
Swarat Chaudhuri’s Research Statement
1. Motivation
Software plays an outsized role in the world that we live in, but with this stature come obligations. Given their impact on human
lives, software systems must be trustworthy and efficient. My 20-year old research career, in Programming Languages (PL),
Formal Methods (FM), and their interdisciplinary offshoots, has been grounded in the belief that algorithmic tools can help
realize these goals. Algorithms for program analysis can help us understand complex systems and induce trust in a system’s
behavior. Algorithms for program synthesis can simplify the discovery of complex, reliable, and efficient computations.

Over the years, I have made many foundational contributions to PL and FM. I have applied these results in a range of
domains, from automating scripting tasks (Feser et al. 2015) to concurrent programming (Surendran et al. 2014) to robotics
and control (Dantam et al. 2016; Wang et al. 2016). My recent research is primarily focused on exploring the interplay between
PL/FM and Machine Learning (ML).

ML has fundamentally transformed many areas of computing since the dawn of this century. I am part of a vanguard of
researchers who have shown that ML can also address longstanding challenges in PL/FM. Specifically, program analysis and
synthesis have traditionally required search through vast combinatorial spaces of programs and correctness proofs. Techniques
for learning to search and generate can lead to much faster solutions to these problems. Also, FM research has traditionally
required detailed formal models of programs and their environments. ML allows such models to be learned from data (gathered
through exploration or from pre-existing corpora), thus vastly expanding the charters of the fields.

On the other hand, ML is also an exciting application domain for PL/FM ideas. We are careening towards a world in
which all significant software systems will contain embedded ML modules. However, trust and efficiency remain essential
challenges in ML. The deep neural networks that form the state of the art of ML are black boxes that cannot be interpreted and
debugged like traditional software, and that can give incorrect results on out-of-distribution inputs. Because these models lack
well-defined specifications, aligning them with a user’s goals can be challenging, and composing them with human-engineered
software can raise the risk of undefined behavior. Because the models must learn even the most rudimentary knowledge from
data, their training often requires inordinate amounts of data and computation.

A central motivation of my research is to address the above challenges using PL/FM insights. High-level language
abstractions and symbolic reasoning have long allowed humans to comprehend, debug, verify, and optimize complex software
systems. I believe that these tools can also help us develop trustworthy and efficient ML. However, to realize the full potential
of these methods, one must go beyond the direct application of PL/FM ideas to ML and instead aim for a deeper synthesis of
logical and statistical techniques. My research seeks to create such a synthesis.

2. Neurosymbolic Programming
I concretely realize my vision to unify PL/FM and ML through research on neurosymbolic programming (NSP) (Chaudhuri
et al. 2021), a new area at the interface of deep learning and program synthesis in which I am a leader. The area has
attracted much interest in the recent past and is the subject of an NSF Expedition (http://neurosymbolic.org) of
which I am a part. One research thrust here is to design algorithms for program synthesis, and related tasks like proof and
specification synthesis, that combine logic-based techniques with deep learning. A second thrust is the representation of
learning-enabled systems as neurosymbolic programs that blend together neural modules and traditional symbolic code. Under
such a formulation, learning becomes a program synthesis problem: “Find a program, expressed in a suitable domain-specific
language (DSL), that leads to an optimal value of a data-driven quantitative objective and (in some versions of the problem)
also satisfies a set of additional syntactic and semantic requirements.”

I am excited about this area both as a PL/FM researcher and as a machine learning enthusiast. On the one hand, NSP may
hold keys to addressing many of the trust- and efficiency-related concerns about contemporary machine learning. For example,
their symbolic components make neurosymbolic programs potentially more interpretable, and easier to analyze, than neural
networks. Also, NSP models can make use of prior knowledge specified within a DSL and constructed compositionally using
modular abstractions, making learning more data-efficient. On the other hand, NSP promises new lines of attack on long-open
PL/FM challenges and also opens up entirely new application spaces to PL/FM techniques.

Now I sketch some of my results in this area, categorized by the application domains that they address.

Programming and Reasoning Systems. The traditional objective of PL/FM research is to build tools that improve the
productivity of professional programmers. This goal continues to motivate my research on NSP. However, while traditional
PL/FM approaches depend on detailed formal specifications, my work tends to allow these specifications to be ambiguous and
incomplete. At the same time, unlike the purely statistical approaches that are now in vogue in ML-for-code, my methods treat
programs as semantic artifacts and seek to satisfy formal specifications whenever they are available.
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For example, in 2018, we presented a framework, called Bayou (Murali et al. 2018), for generating idiomatic Java code
given the target code’s context and some text describing the code. The specification here is incomplete and ambiguous, and
we used a neural network to predict the target code’s structure given this specification. At the same time, unlike subsequent,
purely neural approaches like OpenAI’s Codex, Bayou required the generated code to be compilable and type-safe and used a
symbolic method to ensure this requirement. In followup work (Mukherjee et al. 2021), we gave a different approach, based
on a combination of symbolic attribute grammars and neural models of code, to this problem. We showed that this approach
outperforms state-of-the-art neural models (transformers) at longform code generation, both in terms of generating code free
of semantic errors, and in terms of syntactically matching a ground truth. I am currently helping a team at Google X deploy
some of these ideas in a real-world product.

Another direction (Murali et al. 2017) is specification synthesis. Here, we view a specification as a norm that programs follow
while executing, and learn a model of such norms using a combination of static analysis and deep learning. In downstream
correctness checking tasks, we estimate a statistical distance between a program’s behavior and the behavior that the model
expects from the program. A high distance suggests that the program is anomalous and likely-buggy.

We have also been developing neurosymbolic approaches to formal reasoning tasks like theorem-proving and expression
simplification. While these tasks are traditionally solved using rule-based search, recent work has used deep learning to solve
them. Our methods closely couple the two threads of work. The results, while not published yet, are promising.

Finally, we have been working on methods for reasoning over natural language text. In Bostrom et al. (2021), we give a way
to use language models and data generated from symbolic templates to perform logical inferences over broad-domain natural
language. In more recent work (Bostrom et al. 2022), we use a neural-guided search to compose such inference steps into
“proofs” representing complex chains of reasoning.

Autonomous Agents. I have also worked extensively on applications of NSP in learning-enabled autonomous agents, e.g.,
robots and system infrastructures augmented with learning modules. Safety, interpretability, and sample-efficiency are key
considerations in these systems. My work has sought to achieve these criteria using neurosymbolic programming.

Specifically, my collaborators and I introduced the programmatic reinforcement learning approach, in which policies for
reinforcement learning (RL) agents are learned through program synthesis (Verma et al. 2018, 2019; Cheng et al. 2019).
For context, an RL policy maps environment states to agent actions, and mainstream RL uses neural networks as policy
representations. By contrast, our method represents policies as programmatic compositions of classic control modules (such
as PID controllers) and neural networks and synthesizes these programs using neurosymbolic methods. We showed that such
programmatic policies can perform complex tasks while having compact, human-interpretable structure, and that they can use
the prior knowledge encapsulated in their symbolic modules to generalize more effectively to new environments.

Another research thrust studies the formal verification of neural and neurosymbolic models, and learning algorithms that
invoke verifiers during training. In particular, we have developed novel methods for analyzing the safety and robustness of
neural networks (Gehr et al. 2018; Anderson et al. 2019). We gave the first RL algorithm (Anderson et al. 2020) that can
leverage modern policy gradient methods for learning, while also ensuring provable safety during exploration. Recently, we
gave the first method (Yang and Chaudhuri 2022) to learn provably safe, high-performance parameters for programs that
compose neural networks with symbolic, human-written code. Through ongoing collaborations, we are working to deploy
these methods in real-world robots and learning-enhanced system software (e.g., neural congestion controllers).

Finally, we have been exploring ways to exploit the compositionality of high-level programming languages to transfer
knowledge across learning settings. For example, in Valkov et al. (2018), we consider an approach to lifelong learning in which
agents use higher-order functional combinators to compose and finetune neural functions from an evolving “library”. We show
that this modular approach improves the data-efficiency of learning. In ongoing work, we are exploring these ideas to transfer
skills from simulated to real-world environments.

Data-Driven Discovery. Another objective is to accelerate data-driven discovery in the natural sciences and healthcare. ML
has found many recent applications in these domains. However, interpretability and data-efficiency are often key considerations
here, making blackbox deep learning an imperfect fit. My work has proposed NSP as an alternative approach that allows
interpretable, data-efficient learning modulo strong forms of prior knowledge.

In particular, I have explored program synthesis approaches in behavior analysis (e.g., analysis of videos of lab animals).
Shah et al. (2020) studies the discovery of programs that label behaviors with actions at various points. Zhan et al. (2021)
presents neurosymbolic methods for interpretable clustering, and Tjandrasuwita et al. (2021) uses program synthesis to explain
differences between different human annotators of laboratory data. We are currently working to extend these ideas to the
synthesis of causal programmatic models and program synthesis from perceptual data.

A different line of work, with collaborators in cell biology, uses program synthesis to discover mechanistic models of
RNA splicing. Yet another collaboration, with precision medicine researchers, is using program synthesis to learn causal,
interpretable models of decision-making that doctors in ICUs can follow.
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Algorithmic Themes
The success of the NSP agenda critically depends on effective methods for program synthesis. While PL/FM researchers have
worked on program synthesis for a long time, the landscape of the area has rapidly changed over the last few years, as new
approaches that synergistically combine symbolic and statistical techniques have emerged. My work has contributed several
key algorithmic ideas to this space. Now I summarize a few of these ideas.

Sketch Learning. Sketch learning (Murali et al. 2018) was one of my early algorithmic contributions to NSP. The objective here
is to learn, from a given code corpus, a generative model of programs that are constrained to satisfy a set of basic invariants (e.g.,
type-safety). Such a goal is hard to meet using neural models trained directly on program syntax. By contrast, our approach
trained a deep generative model over symbolically-constructed sketches of programs, and concretized generated abstractions
into programs using an incremental symbolic synthesis method. In doing so, it benefited from the excellence of PL/FM methods
at getting low-level details right as well as the ability of neural models to recognize high-level patterns in data. Since our paper,
sketch learning has come to be used in many other settings.

Symbolically Supervised Neural Models. We have also been exploring program synthesis techniques in which an end-to-end
neural model (for example, a transformer) is used to generate code, but symbolic methods are used to expose rich semantic
knowledge to the model. Specifically, in our recent work on neurosymbolic attribute grammars (Mukherjee et al. 2021), a
neural model of code is allowed to query a program analyzer (an attribute grammar) to discover properties of the code that
it has generated. The decision of what to generate next is conditioned on these properties. We found this additional semantic
information to significantly enhance the neural model’s capabilities. In current work, we are exploring versions of this approach
involving richer forms of semantic information (for example, equivalences between terms).

Neural Relaxations. One of my key achievements in NSP is the invention of synthesis methods that use neural networks as
relaxations of symbolic programs. The observation here is that neural networks and symbolic programs are just two different
representations of functions. However, neural networks are more expressive, and their differentiability allows efficient gradient-
based learning. Hence, a neural network can be used as an easily-learned approximation of a program.

Our first method along these lines (Verma et al. 2018) followed a simple two-step process: learn a neural network that is
a good match for a task specification, then distill this network into a symbolic program with similar behavior. A later paper
(Verma et al. 2019) proposed an iterative method that repeatedly: (i) relaxes a symbolic program into a neurosymbolic program
by adding a neural component; (ii) updates this neurosymbolic program using approximate gradients; and (iii) distills the
updated neurosymbolic program into a new symbolic program. We showed that this process can be framed as a form of mirror
descent and gave learning-theoretic analysis and empirical results justifying its value.

A subsequent paper (Shah et al. 2020) uses neural relaxations to direct a top-down heuristic search over programs. The
method relaxes the discrete set of completions for each partial program encountered during the search into a parameterized
neural network. We showed that the optimal loss for this neural network can be used as an admissible heuristic for the higher-
level search and found that such learned heuristics significantly accelerate the search process over programs.

Integrating Learning and Verification. Methods that closely couple formal verification and learning form a key dimension
of my research. The objective here is to learn neurosymbolic programs (and as special cases, neural networks and symbolic
programs) that are guaranteed to satisfy a set of formal correctness constraints. A possible approach to this task is to learn a
program first and then to verify it. However, there is no reason why a learner that has not encountered a verification goal during
training should converge to a verifiable program. Consequently, my work follows the different strategy of allowing the learning
algorithm to query a verifier during training.

Scalability is a key challenge here, as neural network verification is computationally expensive. We have given several new
approaches to this challenge. For example, in Anderson et al. (2020), we gave a form of RL in which policies are represented
as neurosymbolic programs and are formally verified during each training step. The neural components of these programs are
learned using gradients. However, the verification steps abstract the neurosymbolic programs into purely symbolic programs,
avoiding explicit neural network verification. In Yang and Chaudhuri (2022), verified parameter learning is reduced to gradient-
based optimization. This is done through an approximation that only performs safety analysis for a sampled set of program paths
at each training step, uses lossy abstract interpretation to derive a quantitative safety signal for each path, and stochastically
estimates the gradient of the aggregate safety signal across paths.

Neurosymbolic Probabilistic Programming. Finally, we have been working on ways to connect neurosymbolic and probabilistic
programming. Our main contribution here is a framework in which neurosymbolic programs are used to encode probabilistic
and causal models. Algorithmic problems here include approximating the posterior of a programmatically represented distri-
bution given a set of observations (expressed in a suitable logic), and discovering the causal structure of a model. We approach
these problems using a mix of contemporary causal and statistical techniques and symbolic methods for searching over program
structures and propagating symbolic information through programs.
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3. Other Work
I worked for many years on classical formal methods before getting interested in the intersection of PL/FM and ML. Below, I
summarize some of the highlights of my post-Ph.D. research on these themes. I continue to pursue some of these topics — in
particular, symbolic program synthesis — in my current work. Work on some of the other topics, e.g., smooth interpretation or
robustness analysis of programs, directly influenced my work on PL/FM-meet-ML.

Symbolic Program Synthesis. Over the years, I have worked on a wide variety of symbolic approaches to program synthesis.
For example, in Beyene et al. (2014), we gave a constraint-based approach to the automatic synthesis of correct-by-construction
reactive controllers. While the synthesis of finite-state reactive controllers has been well-studied since the 1980s, we were the
first to study the automatic synthesis of infinite-state controllers. In Feser et al. (2015), we presented λ2, an approach to the
type- and example-directed synthesis of higher-order functional programs that has come to be broadly influential. In recent
work (Miltner et al. 2022), we gave the first method for performing bottom-up synthesis (an established strategy in the program
synthesis literature) of recursive programs.

I have pursued applications of these methods in a wide range of domains. Of these, the work on program synthesis for
robotics deserves a specific mention. The goal here was to synthesize robot motions from symbolic models of the robot and its
environment and formal correctness properties like reachability and safety. The main challenge was to simultaneously reason
about two different levels of abstraction: a discrete task level that is concerned with the high-level goals of the robot, and a
continuous motion level that is concerned with navigating and manipulating a physical space. We approached this challenge
using a series of algorithms (Dantam et al. 2016; Nedunuri et al. 2014; Wang et al. 2016, 2018) that combined formal techniques
for task-level planning and geometric algorithms for lower-level motion planning.

Smooth Interpretation and Smoothed Proof Search I was one of the first researchers to use continuous optimization tech-
niques in program synthesis. Years before “differentiable programming” became a mainstream term in computer science, we
proposed smooth interpretation (Chaudhuri and Solar-Lezama 2010, 2011, 2012), a method that systematically approximates
programs by smooth mathematical functions, then finds optimal parameters for these programs using numerical optimization
techniques. A subsequent paper (Chaudhuri et al. 2014a) proposed smoothed proof search, a method for discovering optimal
program parameters that are also provably safe. This work introduced a notion of smooth parameterized relaxations of provers
of program correctness (specifically, abstract interpreters). Program synthesis was then cast as a problem of optimizing pa-
rameters of these relaxations. Since this work, differentiable abstract interpretation has become mainstream as an approach to
adversarially robust ML, and our recent work on verified neurosymbolic learning (Yang and Chaudhuri 2022) was inspired by
this method.

Robustness Analysis of Programs Many researchers, myself included, have recently studied methods for verifying ML
models to be robust to adversarially perturbed inputs (Gehr et al. 2018; Anderson et al. 2019). Years before these results, I
was studying formal methods for verifying the robustness of programs. In Chaudhuri et al. (2010), we proposed a definition of
robustness in terms of mathematical continuity and gave an algorithm for verifying that a program is robust in this sense. A
followup paper (Chaudhuri et al. 2011) defined robustness in terms of Lipschitz-continuity and gave a method for computing
provable bounds on the Lipschitz constant of a program. Our subsequent work explored several other robustness properties,
adapting definitions for continuous dynamical systems and geometric algorithms (Samanta et al. 2013a,b; Chaudhuri et al.
2014b). The algorithmic ideas in these papers drew on tools from a varierty of fields, including automata theory, symbolic
program verification, and numerical error analysis.

4. Conclusion
Over the last two decades, innovations in machine learning have hit computer science with the force of a tsunami. The power
of these ideas is beginning to be felt in the areas of PL and FM as well. I find these developments to be exciting for two reasons.
First, I believe that ML holds keys to solving two of the greatest impediments to the adoption of FM: the need for detailed
specifications and the complexity of searching for programs and proofs. Second, I believe that the problems that modern ML
has with trust, safety, and efficiency cannot be wished away. Principled abstraction and reasoning techniques, developed by
PL/FM researchers through decades of painstaking work, can play a critical role in solving these challenges.

In particular, I believe that neurosymbolic programming is a natural way to bring ML and PL/FM ideas together in a way
that enables both to live up to their potential. I am also excited about the technical problems in this nascent field, in particular,
the way they straddle the grand traditions of logic and statistics. Over my two and a half years at UT Austin, I have built up a
large lab that is almost entirely focused on this area. I am very proud of the work that the students and postdocs in the lab are
doing, and I expect that we will produce many high-impact results in the years to come.
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