, 5], [5, 3]]
[[8, 4, 7, 2], [4, 6, 2, 9], [3, 4, 1, 0]] 7→

[[8, 4, 7] [4, 6, 9], [3, 4, 1]]

2.2 Transforming Trees
Consider a user who wants to write a program to mine family trees.
A node in such a tree represents a person; the node is annotated
with a set of attributes including the year when the person was
born. Given a family tree, the user’s goal is to generate a list of
persons in the family who were born between 1800 and 1820.

Suppose nodes of a family tree are labeled by pairs (v, by),
where by is the birth year of a particular person and v represents
the remaining attributes of that person. Given such a family tree,
our synthesis task is to produce a program that generates a list of

1 The name λ2 stands for “Lambda Learner”.
2 While λ2 generates its outputs in a λ-calculus, we use a Haskell-like
notation for readability.



all labels (v, by) that appear in the tree and satisfy the predicate
pr ≡ λby . 1800 ≤ by ≤ 1820.

λ2 synthesizes the following program for this task in 15.97
seconds.

selectnodes x = foldt f [] x
where f z y = foldl g (cons(y, concat z)) z

where g t = filter pr t

Here, the operator foldt performs a fold over an unordered tree,
concat takes in a list of lists li and returns the union of the li’s,
and cons is the standard list construction operator. Note that the
predicate pr is external to the function. The user supplies the
definition of this predicate along with the examples.

Let us represent trees using a bracket notation: <> represents the
empty tree, and <lab S T> is a tree rooted at lab and containing
child subtrees S and T . The examples needed to synthesize this
program are as follows.

<> 7→ []
<(a,1760) <(b,1803)> <(c,1795)>> 7→ [(b,1803)]
<(a,1771) <(b,1815)> <(c,1818)>> 7→

[(b,1815), (c,1818)]
<(a,1812) <(b,1846)> <(c,1852)>> 7→ [(a,1812)]

Here, a, b, and c are symbolic constants that represent arbi-
trary values of v in labels (v, by). Note that there exist other defi-
nitions of pr — different from the one that we are using here —
under which the synthesized program fits the examples. For in-
stance, suppose we replaced our definition of pr by the predicate
λby . by mod 3 = 0 in the synthesized program. The resulting pro-
gram would still satisfy the examples. The reason why λ2 does not
output this alternative program is that it considers external predi-
cates to be of especially low cost and prioritizes them during syn-
thesis. This strategy formalizes the intuition that the user prefers
the supplied predicate to appear in the synthesized program.

2.3 A Functional Pearl
We have used λ2 to synthesize a program originally invented by
Barron and Strachey [3]. Danvy and Spivey call this program “ar-
restingly beautiful” and believe it to be “the world’s first functional
pearl” [7].

Consider a function cprod whose input is a list of lists, and
whose output is the Cartesian product of these lists. Here is an
input-output example for this function:

[[1,2,3], [4], [5,6]] 7→
[[1,4,5],[1,4,6],[2,4,5],[2,4,6],[3,4,5],[3,4,6]].

Barron and Strachey implement this function as follows[3]:

cprod xss = foldr f [[]] xss
where f xs yss = foldr g [] xs

where g x zss = foldr h zss yss
where h ys qss = cons(cons(x, ys), qss)

Here, foldr is the standard right-fold operation. For an article-
length explanation of how this program works, see [7].

We used λ2 to synthesize an implementation of cprod from the
following examples, in 83.83 seconds.

[] 7→ [[]]
[[]] 7→ []
[[], []] 7→ []
[[1, 2, 3] [5, 6]] 7→
[[1, 5], [1, 6], [2, 5], [2, 6], [3, 5], [3, 6]]

Remarkably, the program that λ2 synthesizes using these exam-
ples is precisely the one given by Barron and Strachey.

3. Problem Formulation
In this section, we formally state our synthesis problem.

Programming language Our method synthesizes programs in a
λ-calculus with algebraic types and recursion. Let us consider sig-
natures 〈Op,Const ,A〉, where Op is a set of primitive operators,
Const is a set of constants, and A is a set of equations that re-
late operators and constants. The syntax of programs e over such a
signature is given by:

e ::= x | c | λx.e′ | e1 e2 | rec f.(λx.e′) | (e1, e2) | ⊕ e′ |
{l1 : e1, . . . , lk : ek} | e′.l | 〈li(ei)〉 |
match e′ with 〈l1(x1)⇒ e′1, . . . , lk(xk)⇒ e′k〉

Here, x and f are variables, ⊕ ∈ Op, and c ∈ Const . The
syntax has standard meaning; in particular:

1. rec f.(λx.e) is a recursive function f .

2. e = {l1 : e1, . . . , lk : ek} is a record whose field li has value
ei. We have e.li = ei.

3. e = 〈li(ei)〉 is a variant labeled li. The syntactic form
“match ewith . . . ” performs ML-style pattern-matching.

We assume the standard definition of free variables. A program is
closed if it does not have any free variables.

As the operational semantics of the language is standard, we do
not discuss it in detail. We simply assume that we have a relation
 such that e1  e2 whenever e1 evaluates to e2 in one or more
steps. Our programs are typed using an ML-style polymorphic
type system. Since this system is standard, we skip a detailed
description.

Our implementation of the language comes prepackaged with
certain primitive operators, constants, and type definitions. Prede-
fined types include (polymorphic) lists and trees, encoded as vari-
ants. Predefined operators include the standard arithmetic opera-
tors, operators for data structure construction and deconstruction,
if-then-else, and a set of higher-order combinators like map, foldl,
foldr, and foldt (see Figure 3 for a full list). In a particular syn-
thesis task, we may augment this set with external operators, con-
stants and types. For instance, in the synthesis of the selectnodes
function in Section 2.2, pr is an external operator.

Cost model Each program e in the language has a cost C(e) ≥ 0.
This cost is defined inductively. Specifically, we assume that each
primitive operator ⊕ and constant c has a known, positive cost.
Costs for more complex expressions satisfy constraints like the
following (we skip some of the cases for brevity):

• C(⊕ e) > C(⊕) + C(e)
• C(λx.e) > C(e)
• C(e1 e2) > C(e1) + C(e2)
• C(x) = 0. Intuitively, we assign costs to the definition, rather

than the use, of variables.

The synthesis problem Let an input-output example be a term
ai 7→ bi, where ai and bi are closed programs. The input to
our synthesis problem is a set Ein of such examples. Our goal
is to compute a minimal-cost closed program e that satisfies the
examples — i.e., for each i, we have (e ai) bi. In what follows,
we refer to e as the target program.

Note that this problem formulation biases our synthesis proce-
dure towards generating simpler programs. For example, since our
implementation associates a higher cost with the match construct
than the fold operators, our implementation favors fold-based im-
plementations of list-transforming programs over those that use
pattern-matching.
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Figure 1. High-level overview of our synthesis algorithm

Hypotheses The concept of hypotheses about the structure of the
target programs is key to our approach. Intuitively, a hypothesis is a
program that may have placeholders for missing expressions. For-
mally, a hypothesis is a program that possibly has free variables.
Free variables in a hypothesis are also known as holes, and a hy-
pothesis with holes is said to be open. For instance, x and λx.f∗x
are open hypotheses. In contrast, hypotheses that do not contain
free variables are said to be closed. For example, λx. map (λy. y+
1) x is a closed hypothesis.

A hypothesis h is typed under a typing context that assigns types
to its holes. Given a type τ , we say that h is consistent with τ
if there exists a typing context under which the type of h equals
τ . This property can be decided using a standard type inference
algorithm.

4. Synthesis Algorithm
This section describes our procedure for solving the synthesis prob-
lem from Section 3.

4.1 Algorithm Architecture
Our synthesis procedure performs an enumerative search that in-
terleaves inductive generalization and deductive reasoning. Specif-
ically, the procedure maintains a priority queue Q of synthesis sub-
tasks of the form (e, f, E), where e is a hypothesis, f is a hole in
the hypothesis, and E is a set of examples. The interpretation of
such a task is:

Find a replacement e∗ for the hole f such that e∗ satisfies
the examples E , and the program e[e∗/f ] obtained by sub-
stituting f by e∗ satisfies the top-level input-output exam-
ples Ein.

The procedure iteratively processes subtasks in the queueQ (the
task pool). Figure 1 gives an overview of our strategy for solving
each subtask (e, f, E). First, our algorithm performs inductive gen-
eralization over examples E to produce a lazy stream of hypotheses
H about candidates e∗ that can replace f . As mentioned earlier,
these hypotheses are generated in a type-aware way, meaning that
we rule out hypotheses that are inconsistent with the inferred type
τ of examples E .

Next, for each hypothesis h in H , our algorithm applies deduc-
tive reasoning to check for potential conflicts. If the hypothesis is
closed, then a conflict arises if e does not satisfy the top-level (user-
provided) input-output examples Ein. In this case, the procedure
simply picks a new synthesis subtask from the task pool Q. This
corresponds to a form of backtracking in the overall algorithm.

If the hypothesis is open, a conflict indicates that the provided
input-output examples violate a known axiom of a primitive oper-
ator used in the hypothesis (i.e., there is no way in which the hy-
pothesis can be successfully completed). Upon conflict detection,
our procedure again backtracks and considers a different inductive
generalization.

SYNTHESIZE(Ein)
1 Q← {(f, f, E)} // f is a fresh variable name
2 while Q 6= ∅
3 do pick (e, f, E) from Q such that e has minimal cost
4 if e is closed
5 then if CONSISTENT(e, Ein)
6 then return e
7 else continue
8 τ ← TYPEINFER(E)
9 H ← INDUCTIVEGEN(τ)

10 for h ∈ H
11 do e′ ← e[h/f ]
12 if e′is closed
13 then Q← Q ∪ {(e′,⊥, ∅)}
14 else for f∗ ∈ HOLES(e′)
15 do E∗ ← DEDUCE(e′, f∗, E)
16 if E∗ = ⊥ then break
17 Q← Q ∪ {(e′, f∗, E∗)}
18 return ⊥

Figure 2. Synthesis procedure.

If hypothesis h is open and no conflicts are found, the procedure
generates new subtasks for each hole f in h and uses deduction to
learn new input-output examples. In more detail, each new subtask
is of the form (e′, f∗, E∗) where e′ is a new hypothesis, f∗ is a new
hole to be synthesized, and E∗ is the set of inferred input-output
examples for f∗. This new subtask is now added to the task pool
Q.

The procedure terminates once the search selects a subtask
where the hypothesis is closed and which does not conflict with
the top-level examples Ein.

Figure 2 gives pseudocode for the overall synthesis algorithm.
Here, Q is the task pool: a priority queue of tasks (e, f, E) sorted
according to the cost of hypothesis e. In each iteration of the outer
loop, we pick a minimum-cost subtask (e, f, E) from Q. Now, if e
is a closed hypothesis, we use the routine CONSISTENT at line 5
to deductively check whether e satisfies examples Ein. If this is the
case, e must be a minimum-cost implementation consistent with
Ein; hence we return e as a solution to the synthesis problem. On
the other hand, if e is not consistent with Ein, we continue with a
different candidate in Q.

Now, if e is an open hypothesis, we still need to synthesize
the free variable f in e. For this purpose, we use the TYPEINFER
procedure at line 8 to infer the type of f from examples E and then
call the hypothesis generator INDUCTIVEGEN (see Section 4.2).
This routine uses type-aware inductive generalization to compute
a stream H of possible inductive generalizations for f . Now, we
obtain a new hypothesis e′ by replacing f with a hypothesis h ∈ H .
If e′ is closed, there are no new unknowns to synthesize; hence, we
add a single subtask (e′,⊥, ∅) to the task pool Q.



Hypothesis Definition of Combinator

λx. map f x
map :: (a→ b)→ list[a]→ list[b]
map f [ ] = [ ]
map f cons(x, y) = cons ((f x), (map y f))

λx. mapt f x
mapt :: (a→ b)→ tree[a]→ tree[b]
mapt f tree() = tree()
mapt f tree(x, y) = tree(f x, mapt f y)

λx. filter f x
filter :: (a→ bool)→ list[a]→ list[a]
filter f [ ] = [ ]
filter cons(x, y) f = if f x then cons(x, (filter f y)) else filter f y

λx. foldl f e x
foldl :: (b→ a→ b)→ b→ list[a]→ b
foldl f e [ ] = e
foldl f e cons(x, y) = foldl f (f e x) y

λx. foldr f e x
foldr :: (b→ a→ b)→ b→ list[a]→ b
foldr f e [ ] = e
foldr f e cons(x, y) = f (foldr f e y) x

λx. foldt f e x
foldt :: (list[b]→ a→ b)→ b→ tree[a]→ b
foldt f e tree() = e
foldt f e tree(x, y) = f (map (λz. foldt f e z) y) x

λx. recl f e x
recl :: (a→ list[a]→ b)→ b→ list[a]→ b
recl f e [ ] = e
recl f e cons(x, y) = f x y

Figure 3. Family of combinators from which we draw our open hypotheses.

On the other hand, if e′ is an open hypothesis, we generate
new subtasks for synthesizing each hole in e′. Here, the procedure
DEDUCE (Section 4.3) infers new examples for a specified hole f∗

in e′. If a conflict is detected (i.e., e′ is not consistent with a known
axiom), then DEDUCE returns ⊥, which causes backtracking from
the current hypothesis. If no conflicts are detected, we add new
subtasks of the form (e′, f∗, E∗) to Q.

Example 1 (List reverse). Suppose we want to synthesize a pro-
gram that reverses a list, starting from the following input-output
examples.

[] 7→ []
[0] 7→ [0]
[0 1] 7→ [1 0]
[0 1 2] 7→ [2 1 0]

From this specification, our algorithm infers that the type of
the target program is list[int] → list[int]. Now it begins
a search for this program, starting with the “empty” hypothesis
h = λx. f , where f is a hole of type list[int]. We begin filling
in f with type-compatible expressions like [ ], x, cons(1, [ ]), etc.
Expressions are enumerated in order of increasing cost. Eventually,
we start using higher-order combinators such as map and foldl to
fill in f .

We use deductive reasoning in addition to the known type of
f to determine whether to allow f to be filled by a particular
combinator. For example, we rule out filter as a possibility
because of the element reordering in the examples, but map, foldl
and foldr remain possible.

When we fill f with the left-fold combinator foldl, we have
a new hypothesis λx.(foldl h′ [ ] x), where h′ = λa.λe.f ′ for a
new hole f ′. Higher-order combinators differ from operators like
cons in that their arguments have certain restrictions. In this case,
the last argument to foldl must be a name; it is not allowed to be
an expression. The first argument must be a lambda-term as shown.
Here, the second argument is inferred to be [ ] because of the first
example. In problems where the base case input-output example is
not provided, the second argument to foldl will be a hole as well.

The new hole f ′ is of type list[int]. Now we use deduction
to infer a set of input-output examples foldl (see Section 4.3 for
the inference rule used for this). The inferred examples are:

([ ], 0) 7→ [0]
([0], 1) 7→ [1 0]
([1 0], 2) 7→ [2 1 0].

A solution is found for f ′ using the same process. We test
the solution by filling in f ′ with the candidate and determining if
the result fits the user-provided examples. Note that the inferred
examples for f ′ are not used in this process; their purpose is only
to refute the use of a combinator.

In the present scenario, we would not end up trying any can-
didates using higher-order combinators because f ′ can be filled by
the low-cost expression cons(e, a). The solution that our algorithm
reports to the user is:

reverse x = foldl g [] x
where g e a = cons (e, a).

4.2 Hypothesis Generation
This section describes the hypothesis generation procedure INDUC-
TIVEGEN used in our synthesis algorithm. The input of the proce-
dure is a type τ inferred from a set of examples. The output is a
stream of hypotheses that match this type.

The procedure treats the generation of open and closed hypothe-
ses differently. An open hypothesis generated here has a partic-
ular form: it is the application of a higher-order combinator to
a set of (known or unknown) arguments. Since such hypotheses
are used to encapsulate common data structure transformation pat-
terns, we only introduce them when the input examples correspond
to recursive data structures. In other scenarios, for example when
τ = τ1 → τ2 for primitive types τ1 and τ2, INDUCTIVEGEN only
generates closed hypotheses. These hypotheses do not use higher-
order combinators.

In general, the procedure separately generates a list of open hy-
potheses and a stream of closed hypotheses, each ordered accord-
ing to cost. The stream returned to the top-level loop is obtained by
merging this list and stream.



Generating open hypotheses The open hypotheses that we gen-
erate are drawn from Figure 3. The first column of Figure 3 shows
the hypothesis which serves as our inductive generalization, and
the second column shows the definition of the combinator used in
the hypothesis. Observe that the free variables in the first column
correspond to new synthesis subproblems.

Open hypothesis generation is guided by the inferred type of the
input-output examples. For instance, suppose we have the examples
{[ ] 7→ 0, [1] 7→ 1, [1, 2] 7→ 3}. Here, since the inferred type of
the transformation is list[int] → int, our hypothesis generator
immediately rules out the first three combinators from Figure 3
from being possible generalizations. The use of types to guide
generalization is an important feature of our procedure and greatly
helps to keep the search space manageable (see Section 5).

Generating closed hypotheses Generation of closed hypotheses
is based on lazy, exhaustive enumeration. Specifically, we construct
a lazy stream of candidate expressions that are free of higher-order
combinators and are compatible with the type τ . The stream is
ordered by increasing cost.

This construction of the stream is recursive. We start with a
stream of type-compatible base expressions made from constants
and bound variables). We then select the operators ⊕ that have re-
turn types that are compatible with τ . For each such⊕, we generate
an ordered stream for non-base expressions of form⊕(. . . ). Such a
stream is obtained by recursively generating a stream for each argu-
ment of ⊕ and applying ⊕ to these argument streams. The stream
that we return is obtained by merging all these expression streams.

Our enumerative search also uses a rewrite system to avoid
enumerating syntactically distinct but semantically equivalent hy-
potheses. Given a candidate hypothesis e, this rewrite system pro-
duces either the original hypothesis e or an equivalent, but lower-
cost hypothesis e′. As our goal is to find a minimal-cost program,
we can safely prune e from the search space in the latter case. For
example, suppose our signature has addition as a primitive opera-
tor, 1 and 0 as constants, and the axiom ∀x.x + 0 = 0 + x = 1.
In this case, our rewrite system will make sure that (1 + 0) is not
generated as a closed hypothesis.

4.3 Inference of New Examples Using Deduction
We now explain the DEDUCE procedure used in the synthesis
algorithm from Figure 2. Recall that the purpose of this procedure
is to infer new input-output examples and to detect conflicts.

The deduction engine underlying our procedure can be de-
scribed by a set of inference rules of the form E , h ` f : E ′.
The meaning of this judgment is that, if E is a set of input-output
examples with inductive generalization h, then E ′ is a new set of
input-output examples for unknown f used in expression h. Here,
E ′ may also be ⊥, indicating that a conflict is detected and that the
subproblem defined by f does not have a solution. Note that the
soundness of deduction implies that, if E , h ` f : ⊥, then h cannot
be a correct inductive generalization for examples E .

Figure 4 shows the deductive reasoning performed for hypothe-
ses involving the map, mapt and filter combinators. The first
three rules in Figure 4 concern hypotheses involving map. Specifi-
cally, the first rule deduces a conflict if E contains an input-output
example of the form A 7→ B such that A and B are lists but their
lengths are not equal. Similarly, the second rule deduces ⊥ if E
contains a pair of input-output examples A 7→ B and A′ 7→ B′

such that Ai = A′j but Bi 6= B′j . Since function f provided as
an argument to the map combinator must produce the same output
for a given input, the existence of such an input-output example in-
dicates the hypothesis must be incorrect. Finally, the third rule in
Figure 4 shows how to deduce new examples for f when no con-
flicts are detected. Specifically, for an input-output example of the

form A 7→ B where A and B are lists, we can deduce examples
Ai 7→ Bi for function f .

Example 2. Consider the input-output examples [1, 2] 7→ [2, 3]
and [2, 4] 7→ [3, 5] and the hypothesis λx. map f x. Using the third
rule from Figure 4, we deduce the following new examples for f :
{1 7→ 2, 2 7→ 3, 4 7→ 5}.
Example 3. Consider the input-output examples [1] 7→ [1] and
[2, 1, 4] 7→ [2, 3, 7] and the hypothesis λx. map f x. We can derive
a conflict using the second rule of Figure 4 because f maps input 1
to two different values 1 and 3.

Since the rules for mapt are similar to those for map, we do not
explain them in detail. We use the notation si 6' ti to indicate that
trees si and ti have incompatible “shapes”.

The last three rules of Figure 4 describe the deduction process
for the filter combinator. Since λx.filter f x removes those
elements of x for which f(x) evaluates to false, the length of the
output list cannot be greater than that of the input list. Hence, the
first rule for filter derives a conflict if there exists an example
A 7→ B such that the length of list B is greater than the length of
list A. Similarly, the second rule for filter deduces ⊥ if there is
some element in list B that does not have a corresponding element
in list A. If no conflicts are detected, the last rule of Figure 4 infers
input-output examples for f such that an element x is mapped to
true if and only if it is retained in output list B.

Example 4. Consider the input-output example [1, 2] 7→ [1, 2, 1, 2]
and the hypothesis λx. filter f x. Our procedure deduces a con-
flict using the first rule for filter.

Example 5. Consider the input-output example [1, 2, 3] 7→ [1, 3, 2]
and the hypothesis λx. filter f x. This time, our procedure de-
duces ⊥ using the second rule for filter.

Example 6. Consider the examples [1, 2, 3] 7→ [2] and [2, 8] 7→
[2, 8] and the hypothesis λx. filter f x. Using the last rule of
Figure 4, we derive the following examples for f : {1 7→ false, 2 7→
true, 3 7→ false, 8 7→ true}.

We now describe the deductive reasoning performed for the
foldl and foldr combinators (we collectively refer to these oper-
ators as fold). Consider a hypothesis of the form λx. fold f e x
and suppose we want to learn new input-output examples charac-
terizing f . We have found that deducing new examples for f in
a sound and scalable way is only possible if the expression e is a
constant, as oppposed to a function of x. Therefore, our procedure
generates two separate hypotheses involving fold:

1. λx. fold f c x where c is a constant

2. λx. fold f e x where e is an arbitrary expression.

Our deduction engine can make inferences and generate useful
examples only for case (1). The second case relies on enumerative
search, which is possible even without examples. As new examples
can prune the search space significantly, synthesis is more likely to
be efficient in case (1), and we always try the first hypothesis before
the second one. In what follows, we discuss the inference rules for
fold under the assumption that it has a constant base case.

Figure 5 describes the deduction process for combinators in-
volving foldl, foldr and rec using set inclusion constraints.
Specifically, the set E ′ in these rules denotes the smallest set sat-
isfying the generated constraints. Consider the first two rules of
Figure 5. By the first rule, if there are two input-output examples
of the form [ ] 7→ b and [ ] 7→ b′ such that b 6= b′, this means
that we cannot synthesize the program using a fold operator with
a constant base case; hence we derive ⊥. Otherwise, if there is an
example [ ] 7→ b, we infer the initial seed value for fold to be b.



E =
⋃

1≤i≤n{[ai1, . . . , aig(i)] 7→ [bi1, . . . , bih(i)]}
∃i.(1 ≤ i ≤ n ∧ g(i) 6= h(i))

E, λx. map f x ` f : ⊥

E =
⋃

1≤i≤n{[ai1, . . . , aig(i)] 7→ [bi1, . . . , bih(i)]}

∃i, j, k,m.
(

1 ≤ i ≤ n ∧ 1 ≤ j ≤ n ∧ 1 ≤ k ≤ g(i)∧
1 ≤ m ≤ h(j) ∧ aik = ajm ∧ bik 6= bjm)

)
E, λx. map f x ` f : ⊥

E =
⋃

1≤i≤n{[ai1, . . . , aig(i)] 7→ [bi1, . . . , big(i)]}
E ′ =

⋃
1≤i≤n{ai1 7→ bi1, . . . aig(i) 7→ big(i)}

((a, b) ∈ E ′ ∧ (a′, b′) ∈ E ′ ∧ a = a′)⇒ b = b′

E, λx. map f x ` f : E ′

E =
⋃

1≤i≤n{si 7→ ti}
∃i.(1 ≤ i ≤ n ∧ si 6' ti)
E, λx. mapt f x ` f : ⊥

E =
⋃

1≤i≤n{si 7→ ti}

∃i, j, k,m.
(

1 ≤ i ≤ n ∧ 1 ≤ j ≤ n ∧ 1 ≤ k ≤ size(si)∧
1 ≤ m ≤ size(ti) ∧ sik = sjm ∧ tik 6= tjm)

)
E, λx. mapt f x ` f : ⊥

E =
⋃

1≤i≤n{si 7→ ti} k = size(si) = size(ti)

E ′ =
⋃

1≤i≤n{si1 7→ ti1, . . . sik 7→ tik}
((a, b) ∈ E ′ ∧ (a′, b′) ∈ E ′ ∧ a = a′)⇒ b = b′

E, λx. mapt f x ` f : E ′

E =
⋃

1≤i≤n{[ai1, . . . , aig(i)] 7→ [bi1, . . . , bih(i)]}
∃i.(1 ≤ i ≤ n ∧ h(i) > g(i))

E, λx. filter f x ` f : ⊥

E =
⋃

1≤i≤n{[ai1, . . . , aig(i)] 7→ [bi1, . . . , bih(i)]}
∃i.∃j.1 ≤ i ≤ n ∧ 1 ≤ j ≤ g(i) ∧ ∀k.(k ≥ j ⇒ bij 6= aik)

E, λx. filter f x ` f : ⊥

E =
⋃

1≤i≤n{[ai1, . . . , aig(i)] 7→ [bi1, . . . , bih(i)]} ∀i.1 ≤ i ≤ n 7→ h(i) ≤ g(i)
∀(A 7→ B) ∈ E.∀bi ∈ B.∃aj ∈ A.(j ≥ i ∧ bi = aj)

ET = {x 7→ true | x ∈ A ∧ x ∈ B ∧A 7→ B ∈ E} EF = {x 7→ false | x ∈ A ∧ x 6∈ B ∧A 7→ B ∈ E}
E, λx. filter f x ` f : ET ∪ EF

Figure 4. Deductive reasoning for map, mapt, and filter

Let us now consider the third rule (i.e., foldr), and suppose
we have an example E1 : [a1, . . . , an] 7→ b and another example
E2 : [a2, . . . , an] 7→ b′. Now, observe the following equivalences:

foldr f y [a1, . . . , an]
≡ f (foldr f y [a2, . . . , an]) a1 (def. of foldr)
≡ f b′ a1 (from E2)
≡ b (from E1)

Since we have f b′ a1 = b, it is sound to deduce the input-output
example (b′, a1) 7→ b for the unknown function f .

As shown in the fourth rule, we can apply similar reasoning to
foldl. Suppose we have the following examples:

E′1 : [a1, . . . , an] 7→ b E′2 : [a1, . . . , an−1] 7→ b′

We can again expand the recursive definition of foldl to obtain
the following equivalences:

foldl f y [a1, . . . , an]
≡ f an (foldl f y [a1, . . . , an−1]) (property of foldl)
≡ f an b′ (from E′2)
≡ b (from E′1)

Hence, we can infer the input-output example (an, b
′) 7→ b for

function f .
The next three rules for foldt are very similar to foldl and

foldr; hence, we do not discuss them in detail. The last rule in
Figure 5 infers input-output examples for function f used in the
general recursion combinator. Recall from Figure 3 that, given an
input list of the form x : xs, the general recursion combinator
applies function f to pair (x, xs). Hence, for any input exam-
ple of the form [a1, . . . , an] 7→ b, we can deduce the example
(a1, [a2, . . . , an]) 7→ b for unknown function f .

Characterization and limitations The deduction procedure used
in our synthesis algorithm is sound but incomplete. In this context,
we define soundness and completeness as follows:

Definition 1. (Soundness of deduction) Let E be a set of input-
output examples, and let h be a hypothesis that is an inductive
generalization of E . The DEDUCE procedure is sound, if for every
unknown f in h, whenever DEDUCE(h, f, E) = E ′ and the synthesis

([] 7→ b) ∈ E, ([] 7→ b′) ∈ E, b 6= b′

E, λx. fold f c x ` c : ⊥

([ ] 7→ b) ∈ E
E, λx. fold f c x ` c : {b}

([a1, . . . , an] 7→ b) ∈ E
([a2, . . . , an] 7→ b′) ∈ E

E, λx. foldr f c x ` f : ((b′, a1) 7→ b) ∈ E ′

([a1, . . . , an] 7→ b) ∈ E
([a1, . . . , an−1] 7→ b′) ∈ E

E, λx. foldl f c x ` f : ((an, b′) 7→ b) ∈ E ′

(tree() 7→ b) ∈ E, (tree() 7→ b′) ∈ E, b 6= b′

E, λx. foldt f c x ` c : ⊥

(tree() 7→ b) ∈ E
E, λx. foldt f c x ` c : {b}

tree(a, [b1, . . . , bn]) 7→ c ∈ E
∀i.(1 ≤ i ≤ n⇒ (bi 7→ c′i ∈ E))

E, λx. foldt f c x ` f : ([c′1, . . . , c
′
n], a) 7→ c) ∈ E ′

(x : xs 7→ b) ∈ E
E, λx.recl f e x ` f : ((x, xs) 7→ b) ∈ E ′

Figure 5. Deduction for fold and general recursion.

problem defined by E ′ and f does not have a solution, then the
synthesis problem defined by E and h also does not have a solution.

Definition 2. (Completeness of deduction) Let E be a set of ex-
amples, and let h be a hypothesis that is an inductive generalization
of E . The completeness of DEDUCE means that, if the synthesis
problem defined by E , h does not have a solution, then there exists
some unknown f in h such that (i) DEDUCE(h, f, E) = E ′ and (ii)
the synthesis problem defined by E ′, f does not have a solution.

In other words, the deduction procedure is sound if the non-
existence of a solution to any synthesis subtask implies the non-



existence of a solution to the original problem. Hence, soundness
implies that deduction will never cause our synthesis procedure to
reject a valid open hypothesis. On the other hand, the procedure is
complete if a solution to the original problem exists whenever all
synthesis subtasks generated from it have solutions.

We can show that:

Theorem 1. The procedure DEDUCE is sound and incomplete.

To see how our inference rules are not complete, consider the
following example.

Example 7. Consider the hypothesis λx. foldl f y x, and the
following input-output examples provided by the user:

[ ] 7→ 0 [1] 7→ 1 [1, 2] 7→ 3
[2, 3] 7→ 5 [1, 2, 3] 7→ 6 [2, 3, 5] 7→ 10

Using the inference rules from Figure 5, we infer the following
input-output examples for f :

(1, 0) 7→ 1, (2, 1) 7→ 3, (3, 3) 7→ 6, (5, 5) 7→ 10

Observe that there is information provided by [2, 3] 7→ 5 that is not
captured by the inferred examples for f .

A consequence of incompleteness is that our synthesis proce-
dure must check that a closed hypothesis is consistent with the user-
provided example set Ein. This is done in line 5 of the SYNTHESIZE
procedure in Figure 2.

Another limitation of our deduction procedure is that it critically
depends on prior knowledge about the operators used for synthesis.
This kind of knowledge is not in general available for external op-
erators. However, we note that the SYNTHESIZE procedure applies
even when DEDUCE does not return useful results. In these cases,
it relies wholly on enumeration and generalization.

4.4 Optimality of Synthesis
Now we show that procedure SYNTHESIZE from Figure 2 correctly
solves the synthesis problem defined in Section 3.

Theorem 2. If SYNTHESIZE returns program e on examples E ,
then e is a minimal-cost closed program that satisfies E .

Proof. The program e is guaranteed to be closed and satisfy the
input-output examples by lines 4-6 in the procedure.

We prove optimality of e by contradiction. Assume there is a
closed e′ such that e 6= e′, C(e′) < C(e) and e′ satisfies E .
Consider the point in time when SYNTHESIZE picks a task of
the form (e, f∗, E∗) out of the task pool Q. A task of the form
(e′, f ′, E ′) cannot be in Q at this time or at any point of time until
this point. Otherwise, because of line 3, SYNTHESIZE would have
picked (e′, f ′, E ′) and returned e′.

However, Q must, at this point, contain an open hypothesis
h whose free variables can be instantiated to produce e′. This is
because the pruning mechanisms in SYNTHESIZE are sound; as
a result, the procedure does not rule out hypotheses from which
satisfactory programs can be generated.

We know that C(h) ≥ C(e); otherwise SYNTHESIZE would
have picked the task involving h in this loop iteration. However,
note that in our cost model (Section 3), primitive operators and
constants have positive costs and free variables have cost 0. Thus,
any program of form h[h′/f ] must have strictly higher cost than
h. This means that C(e′) > C(h), which implies C(e′) > C(e).
This is a contradiction.

5. Evaluation
We have implemented the proposed synthesis algorithm in a tool
called λ2, which consists of ∼4,000 lines of OCaml code. In our

current implementation, the cost function prioritizes open hypoth-
esis generation over brute-force search for closed hypotheses. In
particular, this is done by using a weighting function W (ca, cb) =
ca + 1.5cb where ca and cb are the total costs of expressions ob-
tained through open and closed hypothesis generation respectively.
Intuitively, the weighting function attempts to balance the relative
value of continued generalization and exhaustive search — the ex-
ponential term reflects that the exhaustive search space grows ex-
ponentially with maximum cost.

To evaluate our synthesis algorithm, we gathered a corpus of
over 40 data structure manipulation tasks involving lists, trees, and
nested data structures such as lists of lists or trees of lists. As de-
scribed in the last column of Figure 6, most of our benchmarks are
textbook examples for functional programming and some are in-
spired by end-user synthesis tasks, such as those mentioned in Sec-
tion 1 and Section 2.

Our main goal in the experimental evaluation was to assess (i)
whether λ2 is able to synthesize the benchmarks we collected, (ii)
how long each synthesis task takes, and (iii) how many examples
need to be provided by the user for λ2 to generate the intended
program. To answer these questions, we conducted an experimental
evaluation by running λ2 over our benchmark examples on an
Intel(R) Xeon(R) E5-2430 CPU (2.20 GHz) with 8GB of RAM.

The column labeled “Runtime” in Figure 6 shows the running
time of λ2 on each benchmark. The symbol ⊥ indicates that λ2

is unable to complete the synthesis task within a time limit of
10 minutes. As shown in Figure 6, λ2 is able to successfully
synthesize every benchmark program within its resource limits.
Furthermore, we see that λ2 is quite efficient: its median runtime
is 0.43 seconds, and it can synthesize 88% of the benchmarks in
under a minute.

The column labeled “Expert examples” shows the number of
examples we provided for each synthesis task (the examples were
produced by a co-author of this paper). As shown in Figure 6,
more than 75% of the benchmarks require 5 or fewer input-output
examples, and there is only a single benchmark that requires more
than 10 examples.

We were also interested in the following questions:

• What is the impact of using types in our algorithm?
• How effective is deduction?
• How does λ2 behave if its examples are not provided by an

expert who is familiar with λ2?

In what follows, we address these questions in more detail.

Impact of types. Recall that our synthesis algorithm uses type-
aware inductive generalization to prune the search space. To under-
stand the impact of using types, we modified our algorithm to ig-
nore types when generating hypotheses. The column labeled “Run-
time (no types)” in Figure 6 shows the running time of the algo-
rithm when we do not perform inductive generalization in a type-
aware way. As shown by the data, types have a huge impact on the
running time of the synthesis algorithm. In fact, without type-aware
inductive generalization, more than 60% of the benchmarks do not
terminate within the provided 10 minute resource limit.

Impact of deduction. We also conducted an experiment to eval-
uate the effectiveness of deduction in the overall synthesis algo-
rithm. Recall from Section 4 that our algorithm uses deduction for
(i) inferring new input-output examples, and (ii) refuting incorrect
hypotheses. To evaluate the impact of deduction, we modified our
algorithm so that it does not perform any of the reasoning described
in Section 4.3. The running times of this modified algorithm are
presented in Figure 6 under the column labeled “Runtime (no de-
duction)”. While the impact of deduction is not as dramatic as the
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Description

L
is

ts

add 0.04 0.05 3.87 5 4 0.04 Add a number to each element of a list.
append 0.23 0.49 ⊥ 3 16 0.93 Append an element to a list.
concat 0.13 0.22 68.95 5 23 0.20 Concatenate two lists together.
dedup 231.05 ⊥ ⊥ 7 - - member Remove duplicate elements from a list.
droplast 316.39 ⊥ ⊥ 6 - - Drop the last element in a list.
dropmax 0.12 0.19 77.05 3 7 0.16 max Drop the largest number(s) in a list.
dupli 0.11 0.86 378.35 3 5 0.20 Duplicate each element of a list.
evens 7.39 45.52 ⊥ 5 8 30.08 Remove the odd numbers from a list.
last 0.02 0.06 1.80 4 4 0.03 Return the last element in a list.
length 0.01 0.14 41.36 4 5 0.04 Return the length of a list.
max 0.46 9.53 ⊥ 7 8 8.19 Return the largest number in a list.
member 0.35 2.87 ⊥ 8 88 1.15 Check whether an item is a member of a list.
multfirst 0.01 0.01 1.82 4 5 0.03 Replace every item in a list with the first item.
multlast 0.08 0.51 ⊥ 4 7 0.27 Replace every item in a list with the last item.
reverse 0.01 0.06 39.03 4 5 0.03 Reverse a list.
shiftl 0.89 6.23 ⊥ 5 7 2.19 reverse Shift all elements in a list to the left.
shiftr 0.65 3.79 ⊥ 6 13 6.58 reverse Shift all elements in a list to the right.
sum 0.01 0.31 44.24 4 4 0.04 Return the sum of a list of integers.

Tr
ee

s

count leaves 0.44 2.69 ⊥ 8 10 0.67 sum Count the number of leaves in a tree.
count nodes 0.62 6.13 ⊥ 4 9 1.04 Count the number of nodes in a tree.
flatten 0.08 0.09 102.24 3 6 0.14 join Flatten a tree into a list.
height 0.10 0.27 83.12 6 7 0.20 max Return the height of a tree.
incrt 0.02 0.01 1.90 3 4 0.03 Increment each node in a tree by one.
leaves 0.52 1.83 ⊥ 5 8 0.83 join Return a list of the leaves of a tree.
maxt 10.59 375.07 ⊥ 6 43 46.80 Return the largest number in a tree.
membert 4.66 56.80 ⊥ 12 75 18.07 Check whether an element is contained in a tree.
selectnodes 15.97 94.91 ⊥ 4 9 66.81 join, pr Return a list of nodes in a tree that match a predi-

cate pr.
sumt 0.59 5.74 ⊥ 3 9 1.06 Sum the nodes of a tree of integers.
tconcat 551.84 ⊥ ⊥ 3 - - Insert a tree under each leaf of another tree.
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appendt 1.03 2.44 ⊥ 5 14 2.57 Append an element to each node in a tree of lists.
cprod 83.83 ⊥ ⊥ 4 - - Return the Cartesian product of a list of lists.
dropmins 114.65 452.07 ⊥ 4 - - min Drop the smallest number in a list of lists.
flattenl 0.08 0.11 87.94 5 5 0.15 join Flatten a tree of lists into a list.
incrs 0.12 0.80 ⊥ 4 4 0.46 Increment each number in a list of lists.
join 0.43 2.13 ⊥ 4 6 1.01 Concatenate a list of lists together.
prependt 0.01 0.01 3.46 5 4 0.03 Prepend an element to each list in a tree of lists.
replacet 4.02 10.22 ⊥ 4 8 10.94 Replace one element with another in a tree of lists.
searchnodes 4.28 43.85 ⊥ 6 31 19.68 member Check if an element is contained in a tree of lists.
sumnodes 0.16 0.43 ⊥ 4 3 0.34 Replace each node with its sum in a tree of lists.
sums 0.12 1.26 ⊥ 4 5 0.54 For each list in a list of lists, sum the list.
sumtrees 12.10 77.21 ⊥ 3 5 49.55 Return the sum of each tree in a list of trees.
Median 0.43 2.13 ⊥ 4 8 0.93

Figure 6. λ2 performance. Times are in seconds. ⊥ indicates a timeout (>10 minutes) or an out of memory condition (>8GB).



impact of type-aware hypothesis generation, it nonetheless has a
significant impact. In particular, the original algorithm with deduc-
tion is, on average, 6 times faster than the modified algorithm with
no deduction.

Random example generation. Next, we examined the extent to
which the effectiveness of our algorithm depends on the quality
of user-provided examples. In particular, we aimed to estimate the
behavior of λ2 on examples provided by a user who has no prior
exposure to program synthesis tools. To this end, we built a random
example generator that serves as a “lower bound” on a human user
of λ2. The random example generator is, by design, quite naive.
For instance, given a program with input type list[int], our ex-
ample generator chooses a small list length and then populates the
list with integers generated uniformly from a small interval. The
corresponding output is generated by running a known implemen-
tation of the benchmark on this input.

Now, to determine the minimum number of examples that λ2

needs to synthesize the benchmark program, we ran the random
example generator to generate k independent input-output exam-
ples. Given an example set of size k, we then checked whether λ2

is able to synthesize the correct function in 90% of the trials. If so,
we concluded that the lay user should be able to successfully syn-
thesize the target program with an example set of size k, and set the
runtime of the benchmark to be the median runtime on these trials.
Otherwise, we increased the value of k and repeat this process.

The columns labeled “Random examples” and “Runtime (ran-
dom)” in Figure 6 respectively show the minimum number of ex-
amples and runtime for each benchmark when the examples are
generated randomly. We see that the median values of these quan-
tities are fairly low (8 and 0.93 seconds, respectively).

For a few benchmarks (e.g., dedup), λ2 was unable to synthe-
size the program for all trials with k ≤ 100 examples while it re-
quires a large number of examples for a few other benchmarks (e.g.,
member). However, upon further inspection, this turned out to be
due to the naiveté of our random example generator rather than a
shortcoming of λ2. For instance, consider the member benchmark
which returns true iff the input list l contains a given element e.
Clearly, any reasonable training set should contain a mix of posi-
tive and negative examples. However, when both the list l and the
element e are randomly generated, it is very unlikely that l contains
e. Hence, many randomly generated example sets contain only neg-
ative examples and fail to illustrate the desired concept. However,
we believe it is entirely reasonable to expect that a human can pro-
vide both positive and negative examples in the training set.

Summary. Overall, our experimental evaluation validates the
claim that λ2 can effectively synthesize representative, non-trivial
examples of data structure transformations. Our experiments also
show that type-aware inductive generalization and deductive rea-
soning have a significant impact on the running time of the al-
gorithm. Finally, our experiments with randomly generated input-
output examples suggest that using λ2 requires no special skill on
the part of the user.

6. Related Work
Program synthesis has received much attention from the program-
ming languages community lately. Many of these efforts [4, 30, 31]
assume a programmer-provided “template” of the target program.
Some others [19] do not need a template, but require a full logical
specification of the target program. In contrast, our method per-
forms synthesis from input-output examples.

Existing synthesis techniques that require only input-output ex-
amples are often restricted to programs over basic data types like
numbers [29], strings [11], and tables [13], as opposed to recursive
data structures. An exception is work by Albarghouthi et al. [1],

which, like our method, synthesizes recursive programs over data
structures. However, this approach is algorithmically quite differ-
ent from ours: it is based on goal-directed enumerative search, and
does not use types, inductive generalization, or deduction of con-
flicts and new examples. As we have shown in Section 5, these
ideas are critical to the performance of our approach in most of our
benchmarks.

In recent work, Perelman et al. [27] give a generic method called
Test-Driven Synthesis (TDS) for constructing program synthesiz-
ers for user-defined domain-specific languages (DSLs). Also, Le
and Gulwani [21] present a synthesis framework for DSLs called
FlashExtract where programs are made from combinators such
as map and filter. The problem domains targeted by these ap-
proaches and ours are similar; in fact, our synthesis problem could
in principle be expressed in the DSL framework of TDS. However,
the synthesis algorithm in TDS primarily relies on an optimized
enumerative search, and the algorithm in FlashExtract is mostly
based on deduction. In contrast, our approach uses a combination
of deduction, generalization, and enumeration.

Example-guided synthesis has a long history in the artificial in-
telligence community [16, 22, 24]. Specifically, we build on the
tradition of inductive programming [15, 18, 20], where the goal is
to synthesize functional or logic programs from examples. Work
here falls in two categories: those that inductively generalize ex-
amples into functions or relations [18], and those that search for
implementations that fit the examples [14, 25]. Recent work by
Kitzelmann [17] marries these two strands of research by restricting
search to a space of candidate programs obtained through general-
ization. The main difference between this approach and ours lies
in the roles of search and deduction. Specifically, Kitzelmann [17]
uses deduction to generate candidates for search — i.e., each hy-
pothesis must be deduced from some parent hypothesis. In contrast,
we use deduction of examples as a guide to enumerative search. All
hypotheses are allowed unless proven otherwise, and if deduction
fails, we fall back on exhaustive search. This is a critical advantage
because deductive inference is not necessarily applicable for every
operator in a programming languge.

Since our technique uses types to guide synthesis, another line
of related work is type-directed program synthesis. In particular,
several recent papers use type-guided search to auto-complete pro-
gram expressions involving complex API calls [12, 23, 26]. For
instance, the INSYNTH tool formulates the code completion prob-
lem in terms of type inhabitation and generates a rank-ordered list
of type inhabitants [12]. While our type-aware inductive general-
ization can be viewed as a form of type inhabitation problem, we
simply use it for pruning the search space. Furthermore, rather than
just finding a type inhabitant, our goal is to synthesize a program
that is consistent with the input-output examples.

The technique we have proposed in this paper synthesizes a
program that is not only consistent with the provided examples
but is also a minimum-cost one according to some cost metric.
Hence, our approach bears similarity to other efforts for optimal
program synthesis [5, 6, 8]. In addition to addressing a different
synthesis domain, we propose a different definition of optimality in
this paper.

7. Conclusion
We have presented a method for example-guided synthesis of func-
tional programs over recursive data structures. Our method com-
bines three key ideas: type-aware inductive generalization, search
over hypotheses about program structure, and use of deduction to
guide the search. Our experimental results indicate that the pro-
posed approach is promising.

There are many open directions for future work. We plan to
study ways of exploiting parallelism in our synthesis algorithm.



We are also interested in using our method for synthesizing proofs.
Several recent papers [9, 28] have studied the synthesis of program
proofs from tests (which can be viewed as examples). We believe
that λ2 can be used effectively for this purpose.
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