
Subcubic Algorithms for Recursive State Machines

Swarat Chaudhuri
Pennsylvania State University

University Park, PA 16802, USA
swarat@cse.psu.edu

Abstract
We show that the reachability problem for recursive state machines
(or equivalently, pushdown systems), believed for long to have
cubic worst-case complexity, can be solved in slightly subcubic
time. All that is necessary for the new bound is a simple adaptation
of a known technique. We also show that a better algorithm exists
if the input machine does not have infinite recursive loops.

Categories and Subject Descriptors F.1.1 [Computation by ab-
stract devices]: Models of computation—Automata; F.2.2 [Anal-
ysis of algorithms and problem complexity]: Nonnumerical algo-
rithms and problems—Computations on discrete structures;F.3.2
[Theory of Computation]: Semantics of programming languages—
Program analysis.

General Terms Algorithms, Theory, Verification

Keywords Recursive state machines, pushdown systems, CFL-
reachability, context-free languages, interprocedural analysis, tran-
sitive closure, cubic bottleneck.

1. Introduction
Pushdown models of programs have numerous uses in program
analysis (Horwitz et al. 1988; Reps et al. 1995, 2003; Alur etal.
2005).Recursive state machines(Alur et al. 2005), or finite-state
machines that can call other finite-state machines recursively, form
a popular class of such models. These machines (calledRSMs
from now on) are equivalent to pushdown systems, or finite-state
machines equipped with stacks. They are also natural abstractions
of recursive programs: each component finite-state machinemodels
control flow within a procedure, and procedure calls and returns
are modeled by calls and returns to/from other machines. Sound
analysis of a program then involves algorithmic analysis ofan RSM
abstracting it.

In this paper, we study the most basic and widely applicable
form that such analysis takes: determination of reachability be-
tween states. Can an RSM, in some execution, start at a statev and
reach the statev′? Because RSMs are pushdown models, any path
that the RSM can take respects the nested structure of calls and re-
turns, and reachability analysis of an RSM abstraction of a program
gives acontext-sensitive program analysis. A classic application is
interprocedural data-flow analysis— “can a data-flow fact reach a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

POPL’08, January 7–12, 2008, San Francisco, California, USA.
Copyright c© 2008 ACM 978-1-59593-689-9/08/0001. . . $5.00

certain program point along a path respecting the nesting ofpro-
cedure calls?” The problem also shows up in many other program
analysis contexts—for example field-sensitive alias analysis (Reps
1998), type-based flow analysis (Rehof and Fähndrich 2001), and
shape analysis (Reps 1998).

Reachability for RSMs is equivalent to a well-known graph
problem calledcontext-free language (CFL) reachability. The
question here is: given an edge-labeled directed graph and a
context-free grammar over the edge labels, is there a path from
nodes to nodet in the graph that is labeled by a word generated
by the grammar? This problem, which may be viewed as a gen-
eralization of context-free recognition, was originally phrased in
the context of database theory (Yannakakis 1990), where it was
shown that Datalog chain query evaluation on the graph repre-
sentation of a database is equivalent to single-source, single-sink
CFL-reachability. It has since been identified as a central problem
in program analysis (Reps 1998; Melski and Reps 2000).

All known algorithms for RSM and CFL-reachability follow
a dynamic-programming scheme known in the literature assum-
marization (Sharir and Pnueli 1981; Alur et al. 2005; Bouajjani
et al. 1997). The idea here is to derive reachability facts ofthe
form (v, v′), which says that the RSM can start at statev with an
empty stack and end at statev′ with an empty stack. The most well-
known algorithms following this scheme (Horwitz et al. 1995; Reps
et al. 1995) discover such pairs enumeratively via graph traversal.
Unlike context-free recognition, which has a well-known subcu-
bic solution (Valiant 1975), RSM and CFL-reachability havenot
been known to have subcubic algorithms even in the single-sink,
single-source case (for RSM-reachability, the size of an instance
is the number of states in it; for CFL-reachability, it is thenum-
ber of nodes in the input graph). This raises the question: are these
problems intrinsically cubic? The question is especially interest-
ing in program analysis as problems like interprocedural data-flow
analysis and slicing are not only solvable using RSM-reachability,
but also provably as hard. Believing that the answer is “yes”, re-
searchers have sometimes attributed the “cubic bottleneck” of these
problems to the hardness of RSM or CFL-reachability (Reps 1998;
Melski and Reps 2000).

In this paper, we observe that summarization can benefit froma
known technique (Rytter 1983, 1985) for speeding up certainkinds
of dynamic programming. The idea, developed in the context of
language recognition for two-way pushdown automata, is to rep-
resent a computation accessing a table as a computation on row
and column sets, which are stored using a “fast” set data struc-
ture. The latter, a standard data structure in the algorithms litera-
ture (Arlazarov et al. 1970; Chan 2007), splits each operation in-
volving a pair of sets into a series of operations on pairs of sets
drawn from a small sub-universe. If the sub-universes are suffi-
ciently small, all queries on them may be looked up from a table
precomputed exhaustively, allowing us to save work during an ex-
pensive main loop. When transferred to the RSM-reachability prob-

lem with slight modifications, Rytter’s method leads to an algo-
rithm that phrases the computation of reachability as a sequence of
operations on sets of RSM states, and has anO(n3/ log n) time
complexity. The technique may also be applied to the standard al-
gorithm for CFL-reachability, referenced for example by Melski
and Reps (2000), leading to a similar speedup. This implies sub-
cubic solutions for Datalog chain query evaluation as well as the
many program analysis applications of RSM-reachability.

Our other contribution is an observation that the reachability
problem for RSMs gets easier, so far as worst-case complexity
is concerned, as recursion is restricted. We study the reachabil-
ity problem forbounded-stack recursive state machines, which are
RSMs where the stack never grows unboundedly in any execu-
tion. Machines of this sort have a clear interpretation in program
analysis: they capture the flow of control in procedural programs
without infinite recursive loops. In spite of this extra structure, they
have not been known to have faster reachability algorithms than
general RSMs (note that a bounded-stack RSM is in fact a finite-
state machine—however, the latter can be exponentially larger than
the RSM, so that it is not an option to analyze it instead of apply-
ing an RSM-reachability algorithm). We show that it is possible
to exploit this structure during reachability analysis. The key ob-
servation is that empty-stack-to-empty-stack reachability facts in
bounded-stack RSMs can be derived in adepth-first order—i.e., if
stateu has an edge to statev, it is possible to first infer all the states
empty-stack-to-empty-stack reachable fromv and then use this in-
formation to infer the states reachable this way fromv (this is not
possible for general RSMs). It turns out that, as a result, wecan
solve the reachability problem using a transitive closure algorithm
for directed graphs that allows the following kind of modifications
to the instance: “for an edge(u, v) that goes from one strongly con-
nected component to another, compute all descendantsv′ of v and
add some edges fromu based on the answer.” Unfortunately, none
of the existing subcubic algorithms for transitive closurecan han-
dle such modifications. Consequently, we derive a new transitive
closure algorithm for directed graphs that can.

Our transitive closure algorithm speeds up a procedure based
on Tarjan’s algorithm to determine the strongly connected compo-
nents of a graph. Such algorithms have a sizable literature (Purdom
1970; Eve and Kurki-Suonio 1977; Schmitz 1983). Their attrac-
tion in our setting is that they perform one depth-first traversal of
the input graph, computing closure using set operations along the
way, so that it is possible to weave the treatment of added edges
into the discovery of edges in the original graph. The idea behind
the speedup is, once again, to reuse computations on small patterns
common to set computations, except this time, it can be takenfur-
ther and yields a complexity ofO(min{mn/ log n, n3/ log2 n}),
wheren is the number of nodes in the graph andm the number of
edges. This directly leads to anO(n3/ log2 n) solution for all-pairs
reachability in bounded-stack RSMs.

We finish our study of the interplay of recursion and reachability
in RSMs with a note on the reachability problem forhierarchical
state machines(Alur and Yannakakis 1998). These machines can
model control flow in structured programs without recursivecalls
and form a proper subclass of bounded-stack RSMs. The one pub-
lished reachability algorithm for such models is cubic (Alur and
Yannakakis 1998); here, we give a simple alternative that has the
same complexity as boolean matrix multiplication. While this al-
gorithm is almost trivial, taken together with our other results, it
indicates a gradation in the complexity of RSM-reachability as re-
cursion is constrained.

The paper is organized as follows. Section 2 defines the three
classes of RSMs that interest us, CFL-reachability, and thefast set
data structure. Section 3 discusses reachability in general RSMs
and CFL-reachability. In Section 4, we study reachability for

bounded-stack RSMs, and Section 5 briefly examines reachability
in hierarchical state machines. We conclude with some discussion
in Section 6.

2. Basics
Recursive state machines (RSMs), introduced by Alur et al. (2005),
are finite-state-machines that can call other finite-state-machines
recursively. RSMs are equivalent to pushdown systems, and any
solution for RSM-reachability can be translated to a solution the
same complexity for pushdown systems. In this section, we define
three variants of recursive state machines. We also review their
connection with the context-free language reachability problem.

Recursive state machines

A recursive state machine(RSM)M is a tuple〈M1, M2, . . . , Mk〉,
where eachMi = 〈Li, Bi, Yi,Eni,Ex i,→i〉 is a component
comprising:

• a finite setLi of internal states;

• a finite setBi of boxes;

• a mapYi : Bi → {1, 2, . . . , k} that assigns a component to
every box;

• a setEni ⊆ Li of entry statesand a setEx i ⊆ Li of exit states;

• an edge relation→i⊆ (Li∪Retns i\Ex i)×(Li∪Callsi\Eni),
whereCallsi = {(b, en) : b ∈ Bi, en ∈ EnYi(b)} is the set of
calls andRetns i = {(b, ex) : b ∈ Bi, ex ∈ ExYi(b)} the set
of returnsin Mi.

Note that an edge cannot start from a call or an exit state, and
cannot end at a return or an entry state. We assume that for every
distinct i and j, Li, Bi, Callsi, Retnsi, Lj , Bj , Callsj , and
Retnsj are pairwise disjoint. Arbitrary calls, returns and internal
states inM are referred to asstates. The set of all states is given
by V =

⋃
i(Li ∪ Callsi ∪ Retnsi), and the set of states in

Mj is denoted byVj . We also writeB =
⋃

i Bi to denote the
collection of all boxes inM . Finally, the extensions of the relations
→i and functionsYi are denoted respectively by→⊆ V × V and
Y : B → {1, 2, . . . , k}.

For an example of an RSM, see Figure 1-(b). This machine
has two components:M1 and M2. The componentM1 has an
entry states and an exit statet, boxes b1 and b2 satisfying
Y (b1) = Y (b2) = 2, and edges(s, (b1, u)) and((b2, v), t). The
componentM2 has an entryu and an exitv, and an edge(u, v).

The semantics ofM is given by an infiniteconfiguration graph
CM . Let a configurationof M be a pairc = (v, w) ∈ V × B∗

satisfying the following condition: ifw = b1 . . . bn for somen ≥ 1
(i.e., if w is non-empty), then:

1. v ∈ VY (bn), and

2. for all i ∈ {1, . . . , n− 1}, bi+1 ∈ BY (bi).

The nodes ofCM are configurations ofM . The graph has an edge
from c = (v, w) to c′ = (v′, w′) if and only if one of the following
holds:

1. Local move:v ∈ (Li ∪ Retns i) \ Ex i, (v, v′) ∈→i, and
w′ = w;

2. Call move:v = (b, en) ∈ Callsi, v′ = en, andw′ = w.b;

3. Return move:v ∈ Ex i, w = w′.b, andv′ = (b, v).

Intuitively, the stringw in a configuration(v, w) is a stack, and
paths inCM define the operational semantics ofM . If v is a call
(b, en) in the above, then the RSM pushesb on the stack and moves
to the entry stateen of the componentY (b). Likewise, on reaching

{

}

void main ()

L: x = g;
 bar();
 g = 1;

 int x = 1;
 bar();

int g;

{

void bar()

 int y = 0;
}

(a)

(b) (c)

(b1

a

a

a

)b1

(b2

)b2

s

s

t

t

main (M1)

bar (M2)

b1 b2

u

u
v

v

(b1, u)

(b2, v)
(b1, u)

(b2, v)

Figure 1. (a) A C example (b) RSM for the uninitialized variable
problem (c) CFL-reachability formulation

an exitex, it pops a frameb off the stack and moves to the return
(b, ex). Unsurprisingly, RSMs have linear translations to and from
pushdown systems (Alur et al. 2005).

Size Thesizeof an RSM is the total number of states in it.

Reachability Reachability in the configuration graph is defined
as usual. We call the statev′ reachable from the statev if a
configuration(v′, w), for some stackw, is reachable from(v, ǫ)
in the configuration graph. Intuitively, the RSM, in this case, has an
execution that starts atv with an empty stack and ends atv′ with
some stack. The statev′ is same-context reachablefrom v if (v′, ǫ)
is reachable from(v, ǫ). In this case the RSM can start atv with an
empty stack and reachv′ with an empty stack—note that this can
happen only ifv andv′ are in the same component.

Theall-pairs reachability problemfor an RSM is to determine,
for each pair of statesv, v′, whetherv′ is reachable fromv′. The
single-source and single-sink variants of the problem are defined
in the natural way. We also define thesame-context reachability
problem, where we ask ifv′ is same-context reachable fromv.

All known algorithms for RSM-reachability and pushdown sys-
tems, whether all-pairs or single-source/single-sink, same-context
or not, rely on a dynamic programming scheme calledsummariza-
tion (Sharir and Pnueli 1981; Alur et al. 2005; Bouajjani et al. 1997;
Reps et al. 1995), which we will examine in Section 3. The worst-
case complexity of all these algorithms is cubic. Tighter bounds are
possible if we constrain the number of entry and exit states and/or
edges in the input. For example, if each component of the input
RSM has one entry and one exit state, then single-source, single-
sink reachability can be determined inO(m + n) time, wherem
is the number of edges in the RSM andn the number of states
(the all-pairs problem has the same complexity as graph transi-
tive closure) (Alur et al. 2005). In this paper, in addition to general

RSM-reachability, we study reachability algorithms for RSMs con-
strained in a different way:by restricting or disallowing recursion.

To see the use of RSM-reachability in solving a program anal-
ysis problem, consider the program in Figure 1-(a). Supposewe
want to determine if the variableg is uninitialized at the line la-
beledL. This may be done by constructing the RSM in Figure 1-
(b). The two components correspond to the proceduresmain and
bar; states in these components correspond to the control points
of the program—e.g., the states models the entry point ofmain,
and(b2, v) models the point immediately before lineL. Procedure
calls tobar are modeled by the boxesb1 andb2. For every state-
ment that does not assign tog, an edge is added between the states
modeling the control points immediately before and after this state-
ment. Theng is uninitialized atL iff (b2, v) is reachable froms.
More generally, RSM-reachability algorithms can be used tocheck
if a context-sensitive program abstraction satisfies a safety prop-
erty (Alur et al. 2005). For example, the successful software model
checker SLAM (Ball and Rajamani 2001) uses an algorithm for
RSM-reachability as a core module.

Bounded-stack RSMs and hierarchical state machines

Now we define two special kinds of RSMs with restricted recur-
sion: bounded-stack RSMsand hierarchical state machines. We
will see later that they have better reachability algorithms than gen-
eral RSMs.

The class ofbounded-stack RSMsconsists of RSMsM where
every call(b, en) is unreachable from the stateen. By the seman-
tics of an RSM, the stack of an RSM grows along an edge from a
call to the corresponding entry state. Thus, intuitively, abounded-
stack RSM forbids infinite recursive loops, ensuring that inany path
in the configuration graph starting with a configuration(v, ǫ), the
height of the stack stays bounded. To see an application, consider a
procedure that accepts a boolean value as a parameter, flips the bit,
and, if the result is 1, calls itself recursively. While thisprogram
does employ recursion, it never runs into an infinite recursive loop.
As a result, it can be modeled by a bounded-stack RSM.

A hierarchical state machine(Alur and Yannakakis 1998), on
the other hand, forbids recursion altogether. Formally, such a ma-
chine is an RSMM where there is a total order≺ on the compo-
nentsM1, . . . , Mk such that ifMi contains a boxb, thenMY (b) ≺
Mi. Thus, calls from a component may only lead to a component
lower down in this order. For example, the RSM in Figure 1-(b)is
a hierarchical state machine.

Note that every bounded-stack or hierarchical machine can
be translated to an equivalent finite-state machine. However, this
causes an exponential increase in size in the worst case, andit is
unreasonable to analyze a hierarchical/bounded-stack machine by
“flattening” it into a finite-state machine. The question that inter-
ests us is: can we determine reachability in a bounded-stackor
hierarchical machine in timepolynomial in the input? The only
known way to do this is to use the summarization technique that
also works for general RSMs, leading to an algorithm of cubic
worst-case complexity.

Context-free language reachability

RSM-reachability is equivalent to a graph problem calledcontext-
free language (CFL) reachability(Yannakakis 1990; Reps 1998)
that has numerous applications in program analysis. LetS be a
directed graph whose edges are labeled by an alphabetΣ, and letL
be a context-free language overΣ. We say a nodet is L-reachable
from a nodes if there is a path froms to t in S that is labeled
by a word inL. The all-pairs CFL-reachability problem forS and
L is to determine, for all pairs of nodess andt, if t is L-reachable
from s. The single-source or single-sink variants of the problem are
defined in the obvious way. Customarily, the size of the instance is

given by the numbern of nodes inS, while L is assumed to be
given by a fixed-sized grammarG.

Let us now see how, given an instance of RSM-reachability,
we can obtain an equivalent CFL-reachability instance. We build
a graph whose nodes are states of the input RSMM ; for every
edge(u, v) in M , S has an edge fromu to v labeled by a symbol
a. For every call(b, en) in the RSM,S has an edge labeled(b from
(b, en) to en; for every exitex and return(b, ex) in M , we add
a)b-labeled edge inS from ex to (b, ex) (for example, the graph
S constructed from the RSM in Figure 1-(b) is shown in Figure 1-
(c)). Now, the statev is reachable from the stateu in M if and only
if v is L-reachable fromu in S, whereL is given by the grammar
S → SS | (bS)b | (bS | a. The translation in the other direction is
also easy—we refer the reader to the original paper on RSMs (Alur
et al. 2005).

Note that context-free recognition is the special case of CFL-
reachability whereS is a chain. A cubic algorithm for all-pairs
CFL-reachability can be obtained by generalizing the Cocke-
Younger-Kasami algorithm (Hopcroft and Ullman 1979) for CFL-
recognition—this algorithm again relies on summarization. The
problem is known to be equivalent to the problem of evaluating
Datalogchain querieson a graph representation of a database (Yan-
nakakis 1990). Such queries have the formp(X,Y)← q0(X, Z1)∧
q1(Z1, Z2)∧ . . .∧ qk(Zk, Y), where theqi’s are binary predicates
andX, Y and theZi’s are distinct variables, and have wide appli-
cations. It has also come up often in program analysis—for exam-
ple, in the context of interprocedural dataflow analysis andslicing,
field-sensitive alias analysis, and type-based flow analysis (Hor-
witz et al. 1988; Reps et al. 1995; Horwitz et al. 1995; Reps 1995,
1998; Rehof and Fähndrich 2001). The “cubic bottleneck” ofthese
analysis problems has sometimes been attributed to the believed
cubic hardness of CFL-reachability.

A special case is the problem ofDyck-CFL-reachability. The
constraint here is that the CFLL is now a language of bal-
anced parentheses. Many program analysis applications of CFL-
reachability—e.g., field-sensitive alias analysis of Javaprograms
(Sridharan et al. 2005)—turn out actually to be applications of
Dyck-CFL-reachability, though so far as asymptotic boundsgo, it
is no simpler than the general problem. This problem is equivalent
to the problem of same-context reachability in RSMs.

Fast sets

Our algorithms for RSMs use a set data structure that exploits
sharing between sets to offer certain set operations at low amortized
cost. This data structure—calledfast setsfrom now on—is standard
technology in the algorithms literature (Chan 2007; Arlazarov et al.
1970) and was used, in particular, in the papers by Rytter (1983,
1985) on two-way pushdown recognition. Its essence is that it splits
an operation on a pair of sets into a series of unit-cost operations
on small sets. We will now review it.

Let U be a universe ofn elements of which all our sets will be
subsets. The fast set data structure supports the followingopera-
tions:

• Set difference: Given setsX andY , return alist Diff (X, Y)
consisting of the elements of the set(X \ Y).

• Insertion: Insert a value into a set.

• Assign-union: Given setsX and Y , perform the assignment
X ← X ∪ Y .

Let us assume an architecture with word sizep = θ(log n). A
fast set representation of a set is the bit vector (of lengthn) for the
set, broken into⌈n/p⌉ words. Then:

• To computeDiff (X, Y), whereX and Y are fast sets, we
compute the bit vector forZ = X \ Y via bitwise operations

on the words comprisingX and Y . This takesO(n/p) time
assuming constant-time logical operations on words. To list the
elements ofZ, we repeatedly locate the most significant bit
in Z, add its position inX to the output list, and turn it off.
Assuming that it is possible in constant time to check if a word
equals 0 and find the most significant bit in a word, this can be
done inO(|Z| + n/p) time. Note that the bound is given in
terms of thesize of the output. This is exploited while bounding
the amortized cost of a sequence of set differences.

• Insertion of0 ≤ x ≤ n−1 involves setting a bit in the⌊x/p⌋-th
word, which can be done inO(1) time.

• The assign-union operation can be implemented by word-by-
word logical operations on the components ofX andY , and
takesO(n/p) time.

In case the unit-cost operations we need are not available, they
can be implemented using table lookup. Let a fast set now be a
collection of words of lengthp = ⌈log n/2⌉. In a preprocessing
phase, we build tables implementing each of the binary or unary
word operations we need by simply storing the result for each
of the O(2p.2p) = O(n) possible inputs. The time required to
build each such table isO(p.n) (assuming linear-time operations
on words), and the space requirement isO(n). The costs of our
fast set operations are now as before.

3. All-pairs reachability in recursive state
machines

Let us now study the reachability problem for recursive state ma-
chines. We remind the reader that all known algorithms for this
problem are cubic and based on a high-level algorithm calledsum-
marization. In this section we show that a speedup technique de-
veloped by Rytter (1985, 1983) can be directly applied to this al-
gorithm, leading to anO(n3/ log n)-time solution. The modified
algorithm computes reachability via a sequence of operations on
sets of states, each represented as a fast set. In this sense it is a
symbolicimplementation of summarization, rather than an iterative
one like the popular algorithm due to Reps et al. (1995). We also
show that the standard cubic algorithm for CFL-reachability, refer-
enced for example by Melski and Reps (2000), can be speeded up
similarly using Rytter’s technique.

3.1 Reachability in RSMs

Let us start by reviewing summarization. We have as input an RSM
M = 〈M1, . . . , Mk〉 as in Section 2, with state setV , box set
B, edge relation→⊆ V × V , and a mapY : B → {1, . . . , k}
assigning components to boxes. The algorithm first determines
same-context reachabilityby building a relationHs ⊆ V × V ,
defined as the least relation satisfying:

1. if u = v or u→ v, then(u, v) ∈ Hs;

2. if (u, v′) ∈ Hs and(v′, v) ∈ Hs, then(u, v) ∈ Hs;

3. if (u, v) ∈ Hs and u is an entry andv is an exit in some
component, then for all boxesb such that(b, u), (b, v) ∈ V ,
we have((b, u), (b, v)) ∈ Hs.

For example, the relationHs for the RSM in Figure 1-(a) is
drawn in Figure 2 (the transitive edges are omitted). While the
definition of Hs is recursive, it may be constructed using a least-
fixpoint computation. Once it is built, we construct a relationH ⊆
V × V defined as:

H = → ∪ {((b, en), (b, ex)) ∈ Hs : b ∈ B, anden is an
entry andex an exit ofY (b)}

∪ {((b, en), en) : en is an entry inY (b)},

s t

u v

(b1, v) (b2, u)

(b1, u) (b2, v)

Figure 2. The relationH . Hs is the transitive closure of non-
dashed edges, andH∗ is the transitive closure of all edges

and compute the (reflexive) transitive closureH∗ of the resultant
relation (see Figure 2). It is known that:

LEMMA 1 ((Alur et al. 2005; Bouajjani et al. 1997)).For statesv
and v′ of M , v′ is reachable fromv iff (v, v′) ∈ H∗. Also,v′ is
same-context reachable fromv iff (v, v′) ∈ Hs.

Within the scheme of summarization, there are choices as to
how the fixpoint computations forHs andH∗ are carried out. For
example, the popular algorithm due to Reps et al. (1995) employs
graph search to construct these relations enumeratively. In contrast,
the algorithm we now present, obtained by a slight modification
of an algorithm by Rytter (1985) for two-way pushdown recogni-
tion, phrases the computation as a sequence of operations onsets
of states. Unlike previous implementations of summarization, our
algorithm has a slightly subcubic worst-case complexity.

The algorithm is a modification of the procedure BASELINE-
REACHABILITY in Figure 3, which uses a worklistW to compute
Hs andH∗ in a fairly straightforward way. Line 1 of the baseline
routine inserts intra-component edges and trivial reachability facts
into Hs and W . The rest of the pairs inHs are derived by the
while-loop from line 2–10, which removes pairs fromW one by
one and “processes” them. While processing a pair(u, v), we
derive all the pairs that it “implies” by rules (2) and (3) in the
definition ofHs andthat have not been derived already, and insert
them intoHs andW . At the end of any iteration of the loop,W
contains the pairs that have been derived but not yet processed.
The loop continues tillW is empty. It is easy to see that on its
termination,Hs is correctly computed. Lines 11-14 now compute
H∗.

Note that a pair is inserted intoW only when it is also inserted
into Hs, so that the loop has one iteration per insertion intoHs. At
the same time, a pair is never taken out ofHs once it is inserted,
and no pair is inserted into it twice. Letn be the size of the RSM,
and letα ≤ n2 be an upper bound on the number of pairs(u, v)
such thatv is reachable fromu. Then the loop hasO(α) iterations.

Let us now determine the cost of each iteration. Assuming we
can insert an element inHs andW in constant time, lines 4–6 cost
constant time per insertion of an element intoHs. Thus, the total
cost for lines 4–6 during a run of BASELINE-REACHABILITY is
O(α). The for-loops at line 7 and line 9 need to identify all statesu′

andv′ satisfying their conditions for insertion. Done enumeratively,
this costsO(n) time per iteration, causing the total cost of the
loop to beO(αn). As for the rest of the algorithm, line 14 may
be viewed as computing the (reflexive) transitive closure ofa graph
with n states andO(α) edges. This may clearly be done inO(αn)
time. Then:

LEMMA 2. BASELINE-REACHABILITY terminates on any RSM
M in timeO(α.n), whereα ≤ n2 is the number of pairs(u, v) ∈
V × V such thatv is reachable fromu. On termination, for every
pair of statesu andv, v is reachable fromu iff (u, v) ∈ H∗, andv
is same-context reachable fromu iff (u, v) ∈ Hs.

BASELINE-REACHABILITY()
1 W ← Hs ← {(u, u) : u ∈ V }∪ →
2 while W 6= ∅
3 do (u, v)← remove fromW
4 if u is an entry state andv an exit state in a componentMi

5 then for b such thatY (b) = i
6 do insert((b, u), (b, v)) into Hs, W
7 for (u′, u) ∈ Hs such that(u′, v) /∈ Hs

8 do insert(u′, v) into Hs andW
9 for (v, v′) ∈ Hs such that(u, v′) /∈ Hs

10 do insert(u, v′) into Hs andW
11 H∗ ← Hs

12 for calls (b, en) ∈ V
13 do insert((b, en), en) into H∗

14 H∗ ← transitive closure ofH∗

Figure 3. Baseline procedure for RSM-reachability

To convert the baseline procedure into a set-based algorithm,
interpret the relationHs as ann × n table, and denote theu-
th row and column as sets (respectively denoted byRow(u) and
Col(u)). Then we haveRow(u) = {v : (u, v) ∈ Hs} and
Col(u) = {v : (v, u) ∈ Hs}. Now observe that the for-loops
at lines 7 and 9 can be captured byset difference operations. The
for-loop in line 7–8 may be rewritten as:

for u′ ∈ (Col(u) \ Col(v)) do insert(u′, v) into Hs andW,

and the for-loop in line 9–10 may be rewritten as:

for v′ ∈ (Row(v) \Row (u)) do insert(u, v′) into Hs andW.

Our set-based algorithm for RSM-reachability —called REACHA-
BILITY from now on— is obtained by applying these rewrites to
BASELINE-REACHABILITY . Clearly, REACHABILITY terminates
after performingO(α) set difference and insertion operations, and
when it does, the tablesH∗ andHs respectively capture reachabil-
ity and same-context reachability.

We may, of course, use any set data structure offering efficient
difference and insertion in our algorithm. If the cost of setdiffer-
ence is linear, then the algorithm is cubic in the worst-case. The
complexity, however, becomesO(nα/ log n) = O(n3/ log n) if
we use the fast set data structure of Section 2. To see why, as-
sume that the rows and columns ofHs are represented as fast sets
and that set difference and insertion are performed using the op-
erationsDiff and Ins described earlier. In each iteration of the
main loop, the inner loops first compute the difference of twosets
of size n, then, for every element in the answer, inserts a pair
into Hs (this involves inserting an element into a row and a col-
umn) andW . If the i-th iteration of the main loop insertsσi pairs
into Hs, the time spent on the operationDiff in this iteration is
O(n/ log n+σi). Since the result is returned as a list, the cost of it-
eratively inserting pairs in it intoH∗ andW is alsoO(σi). The cost
of these operations summed over the entire run of REACHABILITY
is O(α.n/ log n+

∑α
i σi) = O(αn/ log n+α) = O(αn/ log n).

The only remaining bottleneck is the transitive closure in line 14 of
the baseline procedure. This may be computed inO(α.n/ log n)
time using the procedure we give in Section 4.1. The total time
complexity then becomesO(αn/ log n)— i.e.,O(n3/ log n).

As for the space requirement of the algorithm,Θ(n2) space is
needed just to store the tablesHs andH∗. The space required by
tables implementing word operations, if unit-cost word operations
are not available, is subsumed by this factor. Thus we have:

THEOREM1. The algorithmREACHABILITY solves the all-pairs
reachability and same-context-reachability problems foran RSM
with n states inO(n3/ log n) time andO(n2) space.

Readers familiar with Rytter’sO(n3/ log n)-time algorithm
(Rytter 1985) for recognition of two-way pushdown languages will
note that our subcubic algorithm is very similar to it. Recall that a
two-way pushdown automaton (2-PDA) is a pushdown automaton
which, on reading a symbol, can move its “reading head” one step
forward and back on the input word, while changing its control
state and pushing/popping a symbol on/off its stack. The language
recognition problem for 2-PDAs is: “given a wordw of lengthn
and a 2-PDAA of constant size, isw accepted byA?” This prob-
lem may be linearly reduced to the reachability problem for RSMs.
Notably, there is also a reduction in the other direction. Given an
RSMM where we are to determine reachability, write out the states
and transitions ofM as an input word. Now construct a 2-PDAA
that, in every one of an arbitrary number of rounds, moves itshead
to an arbitrary transition ofM and tries to simulate the execution.
Using nondeterminism,A can guess any run ofM , and accept the
input if and only ifM has an execution from a stateu to a statev.
This may suggest that a subcubic algorithm for RSM-reachability
already exists. The catch, however, is that an RSM of sizen may
haveΩ(n2) transitions, so that this reduction outputs an instance
of quadratic size. Clearly, it cannot be combined with Rytter’s al-
gorithm to solve reachability in RSMs in cubic (let alone subcubic)
time.

On the other hand, what Rytter’s algorithm actually does is to
speed up a slightly restricted form of summarization. Recall the
routine BASELINE-REACHABILITY , and letu, v, . . . be positions
in a word rather than states of an RSM. Just like us, Rytter derives
pairs(u, v) such that the automaton has an empty-stack to empty-
stack execution fromu to v. One of the rules he uses is:

Suppose(u, v) is already derived. IfA can go fromu′ to u
by pushingγ, and fromv to v′ by poppingγ, then derive
(u′, v′).

This rule is analogous to Rule (3) in our definition of summariza-
tion:

Suppose(u, v) is already derived. Ifu is an entry andv
is an exit in some component andb is a box such that
(b, u), (b, v) ∈ V , then derive((b, u), (b, v)).

The two rules differ in the number of new pairs they derive. Be-
cause the size ofA is fixed, Rytter’s rule can generate at most a
constant number of new pairs for a fixed pair(u, v). On the con-
trary, our rule can derive a linear number of new pairs for given
(u, v). Other than the fact that Rytter deals with pairs of positions
and we deal with RSM states, this is the only point of difference be-
tween the baseline algorithms used in the two cases. At first glance,
this difference may seem to make the algorithm cubic, as the above
derivation happens inside a loop with a quadratic number of iter-
ations. Our observation is that a tighter analysis is possible: our
rule above only does a constant amount of workper insertionof a
pair intoHs. Thus, over a complete run of the algorithm, its cost
is quadratic and subsumed by the cost of the other lines, evenaf-
ter the speedup is applied. For the rest of the algorithm, Rytter’s
complexity arguments carry over.

3.2 CFL-reachability

As RSM-reachability and CFL-reachability are equivalent prob-
lems, the algorithm REACHABILITY can be translated into a set-
based, subcubic algorithm for CFL-reachability. However,Rytter’s
technique can also be directly applied to the standard algorithm
for CFL-reachability, described for example by Melski and Reps
(2000). Now we show how. Let us have an instance(S, G) of CFL-
reachability, whereS is an edge-labeled graph withn nodes and
G is a constant-sized context-free grammar. Without loss of gen-
erality, it is assumed that the right-hand side of each rule in G has

BASELINE-CFL-REACHABILITY()

1 W ← Hs ← {(u, A, v) : u
a
→ v in S, and A→ a in G }

2 ∪{(u, A, u) : A→ ǫ in G }
3 while W 6= ∅
4 do (u, B, v)← remove fromW
5 for each productionA→ B
6 do if (u, A, v) /∈ Hs

7 then insert(u, A, v) into Hs, W
8 for each productionA→ CB
9 do for each edge(u′, C, u) such that(u′, A, v) /∈ Hs

10 do insert(u′, A, v) into Hs andW
11 for each productionA→ BC
12 do for each edge(v, C, v′) such that(v, A, v′) /∈ Hs

13 do insert(v, A, v′) into Hs andW

Figure 4. Baseline algorithm for CFL-reachability

at most two symbols. The algorithm in Melski and Reps’ paper—
called BASELINE-CFL-REACHABILITY and shown in Figure 4—
computes tuples(u, A, v), whereu, v are nodes ofS and A is
a terminal or non-terminal, such that there is a path fromu to
v labeled by a wordw that G can derive fromA. A worklist
W is used to process the tuples one by one; derived tuples are
stored in a tableHs. It is easily shown, by arguments similar to
those for RSM-reachability, that the algorithm is cubic andrequires
quadratic space. On termination, a tuple(u, I, v), whereu, v are
nodes andI the initial symbol ofG, is inHs iff v is CFL-reachable
from u.

As in case of RSM-reachability, now we store the rows and
columns ofHs as fast sets ofO(n) size. For a nodeu and a non-
terminalA, the rowRow (u, A) (similarly the columnCol(u, A)),
stores the set of nodesu′ such that(u, A, u′) (similarly (u′, A, u))
is in Hs. Now, the bottlenecks of the algorithm are the two nested
loops (lines 8–10 and 11–13). We speed them up by implementing
them using set difference operations— for example, the loopfrom
line 8–10 is replaced by:

for each productionA→ CB
do for u′ ∈ (Col(u, C) \ Col(v, A))

do insert(u′, A, v) into Hs andW.

Assuming a fast set implementation, the cost for this loop isin a
given iteration of the main loop isO(n/ log n + σ), whereσ is the
number of new tuples inserted intoHs. Since the number of inser-
tions intoHs is O(n2), its total cost during a complete run of the
algorithm isO(n3/ log n). The same argument holds for the other
loop. Let us call the modified algorithm CFL-REACHABILITY . By
the discussion above:

THEOREM2. The algorithmCFL-REACHABILITY solves the all-
pairs CFL-reachability problem for a fixed-sized grammar and a
graph withn nodes inO(n3/ log n) time andO(n2) space.

Theorem 2 improves the previous cubic bound for all-pairs—
or, for that matter, single-source, single-sink— CFL-reachability.
By our discussion in Section 2, this implies subcubic, set-based
algorithms for Datalog chain query evaluation as well as themany
program analysis applications of CFL-reachability.

4. All-pairs reachability in bounded-stack RSMs
Is a better algorithm for RSM-reachability possible if the input
RSM is bounded-stack? In this section, we show that this is indeed
the case. As we mentioned earlier, the only previously known
way to solve reachability in bounded-stack machines is to use
summarization, which gives a cubic algorithm; speeding it up using

the technique we presented earlier leads to a factor-log n speedup.
Now we show that the bounded-stack property gives us a second
logarithmic speedup. Our algorithm combines graph search with
a speedup technique used by Rytter (1983, 1985) to recognize
languages of loop-free 2-way PDAs1. Unlike the algorithm for
general RSMs, it is not just an application of existing techniques,
and we consider it the main new algorithm of this paper.

We start by reviewing search-based algorithms for reachability
in (general) RSMs. LetM be an RSM as in Section 2, and recall the
relationH defined in Section 3—henceforth, we view it as a graph
and call it thesummary graphof M . The edges ofH are classified
as follows:

• Edges((b, en), en), whereb is a box anden is an entry state in
Y (b), are known ascall edges;

• Edges((b, en), (b, ex)), whereb is a box, anden is an entry
andex an exit inY (b), are calledsummary edges;

• Edges that are also edges ofM are calledlocal edges.

Note that a statev is same-context reachable from a stateu iff there
is a path inH from u to v made only of local and summary edges.
Let the set of states same-context reachable fromu be denoted by
Hs(u). While the call and local edges ofH are specified directly by
M , we need to determine reachability between entries and exits in
order to identify the summary edges. The search-based formulation
of summarization (Reps et al. 1995; Horwitz et al. 1995) views
reachability computation forM (or, in other words, computation of
the transitive closureH∗ of H) as a restricted form ofincremental
transitive closure. A search algorithm is employed to compute
reachability inH ; when an exitex is found to be same-context-
reachable fromen, the summary edge((b, en), (b, ex)) is added
to the graph. The algorithm must now explore these added edges
along with the edges in the original graph.

Let us now assume thatM is bounded-stack. Consider any call
(b, en) in the summary graphH . BecauseM is bounded-stack,
this state is unreachable from the stateen. Hence,(b, en) anden
are not in the same strongly connected component (SCC) inH , and
a call edge is always between two SCCs. The situation is sketched
in Figure 5. The nodes are states ofM (en is an entry andex is
an exit in the same component, whileb is a box), and the large
circles denote SCCs. We do not draw edges within the same SCC—
the dotted line fromen to ex indicates thatex is same-context
reachable fromen.

We will argue that all summary edges inH may be discovered
using a variant of depth-first graph search (DFS). To start with, let
us assume that the summary graphH is acyclic, and consider a call
(b, en) in it. First we handle the case when no path inH from en
contains a call. As a summary-edge always starts from a call,this
means that no such path contains a summary-edge either, and the
part ofH reachable fromen is not modified due to summary edge
discovery. Thus, the setHs(en) of statesv same-context reachable
(i.e., reachable via summary and local edges) fromen can be
computed by exploringH depth-first fromen. Further, because the
graph is acyclic, the same search can label each suchv with the set
Hs(v). This is done as follows:

• if v has no children, thenHs(v) = {v};

• if v has childrenu1, u2, . . . , um, then

Hs(v) =
⋃

i

Hs(ui).

1 A loop-free 2-PDA is one that has no infinite execution on any word. The
recognition problem for loop-free 2-PDAs reduces to reachability in acyclic
RSMs—i.e., RSMs whose configuration graphs are cycle-free.Obviously,
these are less general than bounded-stack RSMs.

en

ex

(b, en)

(b, ex)

call edge

summary edge

local edge

Figure 5. All-pairs reachability in bounded-stack RSMs

Once we have computed the setHs(en) of suchv-s that are
same-context reachable fromen, we can, consulting the transi-
tion relation ofM , determine all summary edges((b, en), (b, ex)).
Note that these are the only summary edges from(b, en) that can
ever be added toH . However, these summary edges may now be
explored viathe same depth-first traversal—we may view them
simply as edges explored after the call-edge toen due to the DFS
order. The same search can compute the setHs(u) for each new
stateu found to be reachable from the return(b, ex). Note that
descendants of(b, ex) may also be descendants ofen—for exam-
ple, a descendantx of en may be reachable from a different en-
try point en′ of Y (b), which may be “called” by a call reachable
from (b, ex). In other words, the search from(b, ex) may encounter
somecross-edges, thus needing to use some of theHs-sets com-
puted during the search fromen. Once theHs-sets foren and all
summary-children(b, ex) are computed, we can compute the set
Hs((b, en)). Since we are only interested in reachability via sum-
mary and local edges and a call has no local out-edges, this set is
the union of theHs-sets for the summary children.

Now suppose there are at mostp ≥ 1 call states in a path inH
from en. Let the state(b′, en′) be the first call reached fromen in
a depth-first exploration— because of the bounded-stack property,
no descendant ofen′ can reachen in H . Now, there can be at most
(p− 1) calls in a path fromen′, so that can inductively determine
the summary edges from(b′, en′), explore these edges, and label
every statev in the resultant tree by the setHs(v). It is easy to see
that this DFS can be “weaved” into the DFS fromen.

The above algorithm, however, will not work whenH has
cycles. This is because in a graph with cycles, a simple DFS cannot
construct the setsHs(v) for all statesv. This difficulty, however,
may be resolved if we use, instead of a plain DFS, a transitive
closure algorithm based on Tarjan’s algorithm to compute the SCCs
of a graph (Aho et al. 1974). Many such algorithms are known in
the literature (Purdom 1970; Eve and Kurki-Suonio 1977; Schmitz
1983). LetReach(v) denote the set of nodes reachable from a node
v in a graph. The first observation that these algorithms use isthat
for any two nodesv1 andv2 in the same SCC of a graph, we have
Reach(v1) = Reach(v2). Thus, it is sufficient to compute the set
Reach for a single representative node per SCC. The second main
idea is based on a property of Tarjan’s algorithm. To understand it,
we will have to define thecondensation grapĥG of a graphG:

• the nodes of̂G are the SCCs ofG;

• the edge set is the least set constructed by: “if, for nodesS1 and
S2 of Ĝ, G has nodesu ∈ S1, v ∈ S2 such that there is an edge
from u to v, thenĜ has an edge fromS1 to S2.”

Now, Tarjan’s algorithm, when running on a graphG, “piggy-
backs” a depth-first search of the graph and outputs the nodesof Ĝ
in a bottom-up topological order. This is possible because the con-
densation graph of any graph is acyclic. For example, running on
the graph in Figure 5 (let us assume that all the edges are known),
the algorithm will first output the SCC containingen, then the one
containing(b, ex), then the one containing(b, en), etc. We can, in
fact, view the algorithm as performing a DFS on the condensation
graph ofG. In the same way as when our input graph was acyclic,
we can now compute, for every nodeS in the condensation graph,
the set of nodesReach(S) reachable from that SCC, defined as:

Reach(S) =
⋃

u∈S

Reach(u).

For eachS, this set is known by the time the algorithm returns from
the first node inS to have been visited in the depth-first search.

Assuming that we have a transitive closure algorithm of the
above form, let us focus on bounded-stack RSMs again. Let us
also suppose that we are only interested in same-context reachabil-
ity. We apply the transitive closure algorithm to the graphH after
modifying it in the two following ways. First, we ensure thatthe
setsReach(u), for a stateu, only contain descendants ofu reach-
able via local and summary edges— this requires a trivial modi-
fication of the algorithm. To understand the second modification,
consider once again a call(b, en) in a summary graphH ; note that
the call edge((b, en), en) is an edge in the condensation graphĤ .
Thus, the setReach(Sen), whereSen is the SCC ofen, is known
by the time the transitive closure algorithm is done exploring this
edge. Now we can construct all summary edges from(b, en) and
add them as outgoing edgesfrom (b, en), viewing them, as in the
acyclic case, as normal edges appearing after the call-edgein the or-
der of exploration. The setReach(S(b,en)) can now be computed.

By the time the above algorithm terminates,Reach(Su) =
Hs(u) for each stateu— i.e., we have determined all-pairs same-
context reachability in the RSM. To determine all-pairs reachabil-
ity, we simply insert the call edges into the summary graph, and
compute its transitive closure. In fact, we can do better: with some
extra book-keeping, it is possible to compute reachabilityin the
same depth-first search used to compute same-context reachability
(i.e., summary edges).

Next we present an algorithm for graph transitive closure that,
in addition to being based on Tarjan’s algorithm, also uses fast sets
to achieve a subcubic complexity. Using the technique outlined
above, we modify it into an algorithm for bounded-stack RSM-
reachability ofO(n3/ log2 n) complexity.

4.1 Speeding up search-based transitive closure

The algorithm that we now present combines a Tarjan’s-algorithm-
based transitive closure algorithm (studied, for example,by Schmitz
(1983) or Purdom (1970)) with a fast-set-based speedup technique
used by Rytter (1983, 1985) to solve the recognition problemfor
a subclass of 2-PDAs. While subcubic algorithms for graph transi-
tive closure have been known for a long time, this is, so far aswe
know, the first algorithm that is based on graph traversal andyet
runs inO(n3/ log2 n) time. Both these features are necessary for
anO(n3/ log2 n)-time algorithm on bounded-stack RSMs.

As in our previous algorithms, we start with a baseline cubic-
time algorithm and speed it up using fast sets. This algorithm,
called BASELINE-CLOSURE and shown in Figure 6, is simply a
DFS-based transitive closure algorithm. Let us first see howit
detects strongly connected components in a graphG. The main

V ISIT(u)
1 addu to Visited
2 push(u, L)
3 low(u)← dfsnum(u)← height(L)
4 Reach(u)← ∅; rep(u)←⊥
5 Out(u)← ∅; Next(u) = { children ofu }
6 for v ∈ Next(u)
7 do if v /∈ Visited then V ISIT (v)
8 if v ∈ Done
9 then addv to Out(u)

10 else low(u)← min(low(u), low(v))
11 if low(u) = dfsnum(u)
12 then repeat
13 v ← pop(L)
14 addv to Done
15 addv to Reach(u)
16 Out(u)← Out(u) ∪Out(v)
17 rep(v)← u
18 until v = u
19 Reach(u)← Reach(u) ∪

⋃
v∈Out(u) Reach(rep(v))

BASELINE-CLOSURE()
1 Visited ← ∅; Done ← ∅
2 for each nodeu
3 do if u /∈ Visited then V ISIT (u)

Figure 6. Transitive closure of a directed graph

idea is that in any DFS tree ofG, the nodes belonging to a particular
SCC form a subtree. The nodeu0 in an SCCS that is discovered
first in a run of the algorithm is marked as therepresentativeof S;
for each nodev in S, rep(v) denotes the representative ofS (in
this caseu0). A global stackL supporting the usual push and pop
operations is maintained;height(L) gives the height of the stack at
any given time. As soon as we discover a node, we push it on this
stack—note that for any SCC, the representative is the first node to
be on this stack. For every nodeu, dfsnum(u) is the height of the
stack when it was discovered, andlow(u) equals, once the search
from u has returned, the minimumdfsnum-value of a node that a
descendant ofu in the DFS tree has an edge to. Now observe that
if low(u) = dfsnum(u) at the point when the search is about to
return from a nodeu, thenu is the representative of some SCC. We
maintain the invariant that all the elements above and inclusive of
u in the stack belong to the SCC ofu. Before returning fromu,
we pop all these nodes and output them as an SCC. Nodes in SCCs
already generated are stored in a setDone.

Now we shall see how to generate the set of nodes reachable
from a node ofG. Let S be an SCC ofG; we want to compute the
setReach(S) of nodes reachable fromS. Consider the condensa-
tion graphĜ of G, whereS is a node. IfS has no children in the
graph, thenReach(S) = S; if it has childrenS1, S2, . . . , Sk, then
Reach(S) =

⋃
i Reach(Si). Once this set is computed, we store it

in a tableReach indexed by the representatives of the SCCs ofG.
Of course, we compute this set as well as generate the SCCs in

one depth-first pass ofG. Recall that the SCCs ofG are generated
in a bottom-up topological order (the outputting of SCCs is done by
lines 12–19 of VISIT, the recursive depth-first traversal routine of
our algorithm). By the timeS is generated, the SCCs reachable
from it in Ĝ have all been generated, and the entries ofReach
corresponding to the representatives of these reachable SCCs have
been precisely computed. Then all we need to fill outReach(u0),
whereu0 is the representative ofS, is to track the edges out ofS
and take the union ofS and the entries ofReach corresponding to

the children ofS in Ĝ. Note that these outgoing edges could either
be edges in the DFS tree or DFS “cross edges.” They are tracked
using a tableOut indexed by nodes ofG—for anyu in S, Out(u)
contains the nodes outside ofS to which an edge fromu may lead.
At the end of the repeat-loop from line 13–18,Out(u0) contains all
nodes outsideS with an edge from insideS. Now line 19 computes
the set of nodes reachable fromu0.

As for the time complexity of this algorithm, note that for each
u, V ISIT(u) is called at most once. Every line other than 16 and 19
costs timeO(m + n) during a run of BASELINE-CLOSURE, and
since line 16 tries to add a node toOut(u) once for every edge out
of the SCC ofu in Ĝ, its total cost isO(m). Line 19 does a union
of two sets of nodes for each edge in̂G, so that its total cost is
O(mn). As for space complexity, the setsReach(u) can be stored
usingO(n2) space, a cost that subsumes the space requirements of
the other data structures. Then we have:

LEMMA 3. BASELINE-CLOSUREterminates on any graphG with
n nodes andm edges in timeO(mn). On termination, for every
nodeu of G, Reach(rep(u)) is the set of nodes reachable fromu.
The algorithm requiresO(n2) space.

We will now show a way to speed up the procedure BASELINE-
CLOSURE using a slight modification of Rytter’s (1983, 1985)
speedup for loop-free 2-PDAs. LetV be the set of all nodes of
G (we have|V | = n), p = ⌈log n/2⌉, andr = ⌈n/p⌉. We use
fast set representations of sets of nodesX ⊆ V —each such set is
represented as a sequencer words, each of lengthp. We will need
to convert a list representation ofX into a fast set representation
as above. It is easy to see that this can be done using a sort in
O(n log n) time.

/* speeds up the operation
Reach(u)←

⋃
v∈Out(u) Reach(rep(v)) */

let x1, . . . , xr be the words in the fast set forOut(u) in
SPEEDUP()
1 compute〈x1, . . . , xr〉
2 for 1 ≤ i ≤ r
3 do if xi = 0 continue
4 if Cache(i, xi) =⊥
5 then Cache(i, xi)← ∪v∈Set(i,xi)Reach(rep(v))
6 Reach(u)← Reach(u) ∪ Cache(i, xi)

Figure 7. The speedup routine

Now recall that the bottleneck of the baseline algorithm is
line 19 of the routine VISIT, which costsO(mn) over an entire
run of the algorithm. Now we show how to speed up this line.
First, let us implement BASELINE-CLOSURE such that entries
of the tableReach are stored as fast sets, and the setsOut(u)
are represented as lists. Now consider the procedure SPEEDUPin
Fig. 7, which is a way to speed up computation of the recurrence
Reach(u) ←

⋃
v∈Out(u) Reach(rep(v)). The idea is cache the

value (∪v∈XReach(rep(v))) exhaustively for all non-empty sets
X that are sufficiently small, and use this cache to compute the
value for larger setsOut(u). This is done using a tableCache (of
global scope) such that for each1 ≤ i ≤ r and for each word
w 6= 0 of lengthp, we have a table entryCache(i, w) containing
either a subset ofV , represented as a fast set, or a special “null”
value⊥ (note that the pair(i, w) uniquely identifies a subset ofV
of size at mostp—this set is denoted bySet(i, w)). Initially, every
entry ofCache equals⊥.

Let us now use the Assign-Union operation for fast sets (see
Section 2) to implement line 6 of SPEEDUP, and replace line 19 of
V ISIT by a call to SPEEDUP. To see that this leads to a speedup,

note thatCache has at mostr.2p = O(n3/2/ log n) entries.
Now, line 5 in SPEEDUPgets executed at most once for each cell
in Cache during a complete run of CLOSURE—i.e., O(r.2p) =
O(n3/2/ log n) times. Each time it is executed, it costsO(n)
time (asSet(i, xi) is of sizeO(log n) and as union of two en-
tries of Reach costsO(n/ log n) time), so that itstotal cost is
O(n5/2/ log n). Thus, the bottleneck is line 6. Let us compute
the total number of times this line is executed during a run of
closure. Since the total size of all theOut(u)’s during a run of
BASELINE-CLOSURE is bounded bym, the emptiness test in line
3 ensures that line 6 is executedO(m) times in total during a
run of the closure algorithm (this is the tighter bound when the
graph is sparse). The other obvious bound on the number of exe-
cutions of this line isO(r.n) (this captures the dense case). Each
time it is executed, it costs timeO(r). Thus, the total complexity
of the modified algorithm (let us call this algorithm CLOSURE) is
O(min{m.r, r.n.r})—i.e.,O(min{mn/ log n, n3/ log2 n}).

As for the space requirement of the algorithm, each fast set
stored in a cell of the tableCache costs spaceO(n). As Cache

hasO(n3/2/ log n) cells, the total cost of maintaining this table
is O(n5/2/ log n). The space costs of the other data structures,
including the table needed for fast sets operations if unit-cost word
operations are not available, is subsumed by this cost. Hence we
have:

THEOREM3. CLOSURE computes the transitive closure of a di-
rected graph withn nodes andm edges in

O(min{mn/ log n, n3/ log2 n})

time andO(n5/2/ log n) space.

4.2 Bounded-stack RSMs

Using the ideas discussed earlier in this section, the algorithm
CLOSURE can now be massaged into a reachability algorithm for
bounded-stack RSMs. Figure 8 shows pseudocode for a baseline
algorithm for same-context reachability in bounded-stackRSMs
obtained by modifying BASELINE-CLOSURE. The setsHs(u) in
the new algorithm correspond to the setsReach(u) in the transitive
closure algorithm. The main difference lies in lines 14–17,which
insert the summary edges into the graph. Also, as it is same-context
reachability that we are computing, a child is added to the set
Out(u) only if it is reached along a local or summary edge (the
“else” condition in line 17). A correctness argument may be given
following the discussion earlier in this section.

Adding an extra transitive closure step at the end of this algo-
rithm gives us an algorithm for reachability. With some extra book-
keeping, it is possible to evade this last step and compute reacha-
bility and same-context reachability in the same search—weomit
the details. The speedups discussed earlier in this sectionmay now
be applied. Let us call the resultant algorithm STACK-BOUNDED-
REACHABILITY . It is easy to see that its complexity is the same as
that of CLOSURE. The only extra overhead is that of inserting the
summary edges, and it is subsumed by the costs of the rest of the al-
gorithm. Thus, the algorithm STACK-BOUNDED-REACHABILITY

has time complexityO(min{mn/ log n, n3/ log2 n}), wherem
andn are the number of edges and nodes in the summary graph of
the RSM. The space complexity is as for CLOSURE. In general,m
is O(n2), so that:

THEOREM4. The algorithmSTACK-BOUNDED-REACHABILITY
computes all-pairs reachability in a bounded-stack RSM of sizen
in O(n3/ log2 n) time andO(n5/2/ log n) space.

We note that an algorithm as above cannot be obtained from
any of the existing subcubic algorithms for graph transitive closure.
All previously known O(n3/ log2 n)-time algorithms for graph

V ISIT(u)
1 addu to Visited
2 push(u, L)
3 low(u)← dfsnum(u)← height(L)
4 Hs(u)← ∅; rep(u)←⊥
5 Out(u)← ∅
6 if u is an internal state
7 then Next(u)← {v : u→ v}
8 else if u is a call(b, en)
9 then Next(u)← {en}

10 else Next(u)← ∅
11 for v ∈ Next(u)
12 do if v /∈ Visited then V ISIT (v)
13 if v ∈ Done
14 then if u = (b, en) is a call andv = en
15 then for exit statesex ∈ Hs(en)
16 do add(b, ex) to Next(u)
17 else addv to Out(u)
18 else low(u)← min(low(u), low(v))
19 if low(u) = dfsnum(u)
20 then repeat
21 v ← pop(L)
22 addv to Done
23 addv to Hs(u)
24 Out(u)← Out(u) ∪ Out(v)
25 rep(v)← u
26 until v = u
27 Hs(u)← Hs(u) ∪

⋃
v∈Out(u) Hs(rep(v))

BASELINE-SAME -CONTEXT-STACK-BOUNDED-REACHABILITY()
1 Visited ← ∅; Done ← ∅
2 for each stateu
3 do if u /∈ Visited then V ISIT (u)

Figure 8. Same-context reachability in bounded-stack RSMs

transitive closure use reductions to boolean matrix multiplication
and do not permit online edge addition even if, as is the case for
bounded-stack RSMs, these edges arise in a special way. While
Chan (2005) has observed that DFS-based transitive closuremay
be computed in timeO(mn/ log n) using fast sets, this complexity
does not suffice for our purposes.

5. Reachability in hierarchical state machines
As we saw, the reason why reachability in bounded-stack RSMs
is easier than general RSM-reachability is that summary edges in
the former case have a “depth-first” structure. For hierarchical state
machines, the structure of summary edges is restricted enough to
permit an algorithm with the same complexity as boolean matrix
multiplication.

Let us have as input a hierarchical state machineM with com-
ponentsM1, . . . , Mk, such that a call from the componentMi can
only lead to a componentMj for j > i. The summary graphH of
M may be partitioned intok subgraphsH1, . . . , Hk such that call-
edges only run from partitionsHi to partitionsHj , wherej > i.
As the componentMk does not call any other component, there are
no summary edges inHk.

To compute reachability inM , first compute the transitive clo-
sure ofHk. Next, for all entriesen and exitsex of Mk and all
boxesb with Y (b) = k, add summary edges((b, en), (b, ex)).
Now remove the call edges fromHk−1 and compute its transitive
closure and, once this is done, use the newly discovered reachabil-
ity relations to create new summary edges in subgraphsHj , where

j < k−1. Note that we do not need to process the graphHk again.
We proceed inductively, processing everyHi only once. Once the
transitive closure ofH1 is computed, we add all the call edges from
the differentH1’s and compute the transitive closure of the entire
graph. By Lemma 1, there is an edge fromv to v′ in the final clo-
sure iffv′ is reachable fromv.

As for complexity, letn be the total number of states inA, and
let ni be the number of states in the subgraphHi. Let BM (n) =
O(n2.376) be the time taken to multiply twon× n boolean matri-
ces. Since transitive closure of a finite relation may be reduced to
boolean matrix multiplication, the total cost due to transitive clo-
sure computation in the successive phases, as well as the final tran-
sitive closure, isΣiBM (ni) + BM (n) = O(BM (n)). The to-
tal cost involved in identifying and inserting the summary and call
edges isO(n2). AssumingBM (n) = ω(n2), we have:

THEOREM5. All-pairs reachability in hierarchical state machines
can be solved in timeO(BM (n)), whereBM (n) = O(n2.376) is
the time taken to multiply twon× n boolean matrices.

Of course, the above procedure is far from compelling—the cu-
bic, summarization-based reachability algorithm published in the
original reference on the analysis of these machines (Alur and Yan-
nakakis 1998) is going to outperform it in any reasonable applica-
tion. However, taken together with our other results, it highlights a
gradation in the structure of the summary graph and the complexity
of RSM-reachability as recursion in the input RSM is constrained.

6. Conclusion
In this paper, we have adapted a simple existing technique into
the first subcubic algorithms for RSM-reachability and CFL-
reachability, and identified a way to exploit constraints onre-
cursion during reachability analysis of RSMs. In summarization-
based analysis of general RSMs, summary edges can arise in
arbitrary orders, and all-pairs reachability can be determined in
time O(n3/ log n). For bounded-stack RSMs, summary edges
have a “depth-first” structure, and the problem can be solvedin
O(n3/ log2 n) time using a modification of a DFS-based transitive
closure algorithm. For hierarchical state machines, the problem is
essentially that of computing transitive closure of the components.

Given that RSM-reachability is a central algorithmic problem in
program analysis, the natural next step is to evaluate the practical
benefits of these contributions. Such an effort should remember that
real implementations of RSM-reachability-based program analyses
apply heuristics such as cycle elimination and node clustering,
and are often fine-tuned to the specific problem at hand. Thus,
instead of implementing our algorithms literally, the goalshould be
to explore combinations of techniques known to work in practice
with the high-level ideas used in this paper. As for algorithmic
directions, a natural question is whether this is the best wecan do.
A hard open question is whether all-pairs CFL-reachabilitycan be
reduced to boolean matrix multiplication. This would be especially
satisfactory as the former can be trivially seen to be as hardas
the latter. Yannakakis (1990) has noted that Valiant’s reduction of
context-free recognition to boolean matrix multiplication (Valiant
1975) can be applied directly to reduce CFL-reachability inacyclic
graphs to boolean matrix multiplication. However, there seem to be
basic difficulties in extending this method to general graphs.

Another set of questions involves stack-bounded RSMs and our
transitive closure. Given a program without infinite recursion, can
we automatically generate a stack-bounded abstraction that can be
analyzed faster than a general RSM abstraction? Can our transitive
closure algorithm have applications in other areas—for example,
databases? Recall that, being a search-based algorithm, itdoes not
require the input graph to be explicitly represented, and issuitable
for computing partial closure—i.e., computing the sets of nodes

reachable from some, rather than all, nodes. Algorithms with such
features have been studied with theoretical as well as practical
motivations— a new engineering question would be to see how
well the techniques of this paper combine with them.

Acknowledgements: The author thanks Rajeev Alur, Byron Cook,
Stephen Fink and Mihalis Yannakakis for valuable comments.An
anonymous referee pointed out that Rytter’s speedup could be ap-
plied directly to the classical CFL-reachability algorithm; we thank
him or her for this.

References
A. V. Aho, J. E. Hopcroft, and J. D. Ullman.The Design and Analysis of

Computer Algorithms. Addison-Wesley Series in Computer Science and
Information Processing. Addison-Wesley, 1974.

R. Alur and M. Yannakakis. Model checking of hierarchical state machines.
In 6th ACM Symposium on Foundations of Software Engineering, pages
175–188, 1998.

R. Alur, M. Benedikt, K. Etessami, P. Godefroid, T. Reps, andM. Yan-
nakakis. Analysis of recursive state machines.ACM Transactions on
Programming Languages and Systems, 27(4):786–818, 2005.

V. L. Arlazarov, E. A. Dinic, M. A. Kronrod, and I. A. Faradžev. On
economical construction of the transitive closure of an oriented graph.
Soviet Mathematics Doklady, 11:1209–1210, 1970. ISSN 0197–6788.

T. Ball and S. Rajamani. The SLAM toolkit. In13th International
Conference on Computer Aided Verification, pages 260–264, 2001.

A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown
automata: Applications to model checking. In8th International Confer-
ence on Concurrency Theory, LNCS 1243, pages 135–150, 1997.

T. M. Chan. All-pairs shortest paths with real weights ino(n3/ log n))
time. In 9th Workshop on Algorithms and Data Structures, pages 318–
324, 2005.

T. M. Chan. More algorithms for all-pairs shortest paths in weighted graphs.
In 39th ACM Symposium on Theory of Computing, pages 590–598, 2007.

J. Eve and R. Kurki-Suonio. On computing the transitive closure of a
relation. Acta Informatica, 8:303–314, 1977.

J.E. Hopcroft and J.D. Ullman.Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley, 1979.

S. Horwitz, T. W. Reps, and D. Binkley. Interprocedural slicing using de-
pendence graphs (with retrospective). InBest of Programming Language
Design and Implementation, pages 229–243, 1988.

S. Horwitz, T. Reps, and M. Sagiv. Demand interprocedural dataflow anal-
ysis. In3rd ACM Symposium on Foundations of Software Engineering,
pages 104–115, 1995.

D. Melski and T. W. Reps. Interconvertibility of a class of set constraints
and context-free-language reachability.Theoretical Computer Science,
248(1-2):29–98, 2000.

P. W. Purdom. A transitive closure algorithm.BIT, 10:76–94, 1970.

J. Rehof and M. Fähndrich. Type-base flow analysis: from polymorphic
subtyping to CFL-reachability. In28th ACM Symposium on Principles
of Programming Languages, pages 54–66, 2001.

T. Reps. Shape analysis as a generalized path problem. InACM Work-
shop on Partial Evaluation and Semantics-Based Program Manipula-
tion, pages 1–11, 1995.

T. Reps. Program analysis via graph reachability.Information and Software
Technology, 40(11-12):701–726, 1998.

T. Reps, S. Horwitz, and S. Sagiv. Precise interprocedural dataflow analysis
via graph reachability. In22nd ACM Symposium on Principles of
Programming Languages, pages 49–61, 1995.

T. W. Reps, S. Schwoon, and S. Jha. Weighted pushdown systemsand their
application to interprocedural dataflow analysis. In10th Static Analysis
Symposium, pages 189–213, 2003.

W. Rytter. Time complexity of loop-free two-way pushdown automata.
Information Processing Letters, 16(3):127–129, 1983.

W. Rytter. Fast recognition of pushdown automaton and context-free lan-
guages.Information and Control, 67(1-3):12–22, 1985.

L. Schmitz. An improved transitive closure algorithm.Computing, 30:
359–371, 1983.

M. Sharir and A. Pnueli. Two approaches to interprocedural dataflow
analysis.Program Flow Analysis: Theory and Applications, pages 189–
234, 1981.

M. Sridharan, D. Gopan, L. Shan, and R. Bodı́k. Demand-driven points-to
analysis for Java. In20th ACM Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications, pages 59–76, 2005.

L. G. Valiant. General context-free recognition in less than cubic time.
Journal of Computer and System Sciences, 10(2):308–315, 1975.

M. Yannakakis. Graph-theoretic methods in database theory. In 9th ACM
Symposium on Principles of Database Systems, pages 230–242, 1990.

