
Synthesizing Transformations on
Hierarchically Structured Data ∗

Navid Yaghmazadeh
University of Texas at Austin
nyaghma@cs.utexas.edu

Christian Klinger †

University of Freiburg
klingerc@informatik.uni-

freiburg.de

Isil Dillig
University of Texas at Austin

isil@cs.utexas.edu

Swarat Chaudhuri
Rice University
swarat@rice.edu

Abstract
This paper presents a new approach for synthesizing trans-
formations on tree-structured data, such as Unix directories
and XML documents. We consider a general abstraction for
such data, called hierarchical data trees (HDTs) and present
a novel example-driven synthesis algorithm for HDT trans-
formations. Our central insight is to reduce the problem of
synthesizing tree transformers to the synthesis of list trans-
formations that are applied to the paths of the tree. The syn-
thesis problem over lists is solved using a new algorithm that
combines SMT solving and decision tree learning. We have
implemented our technique in a system called HADES and
show that HADES can automatically synthesize a variety of
interesting transformations collected from online forums.

1. Introduction
Much of the data that users deal with today are inherently
hierarchical or tree-shaped. Examples include:

• File systems: A file system is naturally seen as a tree
where directories represent internal nodes and files cor-
respond to leaves.
• XML documents: In XML documents, data is organized

as a tree structure, where each subtree is identified by a
pair of start and end tags.

∗ This work was supported in part by NSF Award #1453386 and AFRL
Awards # 8750-14-2-0270.
† This work was done while the author was at the University of Texas at
Austin.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, contact the Owner/Author.
Request permissions from permissions@acm.org or Publications Dept., ACM, Inc.,
fax +1 (212) 869-0481. Copyright held by Owner/Author. Publication Rights Licensed
to ACM.

Copyright c© ACM [to be supplied]. . . $15.00
DOI: http://dx.doi.org/10.1145/(to come)

• HDF files: Many scientific documents are stored as HDF
files that have a tree structure. In this format, groups cor-
respond to internal nodes and datasets represent leaves.

End-users of such hierarchical data must often perform
various kinds of tree transformations on their data. For ex-
ample, a user may want to reorganize the file hierarchy in
a directory tree, or change the structure of tags in an XML
document.

In principle, one may accomplish these tasks by writing
a program, such as a Bash or XSLT script. However, given
that end users often do not have the expertise to write pro-
grams, an attractive alternative is to automatically synthesize
such a program from a high-level specification. In particular,
synthesis of programs from examples [12, 23] seems like a
natural fit for this setting.

Motivated by this context, this paper proposes a new al-
gorithm, and its implementation in a system called HADES,
for automatically synthesizing hierarchical data transforma-
tions from input-output examples. Our algorithm operates on
a general abstraction of hierarchical data, called hierarchical
data trees (HDTs), and does not place any restrictions on the
depth or fanout of the hierarchy. Our method is able to syn-
thesize a rich class of tree transformations that commonly
arise in real-world data manipulation tasks, such as restruc-
turing of the data hierarchy and modification of metadata.

Synthesizing programs over unbounded trees is a difficult
problem. In spite of recent attempts [2, 10, 18], the problem
lacks a comprehensive solution. For example, so far as we
know, no existing technique can synthesize nontrivial alter-
ations to the structure of an input tree.

Our approach to tree transformation synthesis is based on
a simple but novel insight: We note that, under natural as-
sumptions, tree transformations can be written as a compo-
sition of transformations over the paths of the tree. Our algo-
rithm uses this observation to generate code that behaves as
follows: (1) Given an input tree T , generate the set of paths
in T ; (2) apply a list transformation to each path; and (3)
combine the transformed paths into a transformed tree.

An alternative to the above strategy is to generate a trans-
formation that operates directly on the tree. While this com-

Music

Jazz Rock Pop

Original directory Desired directory

naima.flac
help.ogg Muse

bliss.flac

Adele

tired.mp3

Music

Jazz
Rock Pop

naima.mp3

Muse

bliss.flac

Adele

tired.mp3

flac
ogg

mp3

Jazz

naima.flac

Rock

help.ogg

Rock

Muse

bliss.mp3

Figure 1. Input-output directories for motivating example

peting approach could conceivably generate programs that
are more compact than those we produce, our approach pro-
vides a practical way to synthesize complex programs that
change the structure of the input tree. Put another way, our
approach trades off the complexity of the synthesized pro-
grams for faster and more comprehensive synthesis.

Another novelty of our approach is a new algorithm for
synthesizing list transformations that combines SMT solv-
ing and decision tree learning. Given a set of input-output
lists, our algorithm partitions the examples into unifiable
groups, where a unifier is a conditional-free program con-
taining loops. Our algorithm learns unifiers using SMT solv-
ing and uses decision tree learning to find predicates that dif-
ferentiate one unifiable subset of examples from the others.

We have implemented our technique in a system called
HADES, which provides a language-agnostic backend for
synthesizing HDT transformations. In principle, HADES can
be used to generate code in any DSL, provided it has been
plugged into our infrastructure. Our current implementation
provides two DSL front-ends, one for bash scripts (Unix
directories), and another for XSLT (XML transformations).

We summarize our contributions as follows:
• We present a new method for synthesizing tree transfor-

mations that can change the structure of the input tree.
Our key insight is to formulate tree transformations as a
composition of list transformations.
• We present a new algorithm —based on SMT solving and

decision tree learning— for learning list transformations.
• We implement our method in a tool called HADES and

use it to synthesize bash scripts and XSLT programs for
various tasks obtained from on-line forums. Our evalua-
tion shows that HADES is practical, both in terms of run-
ning time as well as the input required from end-users.

2. Overview
We illustrate our approach using a motivating example from
the file system domain. Consider a user, Bob, who has a
large collection of music files organized by genres: The top-
level Music directory has subfolders for each genre, and
each subdirectory contains a collection of music files and
subfolders (e.g., one for each band). Furthermore, Bob’s
music files come in three different formats: mp3, ogg, and
flac. However, since not every music player supports all
formats, Bob wants to categorize his music based on file

type while also maintaining the original organization based
on genres. In addition, since few applications can play music
files in flac format, Bob wants to convert all his flac files to
mp3 and keep both the original as well as the converted files.

Let us consider how Bob can use HADES for synthesizing
a bash script that performs his desired transformation. To
use HADES, Bob first constructs the input-output example
shown in Figure 1. Observe that the Music directory in the
output has three subfolders called flac, ogg, and mp3.
Also observe that the naima.flac file under the Jazz
subfolder in the input has been duplicated as naima.flac
and naima.mp3 in the output under the flac/Jazz and
mp3/Jazz directories respectively.

Given this input, HADES first converts each of the in-
put and output directories to an intermediate representation
called a hierarchical data tree (HDT) and then generates a
set of list transformation examples E , as shown in Figure 2.
Each example e ∈ E consists of a pair of lists (p1, p2) where
p1 is a root-to-leaf path in the input HDT and p2 is a cor-
responding path in the output HDT. We represent paths as a
list of pairs (l, d) where l is a node label and d is the data
stored at that node. In this application domain, labels corre-
spond to directory/file names, and data includes information
about permissions, owner, file type etc.

After constructing the list transformation examples E ,
HADES synthesizes a path transformation function f such
that p′ ∈ f(p) for every example (p, p′) ∈ E . Note that we
allow path transformers to return a set of paths in order to
support duplication and deletion.

In the HADES system, the synthesis of path transformers
consists of two phases: In the first phase, we partition the in-
put examples into sets of unifiable groups, using SMT solv-
ing for unification. In the second phase, we perform classi-
fication by using decision tree learning to find a predicate
that differentiates one unifiable group from the others. Go-
ing back to our example, HADES partitions examples E into
two groups P1 = {E1, E3, E4, E6} and P2 = {E2, E5} and
infers the following unifier χ1 for partition P1:

concat (map Id subpath(x, 1, 1),
map ExtOf subpath(x, size(x), size(x)),
map Id subpath(x, 2, size(x)))

Here, subpath(x, t, t′) yields a subpath of x between in-
dices t and t′, Id is the identity function, and ExtOf yields
the extension (i.e., file type) for a given node. Similarly,

E1 : p1 = [(Music, dm), (Jazz, dj), (naima, dn)] 7→ p′1 = [(Music, dm), (flac, df), (Jazz, dj), (naima, dn)]
E2 : p1 = [(Music, dm), (Jazz, dj), (naima, dn)] 7→ p′′1 = [(Music, dm), (mp3, dmp), (Jazz, dj), (naima, d′n)]
E3 : p2 = [(Music, dm), (Rock, dr), (help, dh)] 7→ p′2 = [(Music, dm), (ogg, do), (Rock, dr), (help, dh)]
E4 : p3 = [(Music, dm), (Rock, dr), (Muse, dms), (bliss, db)] 7→ p′3 = [(Music, dm), (flac, df), (Rock, dr), (Muse, dms), (bliss, db)]
E5 : p3 = [(Music, dm), (Rock, dr), (Muse, dms), (bliss, db)] 7→ p′′3 = [(Music, dm), (mp3, dmp), (Rock, dr), (Muse, dms), (bliss, d′b)]
E6 : p4 = [(Music, dm), (Pop, dp), (Adele, da), (tired, dt)] 7→ p′4 = [(Music, dm), (mp3, dmp), (Pop, dp), (Adele, da), (tired, dt)]

Figure 2. Path transformation examples constructed by HADES

srcDir=$1
for inputFile in \$srcDir/* do
elems=$(split $inputFile)
size=$(SizeOf $elems)
output=concat($inputElems[0],$(Ext $elems[$size-1]),

subList(1, $size-1, $elems))
outputPaths+=\$output
if {[[$(Ext $inputFile) == flac]]} then
output=concat($elems[0], "mp3",

subList(1, $size-2, $elems),
$(convertFormat $elems[$size-1]))

outputPaths+=$output
fi

done
makeDirectories $outputPaths

Figure 3. Bash script synthesized by HADES

for partition P2, we infer the following unifier χ2, where
FlacToMp3 is a function for converting flac files to mp3:

concat (map Id subpath(x, 1, 1), “mp3”,
map Id subpath(x, 2, size(x)− 1),
map FlacToMp3 subpath(x, size(x), size(x)))

Next, HADES performs classification to infer a predicate
characterizing the input paths in each partition. Since the
input paths in partition P1 include all paths in the input
tree, HADES infers the classifier φ1 : true for P1. On the
other hand, since partition P2 only includes p1, p3, HADES
infers φ2 : ext = “flac” as a classifier for P2. Hence,
the overall path transformer inferred by our method is π :
λx. (χ1; if(ext = “flac”) then χ2).

As a final step, HADES uses this list transformer π to syn-
thesize the tree transformation shown as (pseduo-) bash code
in Figure 3. In essence, the synthesized program constructs
the output directory by applying transformation π to every
path in the input directory. Going back to our motivating sce-
nario, Bob can now apply this bash script to his very large
music collection and obtain the desired transformation.

3. Hierarchical Data Trees
In this section, we introduce hierarchical data trees (HDT)
which our system uses as the canonical representation for
various kinds of hierarchical data.

Definition 1. (HDT) Assume a universe Id of labels for tree
nodes and a universe Dat of data. A hierarchical data tree
T is a rooted tree represented as a quadruple (V,E,L,D)
where V is a set of nodes, and E is a set of directed edges.
The labeling function L : V → Id assigns a label to each

node v ∈ V , and the data store D : V → Dat maps each
node v ∈ V to the data associated with v.

We emphasize that the labeling function L does not need
to be one-to-one. That is, it is possible that L(v) = L(v′)
for two distinct nodes v, v′. We write L(V) to indicate the
multi-set {` | v ∈ V ∧ L(v) = `} and L(E) to denote the
multi-set {(`, `′) | (v, v′) ∈ E ∧ L(v) = ` ∧ L(v′) = `′}.

Example 1. File system directories can be viewed as HDTs
where vertices are files and directories, and an edge from v1

to v2 means that v1 is v2’s parent directory. The label for
each node v is the name of the file or directory associated
with v. The data storeD assigns each node to its correspond-
ing meta-data (e.g., permissions, creation date etc.).

Example 2. We can view XML files as HDTs where nodes
correspond to XML elements. An edge from v to v′ means
that v′ is nested directly inside element v. The labeling
function L maps each element v to a label (s, i) where s
is the name of the tag associated with v and i indicates that v
is the i’th element with tag s under v’s parent. The data store
D maps each element v to its attributes.

Definition 2. (Well-formedness) We say that an HDT is
well-formed iff no two sibling vertices have the same label.

Throughout this paper, we assume that HDTs are well-
formed and use the term “tree” to mean a well-formed HDT.
This well-formedness assumption is a lightweight restriction
that applies to many real-world domains. For example, file
system directories satisfy the well-formedness assumption
because there cannot be two files or directories with the same
name under the same directory. XML documents also satisfy
this assumption because the order in which tags appear in a
document is significant; hence, we can assign two different
labels to sibling elements with the same tag name (recall the
labeling function from Example 2).

Definition 3. (Path) A path p in an HDT T = (V,E,L,D)
is a list [(`1, d1), . . . , (`k, dk)] such that:

• `1 = L(r) and d1 = D(r), where r is the root of T
• `k = L(v) and dk = D(v), where v is a leaf of T
• For each i ∈ [1, k), there is an edge (v, v′) ∈ E where
L(v) = `i, L(v′) = `i+1,D(v) = di, andD(v′) = di+1.

Given a path p = [(`1, d1), . . . , (`k, dk)], we write p[i].`
and p[i].d to indicate `i and di respectively. The set of paths

A

B B

C D

A

B

C D

T1 T2

Figure 4. Example to motivate well-formedness

in T is denoted by paths(T), and we write pathTo(T, v) to
denote a path starting at T ’s root and ending in v.

Definition 4. (Equivalence) Let T1 = (V1, E1, L1, D1)
with root v1 and T2 = (V2, E2, L2, D2) with root node v2.
We say that T1 is equivalent to T2, written T1 ≡ T2, iff the
following conditions hold:

1. L1(v1) = L2(v2) and D1(v1) = D2(v2)

2. L1(children(v1)) = L2(children(v2))

3. For every (v′1, v
′
2) ∈ children(v1) × children(v2) such

thatL1(v′1) = L2(v′2), subtree(T1, v
′
1) ≡ subtree(T2, v

′
2).

Intuitively, two HDTs T1 and T2 are equivalent if they
are indistinguishable with respect to the labeling functions
(L1, L2) and data stores (D1, D2). A very important prop-
erty of well-formed trees is that their equivalence can also be
stated in terms of paths:

Theorem 1.1 Let T = (V,E, L,D) and T ′ = (V ′, E′, L′, D′)
be two well-formed hierarchical data trees. Then, T ≡ T ′ if
and only if paths(T) = paths(T ′).

This theorem states that a given set of paths uniquely
defines a well-formed HDT. This property is very important
for our approach since our synthesized programs construct
the output tree from a set of paths. However, as illustrated
by the following example, this property does not hold if we
lift the well-formedness assumption:

Example 3. Consider the HDTs of Figure 4, where letters
indicate node labels, and assume all nodes store data d. In
this case, we have paths(T1) = paths(T2), but the left tree
T1 is not well-formed, as A has two children with label B.

4. Synthesizing Trees from Paths
In this section, we describe our algorithm for synthesizing
HDT transformations given an appropriate path transformer.

Overview. The high-level structure of our synthesis algo-
rithm consists of four steps and is summarized in Figure 5.
First, given a set of input-output HDTs τ , we verify that
examples τ obey a certain unambiguity restriction required
by our algorithm and enforced using the CHECKEXAMPLES
function at line 4. Next, we furcate the input-output trees τ
into a set E of path transformation examples. Specifically,
each example e ∈ E maps a path p in input tree T to a “cor-
responding” path p′ in T ′ for some (T, T ′) ∈ τ . Next, we
invoke a function called INFERPATHTRANS to learn an ap-
propriate path transformer f such that p′ ∈ f(p) for every

1 Proofs of all non-trivial statements are given in the appendix.

1: procedure SYNTHESIZE(set 〈Tree, Tree〉 τ)

2: Input: Examples τ , consisting of pairs of HDTs
3: Output: Synthesized program P

4: if (!CHECKEXAMPLES(τ)) then return ⊥;
5: E := FURCATE(τ);
6: f := INFERPATHTRANS(E);
7: P := CODEGEN(f);
8: return P ;

Figure 5. High-level structure of our synthesis algorithm

(p, p′) ∈ E . Finally, CODEGEN generates a program that
performs the desired tree transformation by applying f to
each path in the input tree and then constructing the output
tree from the new set of paths. In what follows, we explain
these steps in more detail, leaving the INFERPATHTRANS
procedure to Section 5.

Requirements on examples. Our approach is parametric
on a notion of correspondence between paths in the input
and output trees. Let Π be the universe of paths in all pos-
sible HDTs. A correspondence relation is a binary relation
∼⊆ Π × Π. Given a set of input-output examples τ , let us
define τ.in, τ.out to be the input and output trees in τ respec-
tively. Our synthesis algorithm expects the user-provided ex-
amples τ to obey a certain semantic unambiguity criterion:

Unambiguity: For every p′ ∈ paths(τ.out), there exists
a unique p such that p ∼ p′ where p ∈ paths(τ.in) and
(p, p′) ∈ paths(T)× paths(T ′) for some (T, T ′) ∈ τ .

In other words, unambiguity requires that, for every out-
put path p′, we can find exactly one input path p such that
p ∼ p′ and p, p′ belong to the same input-output example.
Unambiguity is enforced by the CHECKEXAMPLES function
used at line 4 of the SYNTHESIZE algorithm 2.

The correspondence relation ∼ can be defined in many
natural ways. Specifically, the HADES system allows the
user to mark paths in the input-output examples as corre-
sponding. However, HADES also comes with a default defi-
nition of ∼ that is adequate in many practical settings.

Furcation. Given an unambiguous set of examples τ , our
algorithm furcates them into a set of path transformation
examples E . Specifically, a pair of paths (p, p′) ∈ E iff
p ∈ paths(T), p′ ∈ paths(T ′), and p ∼ p′ for some
(T, T ′) ∈ τ . If some input path p ∈ paths(T) does not have
a corresponding output path, then E also contains (p,⊥).

Note that E may contain multiple examples that have the
same path p as an input. For instance, when some leaf in
the input tree has been duplicated in the output tree, then
there will be at least two examples (p, p′) and (p, p′′) in

2 We can actually drop the unambiguity requirement by adding another layer
of search to the synthesis algorithm. However, we have not encountered any
examples that violate this restriction in practice.

τ τ

Fu
rc
a
te

Fu
rc
a
te

S
p
lic
e

S
p
lic
e

Figure 6. Schematic illustration of our approach.

E . However, due to the unambiguity requirement, it is not
possible that there are multiple examples in E that have the
same output path. That is, if (p, p′) ∈ E , then there does not
exist another example (p′′, p′) ∈ E where p 6= p′′.

Given path transformation examples E , we write inputs(E)
and outputs(E) to denote the input and output paths in E re-
spectively. That is, p ∈ inputs(E) iff (p,) ∈ E .

Example 4. Figure 2 shows the result of furcating the input-
output example from Figure 1.

Path transformers. The next step in our synthesis algo-
rithm is to learn a path transformer that takes an input path
and returns a set of output paths. Any path transformer f re-
turned by INFERPATHTRANS at line 6 of the SYNTHESIZE
procedure must satisfy the following requirement:

∀p ∈ inputs(E). (p′ ∈ f(p)⇔ (p, p′) ∈ E)

When an input path p does not have a corresponding output
path p′, we require that f(p) = {⊥}. Since INFERPATH-
TRANS is the most involved aspect of the synthesis algo-
rithm, we discuss it in detail in Section 5.

Code generation. Once we learn a path transformer f ,
the last step of our algorithm is to generate code for the
synthesized program. For this purpose, we first define a
splicing operation: Given a set S of paths, SPLICE(S) yields
a well-formed tree T such that paths(T) = S. Recall from
Theorem 1 that the result of splicing is unique. Using this
splicing operation, the CODEGEN procedure used at line 7
of Figure 5 yields the following function P :

P = λT. SPLICE({p′ | p′ ∈ f(p)∧p ∈ paths(T)∧p′ 6= ⊥})

In other words, synthesized program P constructs the output
tree by applying function f to each path in the input tree.

Summary. Figure 6 gives a schematic summary our ap-
proach: Our synthesis algorithm furcates the input-output
examples and learns a path transformer f . On the other hand,
the synthesized algorithm furcates the input tree, applies path
transformer f , and splices it back to obtain the output tree.

Theorem 2. (Soundness) Let τ be a set of examples satisfy-
ing the unambiguity requirement, and let E be the output of
FURCATE(τ). Then, ∀(T, T ′) ∈ τ. P (T) ≡ T ′ where P is
the output of procedure SYNTHESIZE from Figure 5.

Limitations. Since our approach reduces the synthesis of
tree transformations to the problem of synthesizing path

Path transformer π := λx. {φ1 → χ1 ⊕ . . .⊕ φn → χn}
Path term χ := concat(τ1(x), . . . , τn(x))
Segment trans. τ := λx. map F subpath(x, t1, t2)
Index term t := b · size(x) + c
Path cond φ := Pi(x) | φ1 ∧ φ2 | φ1 ∨ φ2 | ¬φ
Mapper F := λx. int | λx. fi(x)

| λx. if(ϕi(x)) then fi(x) else fj(x)

Figure 7. Language for expressing path transformers.

transformations, not every tree transformation can be syn-
thesized by our approach. In particular, we can only syn-
thesize tree transformations that are expressible as a combi-
nation of independent path transformations. As we discuss
in Section 5, there are also some restrictions on the class of
path transformers that we can generate. Specifically, the path
transformers cannot be stateful and must be expressible us-
ing mappers over different path segments.

5. Synthesizing Path Transformations
We now describe the INFERPATHTRANS algorithm for
learning path transformers from path examples E . Each ex-
ample (p, p′) ∈ E consists of an input path p and an output
path p′, and our goal is to learn a path transformer f satisfy-
ing the property ∀p ∈ inputs(E).(p′ ∈ f(p)⇔ (p, p′) ∈ E).

Language. We first introduce a small language over which
we describe path transformers. As shown in Figure 7, a path
transformer π takes as input a path x and returns a set of
paths Π = {p1, . . . , pk}. Specifically, a path transformer π
has the syntax λx. {φ1 → χ1⊕ . . .⊕φn → χn} where each
φi is a path condition that evaluates to true or false, and each
χi is a path term describing an output path. The semantics
of this construct is that χi ∈ Π iff φi evaluates to true. We
refer to the number of (φi, χi) pairs in π as the arity of π.

Path terms χ used in the path transformer are formed
by concatanating different subpaths τi(x) where each τi is
a so-called segment transformer. A segment transformer τ
is of the form λx.map F subpath(x, t1, t2) and applies
function F to a subpath of x starting at index t1 and end-
ing at index t2 (inclusive). For brevity, we often abbreviate
λx.map F subpath(x, t1, t2) using the notation 〈t1, t2, F 〉.
Note that a segment transformer is a kind of looping con-
struct that iterates over a consecutive range of elements in
x. Indices in segment transformers are specified using index
terms t of the form b · size(x) + c where b is either 0 or 1, c
is an integer, and size(x) denotes the number of elements in
path x. 3 Mapper functions F either return constants or apply
pre-defined functions fi to their input. For instance, in the
file system domain, such predefined functions include pro-
cedures for changing file permission or converting one file
type to another (e.g., jpg to png). Mapper functions F can

3 Our implementation also allows terms containing indexOf(x, e) expres-
sions; however, we ignore them here to simplify the presentation.

Partitioning

Unification

Enumerative
search

SMT
solver

Classification

Decision tree
learning

Examples

Path
transf.
code

Figure 8. Schematic overview of algorithm for learning path transformers

also contain if statements if(ϕi(x)) then fi(x) else fj(x)
where each ϕi is drawn from a family of pre-defined predi-
cate templates (e.g., for checking file type).

Overview. We now give an overview of our algorithm for
learning path transformers. As illustrated in Figure 8, our al-
gorithm consists of three key components, namely partition-
ing, unification, and classification. The goal of partitioning
is to divide examples E into groups of unifiable subsets. We
say that a set of examples E∗ is unifiable if outputs(E∗) can
be represented using the same path term χ∗, and we refer
to χ∗ as the unifier for E∗. Our algorithm represents each
partition Pi as a triple 〈Ei, χi, φi〉 where Ei is a unifiable set
of examples, χi is their unifier, and φi is a predicate distin-
guishing Ei from the other examples.

The partitioning component of our algorithm is based on
enumerative search that tries different hypotheses in increas-
ing order of complexity. Here, a hypothesis corresponds to a
partitioning of examples E into k disjoint groups E1, . . . , Ek.
Given a hypothesis, we query whether each Ei is unifiable. If
unification fails, we backtrack and try a different hypothesis.

Since our method repeatedly invokes the unification algo-
rithm to confirm or refute a hypothesis, we need an efficient
mechanism for finding unifiers. Towards this goal, our algo-
rithm represents each input-output example using a compact
numeric representation and invokes an SMT solver to deter-
mine the existence of a unifier. Furthermore, we can obtain
the unifier χi associated with examples Ei by getting a satis-
fying assignment to an SMT formula. This approach allows
our algorithm to find unifiers with a single SMT query rather
than explicitly exploring search spaces of exponential size.

The last key ingredient of our algorithm for synthesizing
path transformers is classification. Given a set of examples
E1, . . . , Ek, the goal of classification is to infer a predicate
φi for each Ei such that φi evaluates to true for each p ∈
inputs(Ei) and evaluates to false for each p′ ∈ inputs(E) −
inputs(Ei). For this purpose, we use the ID3 algorithm for
learning a small decision tree and then extract a formula
describing all positive examples in this tree.

InferPathTrans algorithm. Figure 9 presents the INFER-
PATHTRANS procedure based on this discussion. The algo-
rithm consists of two phases: In the first phase, we partition
examples E into a smallest set Φ of unifiable groups, and,
in the second phase, we infer classifiers for each partition.

1: procedure INFERPATHTRANS(set E)

2: Input: A set of path transformation examples E
3: Output: Synthesized path transformer

4: . Phase I: Partition into unifiable subsets
5: for i=1; i≤ |E|; i++ do
6: Φ := PARTITION(∅, E , i);
7: if Φ 6= ∅ then break;

8: for all Pi in Φ do . Phase II: Learn classifiers
9: Pi.φ := CLASSIFY(Pi.E , E);

10: π := PTCODEGEN(Φ);
11: return π;

Figure 9. Algorithm for learning path transformations

Specifically, lines 5-7 try to partition E into i disjoint groups
by invoking the PARTITION procedure, and lines 8-9 infer
classifiers. Finally, we use a procedure called PTCODEGEN
to generate a path transformer π from the partitions in the
expected way. In what follows, we describe partitioning, uni-
fication, and classification in more detail.

5.1 Partitioning
Figure 10 shows the partitioning algorithm used in INFER-
PATHTRANS. The recursive PARTITION procedure takes as
input a set of examples E1 that are part of the same partition,
the remaining examples E2, and number of partitions k. The
base case of the algorithm is when k = 1: In this case, we try
to unify all examples in E1 ∪ E2, and, if this is not possible,
we return failure (i.e., ∅).

In the recursive case (lines 9–16), we try to grow the cur-
rent partition E1 by adding one or more of the remaining
examples from E2. The algorithm always maintains the in-
variant that elements in E1 are unifiable. Hence, we try to
add an element e ∈ E2 to E1 (line 10), and if the resulting
set is not unifiable, we give up and try a different element
(line 11). Since E1 ∪ {e} is unifiable, we now check if it is
possible to partition the remaining examples E2 − {e} into
k − 1 unifiable sets (recursive call at line 12). If this is in-
deed possible, we have found a way to partition E1 ∪ E2 into
k different partitions and return success (line 14).

Now, if the remaining examples E2 cannot be partitioned
into k − 1 unifiable sets, we try to shrink E2 by growing E1.

1: procedure PARTITION(set E1, set E2, int k)

2: Input: Current partition E1, remaining examples E2,
3: and number of partitions k
4: Output: Set of partitions Φ

5: if k = 1 then . Base case
6: χ := UNIFY(E1 ∪ E2);
7: if χ = null then return ∅;
8: return {P(E1 ∪ E2, χ)};

9: for all e ∈ E2 do . Recursive case
10: χ := UNIFY(E1 ∪ {e});
11: if χ = null then continue;
12: Φ := PARTITION(∅, E2 − {e}, k − 1);
13: if Φ 6= ∅ then
14: return Φ ∪ {P(E1 ∪ {e}, χ)};
15: Φ := PARTITION(E1 ∪ {e}, E2 − {e}, k);
16: if Φ 6= ∅ then return Φ;
17: return ∅;

Figure 10. Partitioning Algorithm. The notation P(E , χ)
indicates a partition with examples E and their unifier χ.

Hence, the recursive call at line 15 looks for a partitioning
of examples where one of the partitions contains at least
E1 ∪ {e}. If this recursive call also does not succeed, then
we move on and consider the scenario where partition E1
does not contain the current element e.

Observe that PARTITION(∅, E , k) effectively explores all
possible ways to partition examples E into k unifiable sub-
sets. However, since most subsets of E are typically not unifi-
able, the algorithm does not come anywhere near its worst-
case O(kn) behavior in practice.

5.2 Unification
We now describe the UNIFY procedure for determining if
examples E have a unifier. Since the unification algorithm is
invoked many times during partitioning, we need to ensure
that UNIFY is efficient in practice. Hence, we formulate it as
a symbolic constraint solving problem rather than perform-
ing explicit search. However, in order to reduce unification
to SMT solving, we first need to represent each input-output
example in a so-called summarized form that uses a numeri-
cal representation to describe each path transformation.

Intuitively, a summarized example represents a path trans-
formation as a permutation of the elements in the input path.
For example, if some element e in the output path has the
same label as the k’th element in the input path, then we
represent e using numerical value k. On the other hand, if
element e does not have a corresponding element with the
same label in the input path, summarization uses a so-called
“dictionary” D to map e to a numerical value. More for-
mally, we define example summarization as follows:

Definition 5. (Example summarization) Let E be a set
of examples where L denotes the labels used in E , and let
F be the set of pre-defined functions allowed in the path
transformer. Let D : (L ∪ F) → {i | i ∈ Z ∧ i > m} be an
injective function where m is the maximum path length in
inputs(E). Given an example (p1, p2) ∈ E , the summarized
form of (p1, p2) is a pair (n, σ) where n is the length of path
p1 and σ is a sequence such that:

σi :

{
(j, p1[j].d→ p2[i].d) if ∃j.p2[i].` = p1[j].`
(D(f∗) + j, ⊥ → p2[i].d) else if ∃j.p2[i].` = f∗(p1[j])
(D(p2[i].`), ⊥ → p2[i].d) otherwise

We illustrate summarization using a few examples:

Example 5. Consider input path p1 = [(A, r), (B, r), (C, r)],
and output path p2 = [(C,w), (A, r), (B, r)], where r, w
indicate permissions. The summarized example is (3, σ)
where σ = [(3, r 7→ w), (1, r 7→ r), (2, r 7→ r)]. The
first element in σ is (3, r 7→ w) because the first element
C of the output path is at index 3 in the input path, and its
corresponding data is mapped from r to w.

Example 6. Consider the same p1 from Example 5 and the
output path p′2 = [(A, r), (B, r), (New, r)]. Suppose that
D(New) = 1000 (i.e., “dictionary” assigns 1000 to foreign
element New). The summarized example is (3, σ′) where
σ′ = [(1, r 7→ r), (2, r 7→ r), (1000,⊥ 7→ r)].

Example 7. Consider the input path [(A,⊥), (B, pdf)] and
output [(A,⊥), (pdf,⊥), (B, pdf)]. In this case, the summa-
rized example is (2, σ) where σ = [(1,⊥ 7→ ⊥), (D(ExtOf)+
2,⊥ 7→ ⊥), (2, pdf 7→ pdf)]. Note that label pdf in the out-
put list is mapped toD(ExtOf) + 2 because it corresponds to
the extension for element at index 2 in the input list (case 2
of Definition 5).

Given a summarized example e = (n, [(i1,), . . . , (in,)]),
we write indices(e) to denote [i1, . . . , in]. For instance, in
Example 5, we have indices(e) = [3, 1, 2].

The next step in our unification algorithm is to coalesce
consecutive indices in the summarized example. Hence, we
define the coalesced form of an example as follows:

Definition 6. (Coalesced form) Given a summarized exam-
ple e = (n, σ), we say that e∗ is a coalesced form of e iff it
is of the form (n, [〈b1, e1,M1〉, . . . , 〈bk, ek,Mk〉]) where

• indices(e) = [b1, . . . , e1, . . . , bk, . . . , ek]
• ∀i, [bi, bi+1, . . . , ei] is a contiguous sublist of indices(e)
• Mk =

⋃
j{mj | bk ≤ ij ≤ ek ∧ σj = (ij ,mj)}

Intuitively, this definition “coalesces” consecutive indices
in a summarized example. Note that the coalesced form of
an example is not unique because we are allowed but not
required to coalesce consecutive indices.

Example 8. Consider the summarized example from Exam-
ple 5, which has the following two coalesced forms:

e∗1 = (3, [〈3, 3, {r 7→ w}〉, 〈1, 1, {r 7→ r}〉, 〈2, 2, {r 7→ r}〉])
e∗2 = (3, [〈3, 3, {r 7→ w}〉, 〈1, 2, {r 7→ r}〉])

Given a coalesced example e∗ = (n, σ∗) where σ∗ is
[〈b1, e1,M1〉, . . . , 〈bk, ek,Mk〉], we define len(e∗) to be n
and segments(e∗) to be k. We also write begin(e∗, j) to indi-
cate bj , end(e∗, j) for ej , and data(e∗, j) for Mj . Note that
σ∗ can be viewed as a concatanation of concrete path seg-
ments of the form 〈c, c′,M〉 where c and c′ are the start and
end indices for the corresponding path segment respectively.

Before we continue, let us notice the similarity between
segment transformers 〈t, t′, F 〉 4 in the language from Fig-
ure 7, and each concrete path segment 〈c, c′,M〉 in a co-
alesced example. Specifically, observe that a concrete path
segment can be viewed as a concrete instantiation of a seg-
ment transformer 〈b ∗ size(x) + c, b′ ∗ size(x) + c′, F 〉 where
each of the terms b, c, b′, c′, and F are substituted by con-
crete values. In fact, this is no coincidence: The key insight
underlying our unification algorithm is to use the concrete
path segments in the coalesced examples to solve for the un-
known terms in segment transformers using an SMT solver.

Let us now consider the unification algorithm presented
in Figure 11. Given examples E , the UNIFY algorithm first
computes the summarized examples E ′ and then generates
all possible coalesced forms (lines 5-6). Since we do not
know which coalesced form is the “right” one, we need to
consider all possible combinations of coalesced forms of
the examples. Hence, set Λ from line 6 corresponds to the
Cartesian product of the coalesced form of examples E ′.

Next, the algorithm enumerates all possible candidate
unifiers χ of increasing arity. Based on the grammar of our
language (recall Figure 7), a path term χ of arity k has the
shape concat(τ1(x), . . . , τk(x)) where each τi is a segment
transformer of the form 〈bi ·size(x)+ci , b

′
i ·size(x)+c′i , Fi〉.

Hence, the hypothesis χ at line 10 is a templatized unifier
whose unknown coefficients will be inferred later.

Given a hypothesis χ, we next try to confirm or refute
this hypothesis by checking if there exists some E∗ ∈ Λ
for which χ is a unifier. For χ to be a unifier for E∗, every
example e∗i ∈ E∗ must contain exactly k segments because
χ has arity k. If this condition is not met (line 13), χ cannot
be a unifier for E∗, so we reject it.

If all examples in E∗ contain k segments, we try to instan-
tiate the unknown coefficients b1, b′1, c1, c

′
1, . . . , bk, b

′
k, ck, c

′
k

in χ in a way that is consistent with the concrete path seg-
ments in all examples in E∗. Now, consider the i’th concrete
path segment in coalesced example e∗ and the i’th abstract
path segment 〈bi · size(x) + ci, b

′
i · size(x) + c′i, Fi〉 in hy-

pothesis χ. Clearly, if our hypothesis is correct, it should be
possible to instantiate the unknown coefficients in a way that

4 Recall that 〈t, t′, F 〉 is an abbreviation for λx.map F subpath(x, t, t′).

1: procedure UNIFY(set E)

2: Input: A set of path transformation examples E
3: Output: A unifier χ if it exists, null otherwise

4: . Convert examples to coalesced form

5: E ′ := {e′ | e′ = SUMMARIZE(e) ∧ e ∈ E};
6: Λ := {(e∗1, . . . , e∗n) | e∗i ∈ COALESCE(e′i)∧e′i ∈ E ′};

7: . Generate candidate unifiers χ of increasing size

8: for k=1 to maxSize(outputs(E)) do
9: τi := 〈bi · size(x) + ci , b

′
i · size(x) + c′i , Fi〉;

10: χ := concat(τ1(x), . . . , τk(x));

11: . Check if χ unifies some E∗ ∈ Λ

12: for all E∗ ∈ Λ do
13: if (∃e∗i ∈ E∗. segments(e∗i) 6= k) then
14: continue;

15: . Use SMT solver to check if χ unifies E∗

16: ϕie∗ := (bi · len(e∗) + ci = begin(e∗, i));
17: ψie∗ := (b′i · len(e∗) + c′i = end(e∗, i));
18: φ :=

∧
1≤i≤k

∧
e∗∈E∗ (ϕie∗ ∧ ψie∗);

19: if UNSAT(φ) then continue;
20: σ := SATASSIGN(φ);
21: σ′ := UNIFYMAPPERS(E∗);
22: if σ′ = null then continue;
23: return SUBSTITUTE(χ, σ ∪ σ′);

24: return null;
Figure 11. Unification algorithm

satisfies:

bi ·len(e∗)+ci = begin(e∗, i) ∧ b′i ·len(e∗)+c′i = end(e∗, i)

since the size of this example is len(e∗) and begin and end
indices for the path segment are begin(e∗, i) and end(e∗, i).
Hence, we test the correctness of hypothesis χ for E∗ by
querying the satisfiability of formula φ from line 18. If φ is
unsatisfiable (line 19), we reject the hypothesis for E∗.

If, however, φ is satisfiable, we have found an instantia-
tion of the unknown coefficients, which is given by the sat-
isfying assignment σ at line 20. Now, the only remaining
question is whether we can also find an instantiation of the
unknown functions F1, . . . , Fk used in χ. For this purpose,
we use a function called UNIFYMAPPERS which tries to find
mapper functions Fi unifying all the different Mi’s from the
examples. Since the UNIFYMAPPERS procedure is based on
straightforward enumerative search, we do not describe it in
detail. In particular, since the language of Figure 7 only al-
lows a finite set of pre-defined data transformers fi and pred-
icates φi, UNIFYMAPPERS enumerates –in increasing order
of complexity– all possible functions belonging to the gram-
mar of mapper functions in Figure 7.

E ′1 : (3, [(1, dm 7→ dm), (D(ExtOf) + 3,⊥ 7→ df), (2, dj 7→ dj), (3, dn 7→ dn)])
E ′3 : (3, [(1, dm 7→ dm), (D(ExtOf) + 3,⊥ 7→ do), (2, dr 7→ dr), (3, dh 7→ dh)])
E ′4 : (4, [(1, dm 7→ dm), (D(ExtOf) + 4,⊥ 7→ df), (2, dr 7→ dr), (3, dms 7→ dms), (4, db 7→ db)])
E ′6 : (4, [(1, dm 7→ dm), (D(ExtOf) + 4,⊥ 7→ dmp), (2, dp 7→ dp), (3, da 7→ da), (4, dt 7→ dt)])

Figure 12. Summarization of partition P1 of the motivating example.
E∗1 : (3, [〈1, 1, {dm 7→ dm}〉, 〈D(ExtOf) + 3,D(ExtOf) + 3, {⊥ 7→ df}〉, 〈2, 3, {dj 7→ dj , dn 7→ dn}〉])
E∗3 : (3, [〈1, 1, {dm 7→ dm}〉, 〈D(ExtOf) + 3,D(ExtOf) + 3, {⊥ 7→ do}〉, 〈2, 3, {dr 7→ dr, dh 7→ dh}〉])
E∗4 : (4, [〈1, 1, {dm 7→ dm}〉, 〈D(ExtOf) + 4,D(ExtOf) + 4, {⊥ 7→ df}〉, 〈2, 4, {dr 7→ dr, dms 7→ dms, db 7→ db}〉])
E∗6 : (4, [〈1, 1, {dm 7→ dm}〉, 〈D(ExtOf) + 4,D(ExtOf) + 4, {⊥ 7→ dmp}〉, 〈2, 4, {dp 7→ dp, da 7→ da, dt 7→ dt}〉])

Figure 13. A set of coalesced examples E∗ for partition P1

φ :
b1 · 3 + c1 = 1 ∧ b′1 · 3 + c′1 = 1 ∧ b1 · 4 + c1 = 1 ∧ b′1 · 4 + c′1 = 1 ∧
b2 · 3 + c2 = D(ExtOf) + 3 ∧ b′2 · 3 + c′2 = D(ExtOf) + 3 ∧ b2 · 4 + c2 = D(ExtOf) + 4 ∧ b′2 · 4 + c′2 = D(ExtOf) + 4 ∧
b3 · 3 + c3 = 2 ∧ b′3 · 3 + c′3 = 3 ∧ b3 · 4 + c3 = 2 ∧ b′3 · 4 + c′3 = 4

Figure 14. (Simplified) formula φ to check the satisfiability of hypothesis χ1 on set E∗.

Example 9. For the motivating example from Section 2, our
unification algorithm takes the following steps to determine
unifier χ1 for partition P1: First, we generate the summa-
rized examples shown in Figure 12 and construct set Λ. We
then consider hypotheses of increasing size and reject those
with arity 1 and 2 since all examples contain at least 3 seg-
ments. Now, let’s consider hypothesis χ of arity 3 and the
set of coalesced examples E∗ shown in Figure 13. We gen-
erate the formula φ shown in Figure 14 and get a satisfying
assignment, which results in the following instantiation of χ:

[〈1, 1, F1〉, 〈v, v, F2〉, 〈2, size(x), F3〉]

where v = D(ExtOf) + size(x). Finally, UNIFYMAPPERS
searches for instantiations of F1, F2, and F3 satisfying all
data mappers in the examples. For F1 and F3, it returns the
Identity function, and for, F2, it extracts the function extOf
from the segment transformer coefficients. As a result, we
obtain the unifier χ1 from Section 2.

5.3 Classification
We now consider the last missing piece of our algorithm,
namely classification. Given examples E and partition Pi
with examples Ei ⊆ E and unifier χi, the goal of classifi-
cation is to find a predicate φi such that:

(1) ∀p ∈ inputs(Ei). (φi[p/x] ≡ true)
(2) ∀p ∈ (inputs(E)− inputs(Ei)). (φi[p/x] ≡ false)

Our key insight is that the inference of such a predicate
φi is precisely the familiar classification problem in machine
learning. Hence, to find predicate φi, we first extract relevant
features from each path and then use decision tree learning.

Feature extraction. To use decision tree learning for clas-
sification, we need to represent each input path using a finite
set of discrete features. In the HADES system, these features
are domain-specific and therefore defined separately for each
application domain. For instance, some of the features for
the file system domain include file types, permissions, and
the presence of a certain file or directory in the path. Given
path p, we write α(p) to denote the feature vector for p and
αf (p) for the value of feature f for path p.

Decision tree learning. We now explain how to use deci-
sion tree learning to infer a predicate distinguishing paths Π1

from those in Π2. Given sets Π1 and Π2 and a set of features
F , we use the ID3 algorithm [20] to construct a decision tree
TD with the following properties:

• Each leaf in TD is labeled as Π1 or Π2

• Each internal node of TD is labeled with a feature f ∈ F
• Each edge (f, f ′, `) from f to f ′ is annotated with a label
` that indicates a possible value of feature f
• Let (f1, f2, `1), . . . (fn,Πi, `n) be a root-to-leaf path in
TD. Then, for every p ∈ Π1 ∪Π2, we have:(n∧

i=1

αfi(p) = li
)
⇔ p ∈ Πi

Given such a decision tree TD, identifying a predi-
cate φ differentiating Π1 from Π2 is simple. Let π =
〈(f1, f2, `1), . . . (fn,Π1, `n)〉 be a path in TD, and let ϕ(π)
denote the formula ∧ni=1(fi = li). Assuming Π1 corre-
sponds to inputs(Ei) and Π2 is inputs(E) − inputs(Ei), the
following DNF formula φi gives us a classifier for Pi:

φi :
∨

π∈pathTo(TD,Π1)

ϕ(π)

Example 10. Consider partition P2 from the example
of Section 2. Here, Π1 = {p1, p3} and Π2 = {p2, p4}.
After running ID3, we obtain the following decision tree:

extOf
flac

mp3

ogg

Hence, we extract the classifier φ2 : ExtOf(x) = flac.

6. Implementation
We have implemented our synthesis algorithm in a tool
called HADES, which consists of ≈ 9, 500 lines of C++
code.The only external tool used by HADES is the Z3 SMT
solver [7]. The core of HADES is the domain-agnostic syn-
thesis backend, which accepts input-output examples in the

form of hierarchical data trees and emits path transformation
functions in the intermediate language of Figure 7.

HADES provides an interface for domain-specific plug-
ins, and our current implementation incorporates two such
front ends: one for XML transformations using XSLT and
another one for bash scripts. However, HADES can be ex-
tended to new domains by implementing plug-ins that imple-
ment the following functionality: (a) represent input-output
examples as HDTs; (b) use the synthesized path transformer
to emit tree transformation code in the target language; (c)
specify any domain-specific functions and features.

7. Evaluation
We evaluated HADES by using it to automate 36 data trans-
formation tasks in the file system and XML domains. Our
examples come from two sources: on-line forums (e.g.,
Stackoverflow, bashscript.org) and teaching assistants at
our institution. To simulate a real-word usage scenario of
HADES where end-users provide input-output examples, we
performed a user study involving six students, only three
of which are CS majors. The students in our study neither
had prior knowledge of HADES nor are they familiar with
program synthesis research. We randomly assigned 6 bench-
marks to each participant, and each benchmark was assigned
to only one participant.

Prior to the evaluation, we gave the participants a demo
of the system, explained how to provide input/output exam-
ples, and how to check whether the generated script is cor-
rect. For each benchmark, we provided the users an English
description of the task to be performed as well as a set of
test cases to assess whether HADES produces the correct re-
sult. The participants were asked to come up with a set of
examples different from the given tests for each benchmark,
and then run the tests to verify whether HADES’ output is
correct. If HADES failed to produce the correct result, the
users were asked to restart the process with a modified set of
input-output examples. We checked all examples provided
by the participants to ensure they did not use any of tests as
input to the system.

Figure 15 summarizes the results of our evaluation. The
column labeled “Description” provides a brief summary of
each benchmark, and “Time” reports synthesis time in sec-
onds. The column labeled “Script” gives statistics about the
synthesized script, while the column named “User” provides
important data related to user interaction.

Performance. To evaluate performance, we utilized the
examples provided by the participants from our user study. 5

All performance experiments are conducted on a MacBook
Pro with 2.6 GHz Intel Core i5 processor and 8 GB of 1600
MHz DDR3 memory running OS X version 10.10.3.

5 When there were multiple rounds of interaction with the user, we used the
examples from the last round.

The column labeled “Time” in Figure 15 reports the total
synthesis time in seconds, including conversion of examples
to HDTs and emission of bash or XSLT code. On average,
HADES takes 0.90 seconds to synthesize a directory trans-
formation and 0.51 seconds to synthesize an XML transfor-
mation. Across all benchmarks, HADES is able to synthesize
91.6% of the benchmarks in under 1 second and 97.2% of
the benchmarks in under 10 seconds.

Complexity. The column labeled “Script” in Figure 15
reports various statistics about the script synthesized by
HADES: “Branches” reports the number of branches in the
synthesized program. ,“Segments” reports the number of
loops , and “LOC” gives the number of lines of code for
the synthesized path transformer. Note that the whole script
synthesized by HADES is actually significantly larger (due to
furcation/splicing code); the statistics here only include the
path transformation portion. As summarized by this data, the
scripts synthesized by HADES are fairly complex: They con-
tain between 1-4 branches, 1-10 loops, and between 47-517
lines of code for the path transformer. Furthermore, since
our algorithm always generates a simplest path transformer,
the reported statistics give a lower bound on the complexity
of the required path transformations.

Usability. The last part of Figure 15 reports data about our
user study: The column “Iteration” reports the number of
rounds of tool-user interaction, “Examples” gives the num-
ber of furcated examples, and “Depth” indicates the max-
imum depth of the input-output trees. Our results demon-
strate that HADES is user-friendly: 88.8% of the benchmarks
require only 1-2 rounds of user interaction, with no task re-
quiring more than 4 rounds. Furthermore, 72.2% of the tasks
require less than 5 examples, and no task requires more than
9. Finally, tree depth is typically very small – by providing
example trees with depth 3.2 on average, users are able to
obtain scripts that work on trees of unbounded depth.

Comparison with other tools. To substantiate our claim
that our approach broadens the scope of tree transforma-
tions that can be automatically synthesized, we also com-
pared HADES with two existing tools, namely λ2 [10] and
Myth [18], for synthesizing higher-order functional pro-
grams. Since these tools do not directly handle Unix direc-
tories or XML documents, we manually created a simplified
tree abstraction for each task and supplied these tools with
a suitable set of input-output examples. Myth was unable
to synthesize any of our benchmarks, and λ2 was only able
to synthesize a single example (X3) within a time limit of
600 seconds. Since these tools target a much broader class
of synthesis tasks, their search space seems to blow up when
presented with non-trivial tree-transformation tasks. In con-
trast, by learning path transformers that are applied to each
path in the tree, our synthesis algorithm can synthesize com-
plex transformations in a practical manner.

Benchmarks Time Script User

Description

To
ta

l(
s)

B
ra

nc
he

s

Se
gm

en
ts

L
O

C

It
er

at
io

ns

E
xa

m
pl

es

D
ep

th

Fi
le

Sy
st

em

F1 Categorize .csv files based on their group 0.03 1 2 47 2 2 3
F2 Make all script files executable 0.01 2 2 51 1 2 2
F3 Copy all text and bash files to directory temp 0.05 2 3 56 2 4 3
F4 Append last 3 directory names to file name and delete directories 0.02 1 2 50 2 2 6
F5 Put files in directories based on modification year/month/day 0.02 1 4 52 1 2 4
F6 Copy files without extension into the “NoExtension” directory 0.05 2 3 56 2 7 4
F7 Archive each directory to a tarball with modify month in its name 0.01 1 1 50 1 2 2
F8 Make files in “DoNotModify” directory read-only 0.12 2 2 83 2 4 3
F9 Convert .mp3, .wma, and .m4a files to .ogg 0.02 1 1 47 1 3 3
F10 Change group of text files in “Public” directory to “everyone” 0.06 2 2 77 1 3 2
F11 Change directory structure 0.03 1 4 52 2 3 6
F12 Convert .zip archives to tarballs 0.08 2 2 77 1 3 3
F13 Organize all files based on their extensions 1.85 4 10 148 1 9 3
F14 Append modification date to the file name 0.01 1 2 48 1 2 3
F15 Convert pdf files to swf files 0.03 2 2 55 2 2 2
F16 Delete files which are not modified last month 0.03 2 2 54 2 5 2
F17 Convert video files to audio files and put them in “Audio” directory 0.01 1 2 49 1 3 5
F18 Convert xml files ≥ 1kB to text files 0.09 2 2 77 2 4 2
F19 Append “lgst” to name of largest file and “sml” to xml files ≤ .1kB 17.94 3 5 110 2 6 3
F20 Extract tarballs to a directory named using file and parent directory 0.36 2 3 83 2 3 3
F21 Append parent name to each .c file and copy under “MOSS” 0.04 2 3 56 2 4 4
F22 Keep all files older than 5 days 0.59 2 2 54 3 7 2
F23 Copy each file to the directory created with its file name 0.02 1 2 47 1 3 5
F24 Archive directories which are not older than a week 0.11 2 2 80 3 5 2

X
M

L

X1 Add style=’bold’ attribute to parent element of each text 0.02 1 2 145 2 3 5
X2 Merge elements with “status” attribute and put under children 0.02 1 3 169 3 3 5
X3 Remove all attributes 0.01 1 1 115 2 3 3
X4 Change the root element of xml 0.02 1 2 222 1 2 3
X5 Remove 3rd element and put all nested elements under parent 0.02 1 2 129 1 3 4
X6 Create a table which maps each text to its parent element tag 0.09 2 10 497 1 6 4
X7 Remove text in element “done” and put all other text under “todo” 0.05 2 3 241 4 8 3
X8 Generate HTML drop down list from a XML list storing the data 0.02 1 4 443 1 3 3
X9 Rename a set of element tags to standard HTML tags 0.02 1 4 356 1 2 3

X10 Move “class” attribute and categorize based on “class” 0.18 2 6 229 1 6 3

X11
Categorize based on “tag” and put each class under element with

valid HTML tag
5.55 3 9 517 2 6 3

X12 Delete all elements with tag “p” 0.05 2 1 122 1 5 4

Figure 15. File System and XML Benchmarks

8. Related work
Program synthesis has recently received much attention in
the programming languages community. While many ap-
proaches require a programmer-provided “template” [4, 24,
25] or a complete logical specification [16], our method per-
forms synthesis from examples.

There is a growing literature on example-driven synthe-
sis. Many of these approaches focus on non-hierarchical data
like numbers, strings, and tables [3, 12, 14, 19, 23]. How-
ever, several recent efforts study the synthesis of programs
over recursive data structures [2, 10, 15, 17, 18]. For exam-
ple, FlashExtract synthesizes programs made from higher-
order combinators using a custom deductive procedure [17],

and Escher uses goal-directed enumerative search to synthe-
size first-order programs with recursive functions [2]. Sim-
ilarly, λ2 synthesizes higher-order functional programs us-
ing a combination of deduction and cost-directed enumera-
tion [10]. Osera et al. study a similar problem and offer a
solution based on type-directed deduction [18].

Unlike the above approaches, our algorithm is based on
a reduction of synthesis over trees to synthesis over lists,
which is performed using SMT solving and decision tree
learning. Furthermore, since we specifically target hierarchi-
cal data transformations (rather than synthesis of arbitrary
programs), this tighter focus allows us handle tree transfor-
mation benchmarks whose complexity exceeds those in prior
work. For example, unlike prior efforts, our method is able to

synthesize transformations that alter the hierarchical struc-
ture of an input tree. So far as we know (and as demonstrated
empirically in Section 7), such benchmarks fall outside the
scope of prior approaches to example-driven synthesis.

Our subroutine for synthesizing path transformations
bears similarities to FlashFill’s strategy for synthesizing
string transformations [12]. Similar to our INFERPATH-
TRANS procedure, FlashFill uses a combination of parti-
tioning and unification; but the algorithmic details are very
different. For example, FlashFill maintains a DAG represen-
tation of all string transformations that fit a set of examples.
In contrast, we use a numerical representation of the input-
output examples and reduce unification to SMT solving.

The StriSynth tool described in [13] extends FlashFill and
uses it to automate certain kinds of file manipulation tasks,
such as renaming files and directories. While the StriSynth
approach can handle sophisticated transformations involving
file names, it does not address transformations that handle
the directory structure. In contrast, this paper addresses gen-
eral tree transformations and can synthesize bash scripts that
modify the directory structure.

There is prior work on learning finite-state tree transduc-
ers from examples [6, 8, 9, 21]. Our approach is more gen-
eral than these approaches, in that we handle trees whose
nodes contain data of arbitrary types and do not impose a pri-
ori limitations on changes to paths in an input tree. However,
this generality comes at a cost: our approach lacks the crisp
complexity guarantees that some of these automata-theoretic
algorithms possess [8].

Decision trees are a popular data structure in machine
learning and data mining. They have also found applications
in program analysis, for example in precondition learning for

procedures [22], identification of latent code errors [5], and
repair of programs that manipulate relational databases [11].
So far as we know, the only previous use of decision trees
in synthesis is for learning WHERE clauses in automated
synthesis of SQL queries [26].

9. Conclusion
We have presented an algorithm for synthesizing tree trans-
formations from examples. The central idea of our approach
is to reduce the generation of tree transformations to the
synthesis of list (path) transformations. The path transfor-
mations are synthesized using a novel combination of deci-
sion tree learning and SMT solving. The reduction from tree
to path transformations simplifies the underlying synthesis
algorithm, while allowing us to handle a rich class of tree
transformations, including those that restructure the tree.

On the practical side, we have shown that our algorithm
has numerous applications for automating the manipulation
of hierarchically structured data, such as XML files and
Unix directories. In the longer run, approaches like ours
can be embedded into end-user programming tools such
as Apple’s Automator [1], which offers visual abstractions
for everyday scripting tasks. Since HADES allows users to
generate complex programs from simple examples, it offers
a plausible way to broaden the scope of such tools.

Acknowledgments
We thank Thomas Dillig, Yu Feng, Xinyu Wang and Jia
Chen for their insightful feedback. We also thank all partic-
ipants in our user study. Finally, we would like to thank the
anonymous reviewers for their thorough and helpful com-
ments.

References
[1] Automator. http://automator.us.

[2] A. Albarghouthi, S. Gulwani, and Z. Kincaid. Recursive
program synthesis. In CAV, pages 934–950, 2013.

[3] D. W. Barowy, S. Gulwani, T. Hart, and B. G. Zorn. Flashre-
late: extracting relational data from semi-structured spread-
sheets using examples. In PLDI, pages 218–228, 2015.

[4] T. A. Beyene, S. Chaudhuri, C. Popeea, and A. Rybalchenko.
A constraint-based approach to solving games on infinite
graphs. In POPL, pages 221–234, 2014.

[5] Y. Brun and M. D. Ernst. Finding latent code errors via
machine learning over program executions. In ICSE, pages
480–490, 2004.

[6] J. Carme, R. Gilleron, A. Lemay, and J. Niehren. Interactive
learning of node selecting tree transducer. Machine Learning,
66(1):33–67, 2007.

[7] L. De Moura and N. Bjørner. Z3: An efficient smt solver.
In Tools and Algorithms for the Construction and Analysis of
Systems, pages 337–340. Springer, 2008.

[8] F. Drewes and J. Högberg. Learning a regular tree language
from a teacher. In Developments in Language Theory, pages
279–291. Springer, 2003.

[9] J. Eisner. Learning non-isomorphic tree mappings for ma-
chine translation. In Proceedings of Meeting on Association
for Computational Linguistics, pages 205–208, 2003.

[10] J. K. Feser, S. Chaudhuri, and I. Dillig. Synthesizing data
structure transformations from input-output examples. In
PLDI, pages 229–239, 2015.

[11] D. Gopinath, S. Khurshid, D. Saha, and S. Chandra. Data-
guided repair of selection statements. In ICSE, pages 243–
253. ACM, 2014.

[12] S. Gulwani. Automating string processing in spreadsheets
using input-output examples. In POPL, pages 317–330. ACM,
2011.

[13] S. Gulwani, M. Mayer, F. Niksic, and R. Piskac. Strisynth:
synthesis for live programming. In Proceedings of the 37th

International Conference on Software Engineering-Volume 2,
pages 701–704. IEEE Press, 2015.

[14] W. R. Harris and S. Gulwani. Spreadsheet table transforma-
tions from examples. In PLDI, pages 317–328. ACM, 2011.

[15] E. Kitzelmann. Analytical inductive functional programming.
In Logic-Based Program Synthesis and Transformation, pages
87–102. Springer, 2009.

[16] V. Kuncak, M. Mayer, R. Piskac, and P. Suter. Complete
functional synthesis. In PLDI, pages 316–329, 2010.

[17] V. Le and S. Gulwani. Flashextract: A framework for data
extraction by examples. In PLDI, page 55, 2014.

[18] P. Osera and S. Zdancewic. Type-and-example-directed pro-
gram synthesis. In PLDI, pages 619–630, 2015.

[19] D. Perelman, S. Gulwani, D. Grossman, and P. Provost. Test-
driven synthesis. In PLDI, page 43, 2014.

[20] J. R. Quinlan. Induction of decision trees. Machine learning,
1(1):81–106, 1986.

[21] W. C. Rounds. Mappings and grammars on trees. Theory of
Computing Systems, 4(3):257–287, 1970.

[22] S. Sankaranarayanan, S. Chaudhuri, F. Ivančić, and A. Gupta.
Dynamic inference of likely data preconditions over predi-
cates by tree learning. In Proceedings of the 2008 inter-
national symposium on Software testing and analysis, pages
295–306. ACM, 2008.

[23] R. Singh and S. Gulwani. Synthesizing number transforma-
tions from input-output examples. In Computer Aided Verifi-
cation, pages 634–651. Springer, 2012.

[24] A. Solar-Lezama, L. Tancau, R. Bodı́k, S. A. Seshia, and V. A.
Saraswat. Combinatorial sketching for finite programs. In
ASPLOS, pages 404–415, 2006.

[25] S. Srivastava, S. Gulwani, and J. S. Foster. Template-based
program verification and program synthesis. STTT, 15(5-6):
497–518, 2013.

[26] S. Zhang and Y. Sun. Automatically synthesizing sql queries
from input-output examples. In Automated Software Engi-
neering (ASE), 2013 IEEE/ACM 28th International Confer-
ence on, pages 224–234. IEEE, 2013.

Appendix
Proof of Theorem 1. Part 1, ⇒. Suppose T ≡ T ′. We
show that paths(T) = paths(T ′). Since T ≡ T ′, we have
height(T) = height(T ′) = h. Let v = root(T) and
v′ = root(T ′). Since T ≡ T ′, we have L(v) = L(v′) =
` and D(v) = D′(v′) = d. The proof proceeds using
induction on h. For the base case, we consider h = 1. In
this case, V = {v}, V ′ = {v′}, E = E′ = ∅. Hence,
paths(T) = paths(T ′) = (`, d). For the inductive case,
let h = k + 1 where k ≥ 1. Let C = children(v) and
let C ′ = children(v′). Since T ≡ T ′, L(C) = L′(C ′),
and since T and T ′ are well-formed, there exists a one-
to-one correspondence f : C → C ′ such that: f(vc) =
v′c iffL(vc) = L′(v′c). Using this fact and condition (3) of
Definition 4, we know that, for every vc ∈ children(v) = C,
subtree(T, vc) ≡ subtree(T ′, f(vc)). Now, observe that:

paths(T) =
⋃
vc∈C
{((`, d), pi) | pi ∈ paths(subtree(T, vc))}

and paths(T ′) is equal to:⋃
f(vc)∈C′

{((`, d), p′i) | p′i ∈ paths(subtree(T ′, f(vc)))}

Using the inductive hypothesis, we have paths(T) = paths(T ′).

Part 2, ⇐. Suppose paths(T) = paths(T ′), and let v =
root(T) and v′ = root(T ′) and L(v) = `, L(v′) =
`′, D(v) = d,D(v′) = d′. We show that T ≡ T ′. First,
observe that paths(T) = paths(T ′) implies height(T) =
height(T ′). The proof proceeds by induction on h. When
h = 1, paths(T) = {(`, d)} and paths(T ′) = {(`′, d′)}.
Since paths(T) = paths(T ′), this implies ` = `′ and d = d′.
Hence, T ≡ T ′. For the inductive case, let h = k + 1 where
k ≥ 1. Let C = children(v) and let C ′ = children(v′).
Now, we have:

paths(T) =
⋃
vi∈C
{((`, d), pi) | pi ∈ paths(subtree(T, vi))}

and

paths(T ′) =
⋃
v′i∈C′

{((`′, d′), p′i) | p′i ∈ paths(subtree(T ′, v′i))}

Since paths(T) = paths(T ′), this implies ` = `′ and
d = d′ and, since T, T ′ are well-formed, for each vi ∈ C,
there must be a one-to-one correspondence f : C →
C ′ such that v′i = f(vi) iff paths(subtree(T, vi)) =
paths(subtree(T ′, v′i)). Now, for any pair (vi, f(vi)), we
have L(vi) = L′(f(vi)) because paths(subtree(T, vi)) =
paths(subtree(T ′, v′i)). Note that this implies condition (2)
of Definition 4. Furthermore, since paths(subtree(T, vi)) =
paths(subtree(T ′, f(vi))), the inductive hypothesis implies
subtree(T, vi) ≡ subtree(T, v′i). Hence, condition (3) of
Definition 4 is also satisfied.

Proof of path transformer property. Let Φ = {P1, . . . , Pk}
be the set of partitions inferred by INFERPATHTRANS at the
end of Phase I (see Figure 9), and let each Pi be the triple
〈Ei, χi, φi〉. Then the path transformer f synthesized by IN-
FERPATHTRANS is:

λx. {φ1 → χ1 ⊕ . . .⊕ φk → χk}

We first prove that ((p, p′) ∈ E) ⇒ (p′ ∈ f(p)). First,
observe that, for any k, if PARTITION(∅, E , k) 6= ∅, we have:(⋃

Pi∈Φ

Ei
)

= E

Hence, any (p, p′) ∈ E must belong to the examples of
some partition Pi. Furthermore, our classification algorithm
guarantees that, for any p ∈ inputs(Ei), we have φi[p/x] ≡
true. Hence, we know that χi ∈ f(p). Since UNIFY(Ei) =
χi 6= null, we have χi[p/x] = p′. This implies p′ ∈ f(p).

We now prove the other direction of the property, i.e.:

((p ∈ inputs(E) ∧ p′ ∈ f(p))⇒ (p, p′) ∈ E)

Suppose that p ∈ inputs(E) and p′ ∈ f(p). Since p′ ∈ f(p),
there must exist some Pi = 〈Ei, χi, φi〉 such that φi[p/x] ≡
true and χi[p/x] = p′. Recall that classification guarantees:

(a) ∀p ∈ inputs(Ei). (φi[p/x] ≡ true)
(b) ∀p ∈ (inputs(E)− inputs(Ei)). (φi[p/x] ≡ false)

Since p ∈ inputs(E), this implies p ∈ inputs(Ei); otherwise
we would have φi[p/x] ≡ false. Hence, we must have
(p, p′) ∈ Ei, which in turn implies (p, p′) ∈ E .

Proof of Theorem 2. Suppose P (T) = T ∗. We will show
paths(T ∗) = paths(T ′), which implies T ∗ ≡ T ′ by
Theorem 1. First, we show that, if p′ ∈ paths(T ′), then
p′ ∈ paths(T ∗). By the unambiguity criterion, there ex-
ists a unique p ∈ paths(T) such that p ∼ p′. By the
correctness requirement for path transformer f , we know
p′ ∈ f(p) and p′ 6= ⊥ since p′ ∈ paths(T ′). Hence, p′ ∈ S′
where S′ = {p′ | p′ ∈ f(p) ∧ p ∈ paths(T) ∧ p′ 6= ⊥}.
Since T ∗ = SPLICE(S′) (recall code generation in Section 4)
and SPLICE guarantees that paths(T ∗) = S′, we also have
p′ ∈ paths(T ∗). Now, we show that, if p∗ ∈ paths(T ∗), then
p∗ ∈ paths(T ′). Since p∗ ∈ paths(T ∗), there must exist a
p ∈ paths(T) such that p∗ ∈ f(p). Since p ∈ inputs(E),
correctness of f implies there exists some (p, p∗) ∈ E .
Now, suppose p∗ 6∈ paths(T ′). Since (p, p∗) ∈ E but
p∗ 6∈ paths(T ′), there are two possibilities: (i) Either
p∗ = ⊥, or (ii) there is some other (T1, T2) ∈ τ that results
in p∗ getting added to E . Now, (i) is not possible because
paths(T ∗) cannot contain ⊥, and (ii) is not possible due to
the unambiguity requirement.

