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Abstract

We present Concurrent Assemblies , an abstract model for modeling shared mem-
ory parallel programs. In particular Concurrent Assemblies is targeted to irregular
parallel applications such as those manipulating mutable pointer-based data struc-
tures. Typically in these applications, there is no a priori bound on the available
parallelism.

The Concurrent Assemblies abstract execution model addresses dynamism and
locality through the unifying abstraction of an concurrent assembly: a local region
in a shared data structure equipped with a short-lived, speculative thread of con-
trol. The thread of control in an assembly can only access objects within the
assembly. While objects can migrate from assembly to assembly, such migration
is local—i.e., objects only move from one assembly to a neighboring one—and
does not lead to aliasing. Programming primitives include a merge operation, by
which an assembly merges with an adjacent assembly, and a split operation, which
splits an assembly into smaller ones. Our abstractions are race-free and inherently
data-centric.

In addition to the formal definition of the Concurrent Assemblies abstract
model, we show the usefulness of such an abstract model by presenting two dif-
ferent programming languages that can be modeled as instances of the Concur-
rent Assemblies abstract model. The first one is JChorus, a high-level parallel
programming language built on top of the sequential subset of Java, suitable for
irregular, heap-manipulating applications like mesh refinement and epidemic sim-
ulations. One goal of JChorus is to express the dynamic and instance-dependent
patterns of memory access that are common in typical irregular applications. Its
other focus is locality of effects: the property that in many of the same applica-
tions, typical imperative commands only affect small, local regions in the shared
heap.

The second is Habanero-Chorus, a parallel subset of the Habanero-Java
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programming language. Here concurrency is expressed as asynchronous software
transactions.

We present implementation of JChorus and Habanero-Chorus as well as
report on the performance numbers.
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Chapter 1
Introduction

In his widely popular 1987 article [1], Fred Brooks states that there is no sil-
ver bullet that will bring even one order of magnitude increase in productivity
nor simplicity in building software systems in one decade. Building software, he
states, involves essential tasks, those inherently related to the creation of the ab-
stract software entity and accidental tasks, those related to its representation in
programming languages. The widespread adoption of multicore machines and the
need to build systems that perform efficiently on these architectures has increased
the complexity of accidental tasks.

This new multicore world has brought to the foreground the need for new pro-
gramming models to build systems that perform efficiently on these platforms.
The most popular programming models for concurrency—message passing and
shared-memory with locks - provide abstractions that are too low-level, complex
or error prone, and do not scale well with software complexity. Higher level ab-
stractions, such as software transactions suffer in performance and scalability in
high contention scenarios. For some applications there has been a lot of progress;
algorithms that perform computations on regular data structures, such as numer-
ical computations on matrices, are normally expressed in traditional sequential
programming languages and parallelizing compilers take care of the rest by static
parallelization[2, 3, 4, 5, 6]. However parallelizing the most general class of al-
gorithms, i.e. algorithms performing computations on data structures such as
mutable trees or graphs, remains for the most part an art. In this class of algo-
rithms, which we will call irregular, there is no apriori knowledge that allows to
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while ∃t. t is a bad triangle in mesh
new_point := center of t’s circumcircle;
cavity := set of triangles whose circumcircles include new_point;
retriangulate cavity

Figure 1.1. Ruppert’s Delaunay mesh refinement algorithm

statically partition the data to perform the computations in parallel.
Although much attention has been given to parallelizing regular algorithms,

parallelization of irregular applications remains an unsolved problem. In this work
we will provide an alternative abstraction that is suited for parallelizing implemen-
tations of irregular applications.

Consider the Delaunay mesh refinement problem (DMR for short), a classic
example of an irregular parallel application. Suppose we are given a set of points
P in two dimensional space and a triangle mesh M that covers all points P .
Additionally the mesh M satisfies the Delaunay property, i.e. no point in P falls
in a circumcirle of a triangle in M . Our goal is to produce a new triangle mesh
on a set of points P ′ that includes P that also satisfies the Delaunay property and
additionally no triangle has an angle less than some quality value q (tipically q is
less than 25◦). We will call triangles that do not satisfy the quality constrating
bad quality triangles or simply bad triangles.

We will consider the following algorithm proposed by J. Ruppert [7] whose
pseudocode is show in figure 1.1. The key idea to rid the mesh of bad quality
triangles, is that one can perform local operations around each bad quality triangle.
Figure 1.2 illustrates the transformation that is applied to a neighborhood of a bad
quality triangle: (a) a bad quality triangle is chosen, (b) the center of its circumcirle
will added to the mesh, (c) all the triangles that invalidate the Delaunay property
will be called a cavity, (d) the triangles in the cavity will be disposed, and finally
(e) new triangles will be created to include the new mesh point while satisfying
the Delaunay Property. Note that at the end of a retriangulation new bad quality
triangles might be created. The process of applying this transformation iteratively
to bad quality triangles is guaranteed to terminate.

Clearly the above algorithm can be embarrassingly parallel. One could choose
any set of non-overlapping neighborhoods and apply the transformation to those
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(a) (b) (c)

(d) (e)

Figure 1.2. A retriangulation

neighborhoods in parallel. However there is no guarantee that cavities will not
encompass a large part of the mesh, hence the amount of parallelism is highly data
dependent. Moreover the number of actual cavities that can be retriangulated in
parallel is completely data dependent.

Concurrent Assemblies is a parallel exucution model targeting problems like
the above. Concurrent Assemblies offers a view of concurrency that is neither as
global as Java multithreading, nor as static as traditional data partitioning, nor
based on low-level message-passing like the Actor model. The key abstraction here
is a concurrent assembly: a dynamically defined local region in the heap equipped
with a short-lived thread of control.

At any point in the execution, the assemblies in the system form a disjoint
partitioning of the heap. Typically, they are also fine-grained—in particular, an
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assembly is allowed to consist of just a single object. Thus, like the Actor model,
Concurrent Assemblies permits massive, object-level parallelism. Of course, as-
semblies are just abstractions—in any real implementation, large numbers of them
would be mapped to a single hardware thread.

An assembly can perform three kinds of actions:

• It can read and write objects within itself. Notably, it cannot access ob-
jects within any other assembly, which means objects within assemblies are
isolated.

• It can merge with an adjacent assembly, “becoming” a bigger assembly. The
thread of control in the resulting assembly is a combination contributed by
the two assemblies involved in the merge. (see Figure 1.3 (a))

• It can split into a collection of smaller (disjoint) assemblies, each possessing
a new thread of control. (see Figure 1.3 (b))

All concurrency in our model is captured with these primitives. The number
of assemblies is a proxy for the granularity of concurrency that the application
permits—the greater this number, the greater the exploitable parallelism. Assem-
blies are of course not required to be bounded; in the worst case, they encompass
the whole heap. Merges allow declarative and local coarsening of the granularity
of parallelism in the heap, while splits let parallelism be locally refined. One aspect
of our model is that there is no global ordering between merges and splits—e.g.,
merges between distinct pairs of assemblies can always happen in parallel.

Consider Delaunay mesh refinement once again. In our approach, each triangle
in the initial mesh is an assembly. If a triangle discovers that it is bad, it forms
a cavity (a bigger assembly) via repeated merges with its neighbors. The cavity
retriangulates itself via a private update, then splits into the new triangles (each a
smaller assembly). The expressed parallelism is at the finest granularity permitted
by the problem instance: all triangles and cavities in the heap work in parallel,
and atomicity of retriangulation is guaranteed because the data in an assembly is
isolated. Thus, it captures the pattern “Own a local region, update the region,
release the region,” by rephrasing it as:
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“Dynamically form an assembly by repeated merges, update the assem-
bly, split the assembly.”

Note that in this scenario the merged assembly does not contribute to the re-
sulting assembly thread of control, resulting in a speculative execution, i.e. a cavity
might be in the process of being formed by successive merge operations with its
neighbors only to be merged into an adjacent cavity, its thread of control discarded.

While in the previous example merge operations occur before the merged as-
sembly modifies its heap, in general the merge operations allow for rollbacks to be
performed before the merge actually occurs.

Note that Concurrent Assemblies can be embedded in a high-level language
in many ways. In this dissertation we present two such approaches. The first,
JChorus [8], is an approach where the high-level language concepts are almost
directly mapped into Concurrent Assemblies , allowing the programmer to express
programs using a subset of the Concurrent Assemblies semantics. Secondly we
embed Concurrent Assemblies into an existing parallel programming language with
a transactional construct, Habanero-Chorus [9]. Here assemblies are typified
with isolated asynchronous tasks. Note that Concurrent Assemblies can be seen
as an implementation mechanism for software transactions.

Concurrent Assemblies is an abstract execution model in which higher-level
programming languages can be mapped. This execution model offers a level of
abstraction that is higher that shared memory with fine grained locking but lower
that software transactional memory.

In this work we develop two such mappings.
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Figure 1.3. Concurrent Assemblies primitives

1.1 Contributions and Organization

Our concrete contributions are the following:

• We introduce and formalize the abstract Concurrent Assemblies model, a
model suitable to express highly parallel algorithms that operate on irregular
data structures.

• We present JChorus, a programming language that embeds our model of
concurrency into the sequential subset of Java; and Habanero-Chorus, a
programming language whose main abstraction is that of an asynchronous
isolated task.

• We demonstrate the utility of JChorus and Habanero-Chorus in pro-
gramming real-life applications via several case studies. In addition to mesh
refinement, we consider the problems of Barnes-Hut n-body simulation [10],
“Focused community” discovery in a social network [11, 12], an epidemio-
logical simulation problem [13], and an algorithm for computing minimum
spanning trees [14].

• We present a prototype compiler and runtime system for JChorus that uses
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a many-to-one mapping of assemblies to low-level threads. The implemen-
tation exploits locality of heap operations, uses Tarjan’s Union-Find data
structure to maintain assemblies and a token-ring-based strategy to ensure
deadlock-freedom, and performs an elementary form of load-balancing.

• We present a prototype compiler and runtime system for Habanero-Chorus,
built on the existing infrastructure of Habanero Java, leveraging many of the
aspects in the JChorus runtime.

• We show that these programming languages satisfy certain properties such
as data race freedom and deadlock freedom by a principled mapping into the
Concurrent Assemblies abstract model.

This dissertation is organized as follows. In Chapter 2 we present and for-
malize the Concurrent Assemblies model. In Chapter 3 we present JChorus, its
formalization, its implementation, case studies and performance evaluation. In
Chapter 4 we present Habanero-Chorus, its formalization, its implementation
and performance evaluation. In Chapter 5 we present the related work. Lastly, in
Chapter 6 we present our conclusions and future work.



Chapter 2
The Concurrent Assemblies

Execution Model

Now we present the Concurrent Assemblies execution model.

2.1 Key Features of Concurrent Assemblies

Now we outline the basic notions of Concurrent Assemblies .

2.1.1 Heaps

The central structure in the Concurrent Assemblies execution model is the shared-
memory heap, which maintains the state of all shared data accessed by a parallel
program. We abstractly view a heap as a directed graph whose nodes are objects
and edges are pointers. Pointers here are labeled with field names. A region in a
heap G is a graph consisting of a subset of the nodes of G, and all edges of G that
connect nodes in this subset.

For example, in Figure 2.1, u1, u2, u3, and v are objects, there is a pointer from
u2 to v labeled by the field name f, and each shaded circle is a region. Or consider
Delaunay mesh refinement. The mesh here can be modeled as a heap whose objects
are triangles and whose pointers connect triangles that are neighbors in the mesh.
Each cavity is a region in the heap.



9

! 

u
2

! 

v
f 

! 

u
1

! 

u
3

Figure 2.1. A heap

2.1.2 Concurrent Assemblies

A concurrent assembly in G is a region of G equipped with a set of local variables
that map to objects in G and a sequential thread of control. The typical execution
scenario has numerous assemblies executing concurrently. It is required that at
each point in an execution, these assemblies form a disjoint partitioning of the
heap—in other words, every object in the heap belongs to (the region of) an
assembly, and no object belongs to two distinct assemblies.

While an assembly can update the heap, it embodies isolation: it has exclusive
ownership of its region and can neither read nor write objects that fall outside it.
This means that imperative effects are local: a heap modification by one assembly
does not affect the data read by another. An assembly is allowed to merge with
adjacent assemblies and can also split into a set of smaller assemblies. In typical
scenarios, it is short-lived and exists to achieve a specific, local task—e.g., the
retriangulation of a single cavity in Delaunay mesh refinement.

Each assembly here is equipped with a thread of control in the form of a program
S and some local variables that are referenced by the program S. This set of local
variables u, v, . . . are used to refer to objects ( within or outside their regions.
Objects can also be referenced using field expressions in the usual way: if the
variable u refers to the object u and u has an f-labeled edge to v, then the name
u.f refers to v. In order to evaluate or assign an expression of the form u.f, u must
refer to an object in the assembly region.

The active behavior of an assembly is defined by its program S. Concurrent as-
semblies have complete control of when interactions between them can occur. An
assembly can only be merged if it is executing a merge instruction. Because of this
fact, freedom of data races is guaranteed by the isolated nature of local heap up-
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dates. However, freedom of deadlocks can not be guaranteed for general programs
in this execution model. In the sequel we will show that by doing a principled
mapping we can guarantee deadlock freedom for the higher level programming
languages that are mapped into Concurrent Assemblies.

Merge and merge are synchronization operations—in fact, they are our only
synchronization operations. Figures 2.2-(a) and 2.2-(c) show the states of a parallel
program before and after the assembly i1 merges with i2. Note that merges locally
coarsen the granularity of parallelism in the heap. When assembly i1 merges with
assembly i2, these two assemblies are replaced by assembly i3 whose region of the
heap consists of the union for the regions of i1 and i2. The thread of control of this
new assembly i3 is determined by the original assemblies i1 and i2 according to a
precise semantics defined in the sequel. The merge operation provides an option
for rollback of the actions of either or both assemblies to some predefined previous
state.

As for updates, they permit an assembly to imperatively modify its region—
any expression whose evaluation requires accesses outside H returns an error value
error. An update can also split an assembly into smaller ones—e.g., into assem-
blies containing one object each (Figures 2.2-(a) and 2.2-(b) show before-and-after
scenarios for this operation). Observe that the split locally refines the parallelism
in the system.

Importantly, merges and splits are not globally ordered: a merge between as-
semblies i1 and i2 can proceed in parallel with a merge between j1 and j2 (where
j1 and j2 are distinct from i1 and i2), or with a split of j1. Also, a modification
within i1 can run parallel to every action outside of i1.

Finally, note that our object model does not allow for aliasing. At any time,
an object belongs to only one assembly (we do make an exception for read-only
data in JChorus—see Section 3). While an assembly can have a reference to an
object outside its region, it cannot use this reference for reading or writing.

At any point in the execution, the assemblies in the system form a disjoint
partitioning of the heap. They can be as fine-grained as needed—in particular,
an assembly is allowed to consist of just a single object. Thus, like the Actor
model, the Concurrent Assemblies execution model permits massive, object-level
parallelism. Of course, assemblies are high level abstraction—in any real imple-
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Figure 2.2. Merging and splitting

mentation, large numbers of them would be mapped to a single hardware thread.
All concurrency in our model is captured with these primitives. The number

of assemblies is a proxy for the granularity of concurrency that the application
permits—the greater this number, the greater the exploitable parallelism. Assem-
blies are of course not required to be bounded; in the worst case, they encompass
the whole heap.

2.2 Formal Model

In this section we define the formal syntax and semantics for the Concurrent As-
semblies execution model.
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2.2.1 Syntax

Stmt ::= v := u | v := u.f | v.f := u | v := new | v.f := ε |
Stmt ; Stmt | Stmt + Stmt | BExp?Stmt |
split(τ, Stmt) |
merge(var, τ, Stmt) | merger(var, τ, Stmt) |
merge(Stmt) | merger(Stmt) |
commit

where v, u ∈ Var , f ∈ F , τ ∈ T a finite set of types and BExp is a boolean
expression from some set of suitable operators.

Figure 2.3. Core Syntax

Programs in the Concurrent Assemblies execution model are written according
to the syntax presented in Figure 2.3. The first seven types of statements involve
local graph updates and program composition operators:

v = u copies the reference in variable u to variable v (the object referred by
u does not need to belong to the assembly region).

v = u.f copies the reference in field u.f to variable v (the object referred
by u.f does not need to belong to the assembly region, however the object
referred by u does).

v.f = u creates or modifies the f-edge of the node referred by v to point to
the node referred by u.

v.f = new creates a new node and creates or modifies the f-edge of the node
referred by v.

v.f = ε eliminates the f-edge of the node referred by v if it existed.

Stmt1 ; Stmt2 is the standard sequential composition.

Stmt1 + Stmt2 is the committed choice operator. For a nondeterministic
choice of Stmt1 (resp. Stmt2) to be made, it is required that Stmt1 (resp.
Stmt2) does not get immediately stuck.

BExp?Stmt is the conditional operator, where Stmt is only executed if BExp
evaluates to true in the present state.
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The next three types of statement increase or reduce the number of concurrent
assemblies executing:

split(Stmt) ends the current assembly and creates one assembly for each
heap node within the assembly region with Stmt as its program..

merge(v, τ, Stmt1) and merge(Stmt2) are the merge request operator and
merge accept operator respectively. The assembly executing a merge request
statement will merge with the target assembly containing the node pointed
by reference v in its region; provided that the target assembly is of type
τ and is executing a merge accept operator. The assembly resulting from
this operation will have Stmt1; Stmt2 as its program. The merger(v, τ,

Stmt1) and merger(Stmt2) versions of the previous commands additionally
prescribe a rollback of the assembly actions. The new assembly will have
Stmt1; Stmt2 as its program. It is assumed that V ar(Stmt1) and V ar(Stmt2)

are disjoint with no loss of generality.

Last the commit statement allows an assembly to “commit” its local changes so
far so that they can not be rolled back.

2.2.2 Semantics

First we define heaps formally. Letting Loc be a set of abstract locations and F a
set of field names, we have:

Definition 1 (Heap). A heap is an edge-labeled directed graphG = (O ⊆ Loc, E ⊆
O × F × O), where O is the node set and E is the F -labeled edge set, such that
for each u ∈ O, f ∈ F , there is at most one edge of the form (u, f, v) in E. Nodes
and edges of G are respectively known as objects and pointers.

A heap H is a region in another heap G if it is a subgraph induced by a subset
of the nodes of G.

We have the following definitions for assemblies and the global program state:

Definition 2 (Concurrent Assembly). A concurrent assembly is a tuple N =

〈τ, S,H, µ, (H ′, µ′)〉, where τ ∈ T is a type name, S is statement, H is a region
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in G, µ : Var(S) → (G ∪ error), H ′ is some initial state of a region and µ′ is an
initial mapping (we normally denote the pair (H ′, µ′) by the letter ρ).

Two concurrent assemblies N1 = 〈τ1, S1, H1, µ1, ρ1〉 and N2 = 〈τ2, S2, H2, µ2, ρ2〉
are disjoint if H1 and H2 do not have nodes in common.

Intuitively, in the definition of the assembly N , H is the region on which i

operates, µ provides mappings from the local variables of S to objects in G (or
the “uninitialized” value error), and ρ provides a rollback transformation to some
previous state of the local heap.

The global program state comprises the states of a set of assemblies whose
regions partition the heap:

Definition 3 (Global program state). A state σ of P is a tuple σ = 〈G,Γ〉, where
G is a heap and Γ is a set of concurrent assemblies such that each object u in G
belongs to the region of some N ∈ Γ, and for each N1, N2 ∈ Γ with N1 6= N2, we
have: N1 and N2 are disjoint.

2.2.3 Operational Semantics

Now we present an interleaving operational semantics of Concurrent Assemblies.
The semantics defines a transition relation −→ between states 〈G,Γ〉, where G is
any heap. The graph G is not required to be the complete heap of the parallel
program—it can be any region in the complete heap. A transition 〈G,Γ〉 −→
〈G′,Γ′〉 says that where G′ is obtained by repeatedly rewriting G in isolation—i.e.,
without requiring information about objects outside of G. Thus, the semantics is
in a sense modular over space.

Values in this semantics can be objects or error. We use the following addi-
tional notation.

• An auxiliary term is either a value or a term 〈N, e〉, where N is an assembly
and e is a local variable v or a field access v.f. We use a transition relation
99K over auxiliary terms.

• Let G = (O,E) be a heap with a region H; consider another region H ′ with
the same node set as H. Then G[H  H ′] denotes the graph obtained by
removing all edges in H from G, then adding to it all edges in H ′.
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(Assembly-step)
N = 〈τ, S,H, µ, ρ〉 ∈ Γ 〈H, {N}〉 −→ 〈H′,Γ′〉

〈G,Γ〉 −→ 〈G[H  H′],Γ \ {N} ∪ Γ′〉

(Merge)
N1 = 〈τ1, merge(v, τ2, Scont1 ); S1, H1, µ1, ρ1〉 ∈ Γ N2 = 〈τ2, merge(Scont2 ); S2, H2, µ2, ρ2〉 ∈ Γ
µ(v) = v v is in H2 ρ1 = (H′

1, µ
′
1) ρ2 = (H′

1, µ
′
1) dom(µ1) ∩ dom(µ2) = ∅

〈G,Γ〉 −→ 〈 G,Γ \ {N1, N2} ∪ {〈τ1, Scont1 ; Scont2 , H1 tG H2, µ1 ∪ µ2, (H′
1 ∪H′

2, µ
′
1 ∪ µ′2)〉}〉

(Merge-rollback-left)
N1 = 〈τ1, merger(v, τ2, Scont1 ); S1, H1, µ1, ρ1〉 ∈ Γ N2 = 〈τ2, merge(Scont2 ); S2, H2, µ2, ρ2〉 ∈ Γ
µ(v) = v v is in H2 ρ1 = (H′

1, µ
′
1) ρ2 = (H′

1, µ
′
1) dom(µ1) ∩ dom(µ2) = ∅

〈G,Γ〉 −→ 〈G[H1  H′
1],Γ \ {N1, N2} ∪ {〈τ1, Scont1 ; Scont2 , H

′
1 tG H2, µ′1 ∪ µ2, (H′

1 ∪H′
2, µ

′
1 ∪ µ′2)〉}〉

(Merge-rollback-right)
N1 = 〈τ1, merge(v, τ2, Scont1 ); S1, H1, µ1, ρ1〉 ∈ Γ N2 = 〈τ2, merger(Scont2 ); S2, H2, µ2, ρ2〉 ∈ Γ
µ(v) = v v is in H2 ρ1 = (H′

1, µ
′
1) ρ2 = (H′

1, µ
′
1) dom(µ1) ∩ dom(µ2) = ∅

〈G,Γ〉 −→ 〈G[H2  H′
2],Γ \ {N1, N2} ∪ {〈τ1, Scont1 ; Scont2 , H1 tG H′

2, µ1 ∪ µ′2, (H′
1 ∪H′

2, µ
′
1 ∪ µ′2)〉}〉

(Merge-rollback-both)
N1 = 〈τ1, merger(v, τ2, Scont1 ); S1, H1, µ1, ρ1〉 ∈ Γ N2 = 〈τ2, merger(Scont2 ); S2, H2, µ2, ρ2〉 ∈ Γ
µ(v) = v v is in H2 ρ1 = (H′

1, µ
′
1) ρ2 = (H′

1, µ
′
1) dom(µ1) ∩ dom(µ2) = ∅

G′ = G[H1  H′
1][H2  H′

2]

〈G,Γ〉 −→ 〈G′,Γ \ {N1, N2} ∪ {〈τ1, Scont1 ; Scont2 , H
′
1 tG H′

2, µ
′
1 ∪ µ′2, (H′

1 ∪H′
2, µ

′
1 ∪ µ′2)〉}〉

(Exp-1)
N = 〈τ, S,H, µ, ρ〉 µ(v) = u

〈N, v〉 99K u
(Exp-2)

N = 〈τ, S,H, µ, ρ〉
〈N, e〉 99K u u

H,f−→ v v is in H
〈N, e.f〉 99K v

(Exp-3)
〈N, e〉 99K error
〈N, e.f〉 99K error

(Exp-4)

N = 〈τ, S,H, µ, ρ〉
〈N, e〉 99K u u

H,f−→ v v is not in H
〈N, e.f〉 99K error

(Assign-1)
N = 〈τ, v := e; S,H, µ, ρ〉 〈N, e〉 99K u
〈H, {N}〉 −→ 〈H, {〈τ, S,H, µ[v 7→ u], ρ〉}〉

(Assign-2)
N = 〈τ, v.f := e; S,H, µ, ρ〉 µ(v) = u 〈N, e〉 99K v H′ = H[(u, f,_) (u, f, v)]

〈H, {N}〉 −→ 〈H′, {〈τ, S,H′, µ, ρ〉}〉

(Choice-left)
〈H, {〈τ, S1; S,H, µ, ρ〉}〉 −→ 〈H′, {〈τ ′, S′, H′, µ′, ρ′〉}〉

〈H, {τ, 〈(S1 + S2); S,H, µ, ρ〉}〉 −→ 〈H′, {〈τ ′, S′, H′, µ′, ρ′〉}〉

(Choice-right)
〈H, {〈τ, S2; S,H, µ, ρ〉}〉 −→ 〈H′, {〈τ ′, S′, H′, µ′, ρ′〉}〉

〈H, {〈τ, (S1 + S2); S,H, µ, ρ〉}〉 −→ 〈H′, {〈τ ′, S′, H′, µ′, ρ′〉}〉

(Cond)
〈H, {〈τ, S1; S2, H, µ, ρ〉}〉 −→ 〈H′, {〈τ ′, S′, H′, µ′, ρ′〉}〉 〈〈H, {〈τ, S1; S2, H, µ, ρ〉}〉, b〉 99K true

〈H, {〈τ, (b?S1); S2, H, µ, ρ〉}〉 −→ 〈H′, {〈τ ′, S′, H′, µ′, ρ′〉}〉

(Split)
N = 〈τ, split(τ ′, S′); S,H, µ, ρ〉 H has objects u1, . . . , un

〈H, {N}〉 −→ 〈H, {〈τ ′, S′, {uj}, µInit (S′, uj), ({uj}, µInit (S′, uj))〉 : 1 ≤ j ≤ n}〉

(Commit)
N = 〈τ, commit; S,H, µ, ρ〉 〈N, e〉 99K u
〈H, {N}〉 −→ 〈τ,H, {〈S,H, µ, (H,µ)〉}〉

Figure 2.4. Structural operational semantics of Concurrent Assemblies.
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Also, H[(u, f,_)  (u, f, v)], for u, v ∈ O′, denotes the graph obtained by
removing the outgoing edge from u labeled f and adding the edge (u, f, v)

to H.

• We write u G,f−→ v if (u, f, v) is an edge in the heap G, and {u} for the heap
with the single node u and no edge.

• For regions H = (O,E) and H ′ = (O′, E ′) in a heap G, (H tG H ′) denotes
the union of H and H ′—i.e., the subgraph induced on G by (O ∪O′). Also,
(G \H) denotes the graph obtained by removing the subgraph H from G.

• Let µ map a set of variables V to a set of objects. We denote by µ[v 7→ u], for
v ∈ V , the function µ′ that satisfies µ′(v) = u, and agrees with µ otherwise.

Our operational semantics for Concurrent Assemblies is presented in Figure 2.4).
Evaluation here is parameterized by an initial heap Gin and begins with the state
〈Gin, {N}〉, where N is the assembly 〈ι, Gin, µInit(ι), (Gin, µInit(ι)〉 for the program
ι.

Note that updates to assemblies happen in isolation from the rest of the heap.
The interleaving of these updates is captured by the rule Assembly-step, which
propagates the effect of an (atomic) assembly update on the larger heap.

An execution of a program P from an initial state σ0 = 〈G,Γ〉 is a sequence
π = σ0σ1 . . . where for each i, σi −→ σi+1.

There are four rules that define the merging of two assemblies depending
whether none, one or both assemblies rollback their local updates. The rule
Merge defines how to assemblies merge when none requests a rollback to its lo-
cal effects, while rules Merge-rollback-right, Merge-rollback-left and
Merge-rollback-both defines how assemblies merge when either or both re-
quest rollbacks to their local effects. .

Termination. A terminating global program state in our model is one where no
rules can be applied.



Chapter 3
The JChorus Programming

Language

In this chapter we present the JChorus programming language [8], one of two
programming languages built on top of Concurrent Assemblies . The JChorus

programming language can be seen as a direct mapping into a restricted version
of Concurrent Assemblies . The main software abstraction in JChorus is, as in
Concurrent Assemblies , an assembly.

The JChorus language embeds a substantial subset of the Concurrent As-
semblies abstract model into the sequential subset of Java, borrowing most of the
programming constructs from Java. Assemblies and heap nodes are defined in a
way that is similar to Java classes providing a unit of modularity. As in Java they
can contain member variables and member methods. The programming language
also borrows most of the statement syntax from Java. The goal is to provide a
Java like language where all the concurrency construct found in Java are replaced
by constructs found in Concurrent Assemblies.

We will present a semi-formal description of the JChorus programming lan-
guage first, outlining the main concepts and presenting its main differences from
sequential Java using examples. JChorus semantics will be given as a translation
to Concurrent Assemblies .
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3.1 Main Programming Abstractions in JChorus

Object classes. Unlike in Concurrent Assemblies , where objects were untyped,
objects in JChorus are declared using Java-style class declarations. We distin-
guish between shared objects, for which assemblies contend, and objects that are
private to assemblies. Accordingly, object classes are explicitly declared as shared
using the keyword shared. Also, objects here support member method. We will
use the C to denote an object class.

For example, consider Figure 3.1, which shows part of a JChorus implemen-
tation of Delaunay mesh refinement. Here, the class TriangleObject represents
triangles in the mesh, which are shared objects. A triangle supports a method
isBad(), which says whether it is “bad.”

Assembly classes. In addition to object classes, JChorus allows declarations
of assembly classes. For example, the code in Figure 3.1 declares two assembly
classes Cavity and Triangle, respectively representing assemblies consisting of a
cavity and a single triangle. Each assembly has a set of typed assembly variables,
some private procedures, and a block demarcated by the keyword action that
contains all the guarded updates. We will use τ to denote assembly classes.

Guarded updates in JChorus have the syntax Guard : { Stmt }. In addition
to the forms of merges shown earlier, we also permit a syntactic sugar version,
merge(L, C x) {Stmt}, where L is a collection (e.g., list or set) of references pointing
outside the current assembly. The semantics is that the assembly can merge along
any edge whose target v is contained in L—the precise value of v used for the merge
is bound to the name x of shared object class C within the body of Stmt .

As for updates, they can now call methods on objects and procedures private
to the assembly, and use all imperative control constructs. An access to an object
outside the assembly throws an exception NonLocalException. Such exceptions
are handled using try-catch blocks as in Java—see the code in Figure 3.1 for an
example.

Finally, in JChorus we permit an assembly of class τ to change its class to
τ ′ via a command become(τ ′, p1, . . . , pk) (p1, . . . , pk are parameters passed to the
constructor of the newly created assembly). For example, in Figure 3.1, a Triangle
becomes a Cavity this way.
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1: assembly Triangle {
2: Triangle(TriangleObject t) {
3: if (t.isBad())
// become a Cavity

4: become(Cavity, t);
5: }
6: } /* end Triangle */

7: assembly Cavity {
8: action { // expand cavity
9: merge(outgoingedges,

TriangleObject t) : {
10: outgoingedges.remove(t);
11: frontier.add(t);
12: build(); }
13: }

14: Set members; Set border;
// current frontier

15: Queue frontier;
// outgoing edges on which
// to merge

16: List outgoingedges;
17: TriangleObject initial;

18: Cavity(TriangleObject t) {
... initialize data fields....

19: frontier.enqueue(t);
20: build(); }

...

21: void build() {
22: while (frontier.size() != 0) {
23: TriangleObject curr = frontier.dequeue();
24: try {
25: if (isMember(curr)) members.add(curr);
26: else border.add(curr);

// add triangles using BFS
27: for (TriangleObject n: curr.neighbors())
28: if (notSeen(n)) frontier.add(n);
29: } catch(NonLocalException e)

{ // triangle not in assembly,
// add to merge list

30: outeredges.add(e.getObject()); }
31: }
32: if (outeredges.isEmpty()) {
33: retriangulate(); split(Triangle);
34: }
35: }

36: void retriangulate() { ... }
37: boolean isMember(TriangleObject t)

{... }
38: boolean notSeen(TriangleObject t)

{... }
39: } /* end Cavity */

40: shared TriangleObject {
41: Point p1, p2, p3;
42: Triangle s1, s2, s3;

43: Point circumCenter() {...}
44: }

50: assembly Loader {
51: Loader(String filename) {
52: ...
53: ... new Triangle(p1, p2, p3);
54: ...
55: split(Triangle);
56: }
57: } /* end Loader */

Figure 3.1. Delaunay mesh refinement in JChorus

The typical execution scenario of JChorus programs, as in Concurrent Assem-
blies , has numerous assemblies executing concurrently. It is required that at each
point in an execution, these assemblies form a disjoint partitioning of the heap—in
other words, every object in the heap belongs to (the region of) an assembly, and
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busy 
terminated 

ready (performing 

update) (available for merges) 

(result of being merged) 

Figure 3.2. Control flow in assemblies

no object belongs to two distinct assemblies.
Also, as in the abstract model, while an assembly can update the heap, it

embodies isolation: it has exclusive ownership of its region and can neither read
nor write objects that fall outside it. This means that imperative effects are local:
a heap modification by one assembly does not affect the data read by another. An
assembly is allowed to merge with adjacent assemblies and can also split into a set
of smaller assemblies.

A key difference between the current version of JChorus and Concurrent As-
semblies is that JChorus assemblies are completely speculative with no provision
for rollback of partial effects.

Is worth noting that for an important class of irregular applications that in-
cludes Delaunay refinement, all object acquisition happens before modification. In
these cases, a need for rollback never arises (this class was identified by Pingali
et al [15], who referred to such applications as cautious applications). JChorus

is a programming language that is particularly suited to implement cautious algo-
rithms.

The active behavior of an assembly i1 is syntactically defined by guarded updates
of the form

Guard : {Stmt}

where Guard is a condition that is evaluated atomically, and Stmt is a statement
allowing imperative modification of the objects and pointers within the assembly.

Control flow in i1 can be abstractly captured by a state machine (Figure 3.2)
with three control states: busy, ready, and terminated. A newly created assembly
starts from the ready state. State transitions are as follows:

• If i1 is at the ready control state, then it nondeterministically chooses a
guarded update, atomically evaluates its guard, and, if the guard is enabled,
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moves to the busy control state to execute Stmt . As i1 has exclusive access
to its region, no extra precaution to ensure the atomicity of the update is
needed.

• If i1 is at the busy control state and has finished its update, then it can move
back to the ready state.

• If i1 is at the ready control state, then it can be terminated.

Unlike in other guarded-command languages, a guard here can, in addition to
checking local boolean conditions, merge i1 with an adjacent assembly i2, taking
i1 to a busy control state and causing i2 to terminate. In its new state, i1 operates
on the union of the regions previously comprising i1 and i2. The heap itself is not
modified—e.g., no pointers are rewired. Also, the merge can happen only when i2
is in a ready state. During the merge, i1 can copy into its own local variables the
local-variable state of i2, thus acquiring the “work” that i2 has already done.

As for updates, they permit an assembly to imperatively modify its region—any
expression whose evaluation requires accesses outside H returns raises a program-
ming exception. An update can also split an assembly into smaller ones—e.g., into
assemblies containing one object each. Observe that the split locally refines the
parallelism in the system.

Also note that for an assembly i1 to merge with an assembly i2, no explicit
“consent” from i2 is needed. All we require is that i2 is not in the middle of an
update at the point when the merge happens. Thus, assemblies are speculative
entities that may not always finish the task that they set out to accomplish. At
the same time, there is no notion of rollbacks in our model. Assemblies “commit”
after every update, and once committed, updates are final. Therefore, applications
must be coded so that the data within an assembly is in a consistent state at the
end of each update.

Finally, note that our object model does not allow for aliasing (just as the
abstract formal model). At any time, an object belongs to only one assembly (we
do make an exception for read-only data in JChorus–see Section 3.1.2). While
an assembly can have a reference to an object outside its region, it cannot use this
reference for reading or writing.
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Merging, splitting, and heap modification. Now we examine the con-
currency related programming constructs that JChorus permits. Each assembly
here is an instance of an assembly class, and programs are collections of assembly
class definitions. A definition for the class τ specifies a set of guarded updates that
assemblies of class τ can execute, as well as a set of local variables u, v, . . . that
they use to refer to objects within their regions. Objects can also be referenced
using field expressions in the usual way: if the variable u refers to the object u and
u has an f-labeled edge to v, then the name u.f refers to v.

The simplest construct for merging two assemblies and executing an update on
the merged assembly is

merge(u) : {Stmt}

Here u is a variable in the assembly i1 executing the guarded update. Variable u

refers to an object in a different assembly i2. For the guard here to be enabled, i2
must be in a ready state (i.e., it must not be currently executing an update). If
it is, then its evaluation atomically terminates the thread of control in i2, takes i1
to the “busy” control state, and gives i1 ownership of all objects previously owned
by i1 and i2. The values of local variables of i1 are not affected by the merge. The
update Stmt is now executed.

Merges can also be constrained with boolean predicates. For example, we have
the construct

merge(u) when g : {Stmt}

where g is a predicate referring to objects in the region of i1 and the local variables
of i1. The semantics is as before, except i1 can execute the command only when g
holds. The other kinds of merges are similarly generalized.

As for updates executed by an assembly i, they may split i into smaller assem-
blies, as well as imperatively modify objects in the region that i owns. For example
we have the construct

split(τ ′)

splits i at the finest possible granularity—for each object u in the region of i, a new
assembly that is of class τ ′ and control state ready, and consists of the single node
u, is activated. Each local variable of iu is initialized to refer to u. The assembly
i ceases to exist.
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1: Mesh m = /* read input mesh */
2: Worklist wl = new Worklist(m.getBad());
3: foreach Triangle t in wl {
4: Cavity c = new Cavity(t);
5: c.expand();
6: c.retriangulate();
7: m.updateMesh(c);
8: wl.add(c.getBad()); }

Figure 3.3. Delaunay mesh refinement: sequential algorithm

Note that assemblies never directly reference other assemblies during execution.
In particular, merges happen on object references, not assembly references.

3.1.1 Example: Delaunay mesh refinement

Let us now go back to the Delaunay mesh refinement problem briefly mentioned
in Chapter 1. Given a set of points M, a Delaunay triangulation partitions the
convex hull ofM into a set of triangles such that: (1) the vertices of the triangles,
taken together, are M, and (2) no point in M lies in any triangle’s circumcircle
(the empty circle property). As discussed in Chapter 1, in many applications [16],
there are further qualitative constraints on the resulting triangles. In order to meet
these constraints, a Delaunay triangulation often needs to be refined. We blackbox
the requirements and suppose there is a function that identifies “bad” triangles.

Pseudocode for a sequential algorithm for refining the mesh is in Figure 3.3.
Initially, the worklist is populated by bad triangles from the original mesh. For
each bad triangle t, the algorithm proceeds as follows1:

• A point p at the center of the circumcircle of the triangle is inserted.

• All the triangles whose circumcircle contains p are collected. These triangles
form a contiguous region in the mesh called a cavity of t (Figure 3.4). As cav-
ities are contiguous, a breadth-first search algorithm (c.expand()) touching
only a region in the heap containing the bad triangle can be used to find a
cavity.

1For ease of presentation, we suppose here that the bad triangle is not near the boundary of
the whole mesh.
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Cavity

Figure 3.4. Snapshot of a small part of a Delaunay mesh

• The cavity is then retriangulated by connecting p with all the points at the
boundary of the cavity (this is done by c.retriangulate()).

The Delaunay property (the empty circle property) is guaranteed to hold for
the newly created triangles. The qualitative constraint may not hold for all the
new triangles, so the size of the worklist might increase in certain steps. The
algorithm, however, is guaranteed to terminate. Also, retriangulation of a cavity
is a local operation, and the order in which the cavities are retriangulated is not
important.

We have parallelized this application using JChorus (see Section 3.3). For
now, we show how to capture its essence following the pseudocode in Figure 3.5.
Here, the triangulation at any point is modeled by a heap whose objects are tri-
angles, and whose pointers connect adjacent triangles. There are only one type of
assembly: Cavity. Initially, every triangle in the heap is in its own assembly of
class Cavity).

To simplify presentation, we assume that updates can call sequential subrou-
tines such as retriangulate. We also assume that a Triangle can use a boolean
variable called isBad that, at any point, is true iff it is bad, and that a Cavity

can use a boolean method isComplete() that, at any point, is true iff it needs no
further expansion. Finally, we let each assembly i have a local variable v whose
value loops through the set of objects in i with an (f-labeled) edge to an adjacent
assembly in the mesh. We abstract out the code maintaining these variables.

The code for our modeling is given in Figure 3.5. Here, each triangle (forming
an assembly of class Triangle) checks if it is “bad.” If it is, then it merges with
an arbitrary neighbor to create a assembly of class Cavity. The expansion of a
cavity—done in Figure 3.3 by the method expand()—is captured here by a series
of merges among assemblies of class Cavity. Note that expansion is possible only
when the cavity is not yet complete. If a cavity discovers that it is complete, it
executes an update in which it first retriangulates its region, and then splits into
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shared Triangle { ...
Triangle n_1, n_2, n_3;
Bool isBad;

}

assembly Cavity { ...
Triangle v;
Bool isBad;

constructor(Triangle t) { v := t.n_*; isBad := t.isBad }

actions {
merge (v, Cavity) when isBad:

{if isComplete()
then {retriangulate(); split(Triangle)}
else v = chooseAdjacentTriange()

}
}

}
}

Figure 3.5. The essence of Delaunay Mesh Refinement in JChorus

its component triangles. The program terminates when the only assemblies in the
mesh are Cavitiess containing a single “good” Triangle.

It is worthwhile to note the speculative nature of cavities in the above encoding.
As cavity expansion is captured using a series of merges, a cavity may reach its
ready state multiple time as it expands. Therefore, the cavity can be destroyed by
another cavity before it has a chance to retriangulate itself. At the same time, such
early termination of cavities does not leave the heap in an inconsistent state—the
only rewriting of the heap happens within the method retriangulate(), which
is executed atomically in one update.

3.1.2 JChorus features not available in the Concurrent As-

semblies abstract model

JChorus contains several features that go beyond the Concurrent Assemblies
model.

Sequential and parallel phases. Most realistic parallel applications contain
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stages that are inherently sequential, during which the application does I/O, con-
structs global data structures, iterates over totally ordered sets, etc. While it is
theoretically possible to model such sequential phases by global synchronization
where the entire heap is merged into one assembly, such an encoding will be inef-
ficient in practice.

Consequently, we let JChorus programs have both sequential and parallel
phases. The former is performed by the sequential Java program into which our
concurrency constructs are embedded. The sequential phase can invoke a parallel
phase by the call parallel(τ(p1, . . . , pk)) which constructs a assembly of type τ
(p1, . . . , pk are expressions passed as actual parameters to the constructor) whose
region is the whole heap. When all assemblies in the parallel phase terminate,
control returns to the sequential program once again. For a sample application for
this construct, see our code for Barnes-Hut simulation (Figure 3.11).

Read-only data. Read-only data that can be simultaneously accessed by mul-
tiple threads is an important source of concurrency in many parallel applications
(e.g., in Barnes-Hut n-body simulation). In Concurrent Assemblies , for simplicity,
we did not account for such objects, which is why an object was required to be-
long to only one assembly at one time. In the JChorus programming language,
however, we permit shared objects to be classified as read-only via a special type
qualifier. Read-only objects can be accessed freely by multiple assemblies, and
attempts to modify them cause exceptions.

Assemblies can cast writable objects that they own into read-only objects.
For example, this is done by the call to node.setReadOnly() in our modeling of
Barnes-Hut simulation (Figure 3.11). This is because in JChorus any writable
object that an assembly i can access is guaranteed to be exclusively owned by
i. However, the reverse, if carried out during a parallel computation, may cause
races. Therefore, we permit read-only data to be cast to a writable type only in a
sequential phase of the computation.

Now we present JChorus more formally as a translation to the Concurrent
Assemblies abstract model. As our goal is to capture the essence of concurrency in
Concurrent Assemblies , assemblies here do not call methods on objects or create
new objects, and only execute straight-line code. Also, we let objects be untyped,
assume that all objects are shared, and do not account for read-only data that can
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be freely accessed concurrently. Finally, objects do not have distinct data fields—
all data is encoded by pointers and accessed by fields, which programs are allowed
to update. These restrictions are all lifted in the full language.

3.2 Formal Semantics of JChorus

Here we present the syntax and semantics of JChorus.

3.2.1 Syntax

Prog ::= [AssemblyDecl | NodeDecl ]∗

AssemblyDecl ::= assembly id {UnaryConst MemberDef ∗

actions { [Guard : Stmt ]∗}}
NodeDecl ::= shared id {MemberDef ∗}
MemberDef ::= VarDef | FuncDef
Guard ::= merge(v) | merge(v) when Bexp | Bexp
Stmt ::= v := Exp | v.f := Exp | v.f := new id | v.f := null |

Stmt ; Stmt |
skip | split(id) | {Stmt} |
if Bexp then Stmt else Stmt

VarDef ::= idid ;

FuncDef ::= id id ([[id id , ]∗id id ]){Stmt}
UnaryConst ::= constructor(id id){Stmt}
Exp ::= v | Exp.f | error
Bexp ::= Exp = Exp | not Bexp | Bexp and Bexp

where
v ∈ Var and f ∈ F . Syntax within square brackets is optional, and [t]∗ denotes
zero or more occurrences of t.

Figure 3.6. Syntax of JChorus

Let us assume a universe Var of assembly variables, and a universe T of as-
sembly classes that contains a designated initial class ι. The syntax of programs
in JChorus is given in Figure 4.4. Here:

• Prog represents programs.



28

• AssemblyDecl represents declarations of assembly classes. The declaration
consists of a sequence of local variable and method declarations and definitions
of guarded updates.

• NodeDecl represents declarations of shared object classes.

• Guard represents guards; Stmt represents updates and splits.

• UnaryConst represents the constructor (used to bind local variables initially).

• Exp and Bexp respectively represent pointer expressions and boolean expres-
sions.

• FuncDef and VarDef respectively represent member function definitions and
local variables declarations.

We require that each variable used in a pointer or boolean expression is declared
within the relevant assembly class, that no assembly class is declared twice, and
that there is a declaration for the initial class ι. Also, we denote:

• the set of local variables in the class τ by Var(τ)

• the set of guarded updates in τ by Act(τ).

3.2.2 Semantics

Here we give a formal semantics for JChorus. The main idea is to map assemblies
from JChorus directly to concurrent assemblies from the abstract model. We
define a single type, i.e. T = {τ}, that will be used for all assemblies. The idea is
that at the top of the actions allow nondeterministically the choice of one guard
or accept a merge.

The isolation aspect of an execution of a JChorus program is translated di-
rectly into the local update operations in the Concurrent Assemblies formal model
semantics. For example a local update u.f = v in JChorus is translated into an
update of the form u.f := v in Concurrent assemblies.

Let [[.]] be the translation function from JChorus into Concurrent Assemblies.
In the sequel we sketch the function [[.]] :
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[[u.f = v]] def
= [[u.f]]exp = [[v]]exp

[[u = v.f]] def
= [[u]]exp = [[v.f]]exp

[[u = new id]] def
= [[u]]exp = new

[[u = null]] def
= [[u]]exp = null

[[Stmt1;Stmt2]]
def
= [[Stmt1]];[[Stmt2]]

[[Guard1 : Stmt1 · · ·Guardn : Stmtn]]
def
= ([[G1]];[[Stmt1]])+ · · · +([[Gn]];[[Stmtn]])+merge(ε)

[[merge(u)]] def
= merge([[u]]exp, τ, [[Stmt ]])

[[merge(u) when Bexp]]
def
= [[Bexp]]bexp?merge([[u]]exp, τ, [[Stmt ]])

Figure 3.7. Sematics of JChorus

Our implementation of JChorus supports termination detection (see Section
5).

3.2.3 Race- and deadlock-freedom

Race-freedom. A data race happens when two concurrent threads concurrently
access a shared object, and at least one of these accesses is a write. Updates in
JChorus are data-race-free as they operate on disjoint regions in the heap. As for
merges, our semantics guarantees that an assembly can merge only with assemblies
that are in the ready control state—i.e., assemblies where control is not inside an
update. Thus, programs in JChorus are free of data races.

Deadlock-freedom. Recall the classical definition of a deadlock: a deadlock
arises when a process i1 waits for a resource from a process i2 and vice-versa,
preventing the system from progressing. To see what deadlocks mean in our setting,
consider a guard g that involves a merge. This guard is locally enabled on the edge
(u, f, v) out of an assembly i1, in state N , if one of the following holds: (1) g
does not use a boolean constraint, and (2) g uses a boolean constraint, and this
constraint evaluated to true in N . The guard g is enabled if, in addition, the
assembly i2 containing v is currently in a ready state.

We can now adapt the classical definition of deadlocks as follows: “A deadlock
arises when assemblies i1 and i2 are both forbidden from further progress for the
following reasons: (a) i1 has a locally enabled merge along an edge into assembly
i2, and vice-versa. (b) Neither i1 nor i2 can progress otherwise—i.e., they do not
have other enabled guards.”
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Assuming the evaluation of each update and boolean expression terminates, the
above deadlock scenario is impossible in our setting. This is because in JChorus

an assembly in a ready control state cannot prevent itself from being merged even
if it has locally enabled merges by virtue of the translation defined in the previous
subsection. Therefore, in a scenario as above, the runtime system nondeterminis-
tically executes one of the requested merges (say the one invoked by i1), causing
i2 to terminate, and bringing its entire region in the possession of i1.

Of course, the above justification, while reasonable for an interleaving seman-
tics implemented on a uniprocessor, is unsatisfactory in the distributed context
lacking a centralized runtime system, which is what we target. Deadlock-freedom
in this setting can be established with a language specification closer to the imple-
mentation. See Section 3.4 for more details.

3.3 Case studies

In this section, we show how to use JChorus to program our flagship example—
Delaunay mesh refinement—as well as Boruvka’s minimum-spanning-tree algo-
rithm [14], Barnes-Hut n-body simulation [10], “focused community” discovery in
social networks [11], and a problem of agent-based epidemiological simulation [13].

3.3.1 Delaunay Mesh Refinement

Now we describe in detail the implementation of Delaunay Mesh Refinement in
JChorus. Section 3.1.1 describes the main ideas behind this algorithm using
an implementation. This example illustrates some of the constructs available in
JChorus that are not present in the core version of the language. Figure 3.1
shows the interesting snippets.

Lines 40–44 contain the declaration for the shared object TriangleObject, as
one would expect it contains its data and some member functions. Lines 50–56
describe the Loader assembly which will be the starting point for this program.
The Loader assembly will read a file (using standard Java constructs), create all
the TriangleObjects, and end by splitting into Triangles assemblies, one for
each TriangleObject. Lines 1–6 implement the assembly Triangle; if a triangle
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Figure 3.8. A cavity in construction, its center triangle (in dark), the cavity triangles
(light gray) and the border triangles (dotted lines). The white triangles are either part
of the frontier or the destination of one of the outgoing edges.

is “bad” then the Triangle assembly becomes a Cavity assembly (line 4). As is the
case in with objects in object oriented programming, assemblies have constructors
that are executed upon creation.

The core of the algorithm resides on Lines 7–39, the Cavity assembly. The
Cavity assembly will build the cavity by traversing TriangleObject-s in a breadth
first fashion, it starts by placing the initial “bad” triangle into the frontier queue
(lines 18–20) and start the exploration from there.

The core construction of the cavity (lines 21–35) is done in the build()method.
It starts by taking a TriangleObject object from the frontier queue (line 23),
checking whether it belongs to the cavity or is a border triangle (lines 25–26), and
add its neighbors to the frontier (lines 27–28). If the TriangleObject was not
local to the assembly an exception is raised and catched (lines 24, 29–30), and a
merge will be requested on this TriangleObject. If all the cavity was explored
then it proceeds to retriangulate (lines 32-34) and split into Triangle assemblies.

Up to here we have only described the local aspects of the algorithm. The
interaction code (lines 8–13) requests a merge on any of the outgoingedges, and
upon merging with an adjacent assembly (line 9), variable t is instantiated to the
TriangleObject selected for the merge, and expansion continues through a call
to build().

Observe that most of the code is identical to the pure sequential version. The
only part needing concurrent programming are the lines 8–13.
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3.3.2 Minimum-spanning tree

Now we use JChorus to code a classic, irregular graph algorithm well-known in
the parallel programming literature [17, 18] : Boruvka’s algorithm for computing
the minimum spanning tree of a graph [14]. The main idea of the algorithm is
to start with spanning trees that each consists of a single node, then combine
these small trees into larger and larger trees. At the end we are left with a single,
provably optimal spanning tree.

The input here is a weighted graph. To model edge-weights, we let each node
u in the graph have a data field outEdges—of type “list of integers”—that con-
tains the weights of all edges out of u. Each spanning tree obtained during the
computation is captured by an assembly (initially, each such assembly contains a
single node). A spanning tree maintains a minimal outgoing edge—i.e., an edge of
minimal length out of those that lead to a node outside of the spanning tree.

Every spanning tree always has a merge-operation enabled along a minimal-
weight edge. When a spanning tree m1 merges with a spanning tree m2, they form
a new spanning tree m3. The set of nodes of the spanning tree m3 is the union
of nodes of m1 and m2; the edge set consists of the edges of m1 and m2, as well
as the edge on which the merge happened. The minimum outgoing edge from m3

needs to be found as well—this is done using a method computeNewMinEdge().
It can be shown that this greedy algorithm constructs an optimal minimum

spanning tree. Once again, merging and local updates are the only operations
needed. JChorus code for it is presented in Figure 3.9.

3.3.3 Barnes-Hut n-body Simulation

Now we consider the Barnes-Hut algorithm for n-body simulation [10], an applica-
tion in the Lonestar benchmarks [19]. The algorithm simulates movements of and
gravitational forces among N bodies (for example stars grouped in galaxies). The
simulation algorithm proceeds in timesteps. Every timestep, in order to calculate
the new position where each body moves, the gravitational forces they exert on
each other need to be calculated. This suggests an O(n2) algorithm, which for
each body directly calculates the force exerted upon it by all the other bodies.

Barnes and Hut [10] introduced an O(n log n) time based on the idea that
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1: shared Node {
2: List edges;
3: List weights; }

4: assembly ComputeSpanningTree {
5: Tree currentTree;

// set of outgoing edges, sorted by weight
6: SortedList outgoingEdges;
7: Edge minOutEdge;

8: action {
9: merge(minOutEdge) :

10: computeNewMinEdge();
11: }

// computes the minimal edge of the merged tree
12: void computeNewMinEdge() { ...}

}

Figure 3.9. Minimum spanning tree

the forces that a group of bodies exerts on a body laying at a sufficiently far
distance can be approximated by placing all mass at single point (center of gravity)
representing the group.

The Barnes-Hut algorithm proceeds in timesteps, similarly to the quadratic
algorithm sketched above. The computation in every time step has two phases.
First, the bodies are inserted into a data structure called octree. Second, the data
structure is used for efficient computation of the forces between the bodies.

An octree is a tree in which each internal node has eight children. Each node
represents a cube in three-dimensional space, and the children of an internal node
represent the division into eight sub-cubes. Each leaf of the octree contains exactly
one body. The insertion of a body b starts at the root and proceeds towards the
descendants until a leaf l representing a region where b is physically is found. By
construction, l contains exactly one other body b2. The leaf is therefore successively
subdivided until b and b2 are in different leaves. Upon construction, the octree is
summarized, i.e. for each of its internal node the center of gravity is calculated.

Once the octree is constructed, the forces on each body b can be calculated.
The octree data structure is traversed again. For cells C that are close to b, the
force between b and all bodies in C is calculated. On the other hand, for cells D
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that are sufficiently far away, a single point can be used to approximate the force -
the center of gravity for the cell. Note that during the computation of the forces,
that octree is read-only, that is, it is not being modified.

The pseudocode for the sequential algorithm is in Figure 3.10. For more details
on the algorithm and the octree data structure, the reader is referred to [10].

The computations in different timesteps are not possible to parallelize, as the
computation in a timestep depends on the results of the previous timesteps. How-
ever, every timestep is itself computationally intensive and conditions for paralleliz-
ing computation inside a timestep are much better. Both of the phases mentioned
above, the insertion into the octree, and the computation of forces can be benefi-
cially parallelized.

The JChorus code for the application needs to use both sequential and parallel
computation. The outer loop from Figure 3.10 stays conceptually the same –
timesteps are executed serially. Figure 3.11 shows the essential snippets from our
JChorus implementation.

Lines 1-9 show the outer timestep loop. Line 7 and Line 8 are the invocation of
the two parallel phases; each of which start from a single assembly but will split,
each of which will end when all its assemblies become inactive.

Following the style of the implementation in the Lonestar suite, our encoding
separates the construction of the octree from its summarization. The construction
of the octree is done sequentially and is implemented in OctreeNode (line 12). The
second stage, the summarization of the octree, is the most interesting in JChorus,
where irregular parallelism is present. Each OctreeNode maintains whether its
data has been propagated up and whether it has received updates from all its
children. This second stage starts by a ComputeMass assembly containing each of
the nodes (lines 14-22). The ComputeMass assembly will merge with its parent
if the node is completely updated and has not been yet propagated. When a
node is completed, it is made read-only (line 19), and can be accessed without any
restriction by any assembly (a crucial fact for the third phase).

The third phase consists of computing of forces acting on each body. This is
done by starting in a parallel phase where teach body sits in its own UpdateBody

assembly (lines 23-30). Each UpdateBody assembly needs only traverse the octree
and update the body it contains. As no merge requests are involved in the process,
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1: List bodylist = ...
2: foreach timestep do {
3: Octree octree;
4: foreach Body b in bodylist {
5: octree.Insert(b);
6: }
7: octree.SummarizeSubtrees();
8: foreach Body b in bodylist {
9: b.ComputeForce(octree);

10: }
11: foreach Body b in bodylist {
12: b.Advance(); } }

Figure 3.10. n-body simulation

this process is all implemented in the constructor (lines 25-29).

3.3.4 Agent-based models in epidemiology

A typical question in epidemiology is what type of vaccination distribution is ef-
fective to prevent an outbreak from developing to a full scale epidemic. It is
well-known that agent-based modeling that enables different type of interactions
between agents has advantages over models that assume that there is a uniform
probability of any two agents meeting. A more detailed model allows capturing
the fact that agents interact only with a certain number of people, those that
they meet at home, at their workplace, etc. The survey [13] describes several such
approaches used for modeling the spread of the smallpox virus.

We consider the model of Burke et al. [20]. It simulates how a virus can spread
from a single infected person throughout a small network of towns. Each town
consists of one hospital, one school, one other workplace and households of up to
seven people. The model extends the interaction assumptions further and has every
agent interacting with the same (up to 8) people in public places such as the schools
and hospitals. During a “day,” an agent interacts with all of its immediate neighbors
(a fixed number of times, different for each type of community). Transmission of
a virus occurs only during these interactions.

The computations necessary are thus again purely local, and can be naturally
captured in JChorus. The agents have a fixed number of neighbors, up to eight
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.....
1: void main() {
2: List bodylist = ...
3: foreach timestep do {
4: OctreeNode root = ...
5: foreach body in bodylist
6: root.insert(body);
7: parallel(ComputeMass(bodyList));
8: parallel(UpdateBody(bodyList)); }
9: }

10: shared OctreeNode {
11: ...data variables...
12: void insert(...) ...
13: }

14: assembly ComputeMass {
15: action {
16: merge(node.parent)
17: when (!node.propagated?

&& node.complete?):{
18: propagateUp();
19: node.setReadOnly();
20: split(ComputeMass); }

21: void propagateUp() { .... }
22: }

23: assembly UpdateBody {
24: action {}
25: UpdateBody(OctreeNode n)
26: {
27: f = computeForce(n, root);
28: n.advance(f);
29: }
30: }

Figure 3.11. n-body simulation in JChorus

per each environment (home, school) in which they interact. An interaction is
modeled by a merge, update (if one of the person is infected, a virus is proba-
bilistically transmitted), and a subsequent split. Modeling the interactions in this
way lets us express parallelism at the level of agents and their interactions. Ar-



37

core := R;
changed := true;
while changed do {

changed := false;
fringe := neighbors(core);
for each v in core {

if obj(core - {v}) < obj(core) {
core := core - {v};
changed := true; } }

for each v in fringe do {
if obj(core union {v}) < obj(core) {

core := core union {v}
changed := true;

} }
}

Figure 3.12. Focused Communities

guably, this also captures the natural parallelism of real-life social networks, where
information creation and propagation happen bottom-up rather than top-down.

3.3.5 Focused community discovery

A typical problem in analyzing social networks is focused community discovery.
Given a person p, the task is to discover the community to which the person
belongs. The community around p is intended to capture information flows in the
network, thus we are interested in finding a set of people that contains p and that
is robust - i.e. connection between them are stronger then their connection to
the outside world. How to discover communities efficiently is a topic of current
research (see [11, 12]). A data set connected to this problem is a part of the
Lonestar Benchmark Suite.

We consider an algorithm for focused community discovery from [11]. Fig-
ure 3.12 has the pseudocode for the algorithm. The algorithm greedily optimizes
an objective (given by the function obj). The algorithm keeps its current hypoth-
esis for the community (the core set). The fringe set is the set of adjacent nodes,
that is nodes that are not in the core, but are directly connected to it. Figure 3.13
has a picture of the algorithm in progress. At each step, the algorithm checks:

• For each node in the core, whether removing this node would increase the
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Figure 3.13. Focused Communities: the core and the fringe.

objective. If so, the node is removed.

• For each node in the fringe, whether including this node would increase the
objective. If so, the node is added to the core.

The process continues until no change occurs or a cycle is detected.
Let us suppose that we are given an input stream of requests, each consisting

of an individual p and an update that needs to be performed on all the members
of p’s community, for example about an announcement p makes. These requests
can be processed in parallel. There will be an assembly called Community whose
code will closely follow the code in Figure 3.12. The only major difference is that
the set union and set difference operations need to be implemented using merges
and splits.

It so happens that the code resulting from the above approach is quite similar
to the pseudocode in one of the original references for this problem [11]. Yet, that
paper was concerned with the algorithmic rather than the programming-language
aspect of focused community discovery. We view this as evidence that JChorus

is a natural programming model for this application.

3.4 Implementing JChorus

The assembly-level parallel exposed by JChorus is potentially massive. For ex-
ample, running the refinement algorithm in Figure 3.3 on a mesh of over 100,000
triangles, we found the average cavity size to be only 3.75, and the maximum cav-
ity size to be 12. Consequently, any runtime system for JChorus must perform
a many-to-one mapping of assemblies to the limited number of processor cores.
Managing such a mapping is a non-trivial task leaving room for many different
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approaches to design and optimization. Now we present an implementation of
JChorus based on one such approach.

3.4.1 The JChorus compiler and runtime system

Our implementation of JChorus consists of a prototype compiler and the corre-
sponding runtime system. The compiler translates JChorus programs into Java
programs running on the JChorus runtime system. The JChorus runtime sys-
tem consists of a lightweight layer on top of the Java runtime system implementing
scheduling, object migration and thread synchronization policies. The tool flow of
the system is outlined in Figure 3.14.

Jchorus  

program 

     Java 

 translation 

javac 

compiler 

Jchorus 

runtime 

  Class file JVM 
Jchorus 

compiler  

front-end 

Figure 3.14. The JChorus compiler and runtime system

Now we outline the main features of the JChorus runtime system.

3.4.1.1 Divisions

The key low-level abstraction in our system is a division: a set of proximate as-
semblies in the heap that is processed as a unit by parallel processors. The job of
the JChorus runtime is to maintain the divisions in the heap as the execution
progresses, and to map them to lower-level (Java) threads. These threads are then
mapped to hardware threads by the underlying Java runtime environment.

Divisions partition the heap at a coarser granularity than do assemblies—while
the heap may have hundreds and thousands of assemblies at any time, it typically
has only as many divisions as there are hardware threads. The abstraction is only
available within the runtime system, and is invisible to programmers. Figure 3.15
shows a heap and some divisions in it. The initial divisions are roughly equal in
size, and are obtained heuristically from the input dataset.
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3.4.1.2 Executor threads and token-passing

The JChorus runtime system assigns a native thread of execution (known as
the executor) to each division. The executor for a division D (pseudocode in
Figure 3.16) maintains two queues Workq(D) and Blockq(D) storing the active
assemblies that are currently in it.

In each iteration of a top-level loop (lines 1–33), the executor selects an assem-
bly i from the work queue Workq(D) (line 15) and tries to acquire a compare-and-
swap lock on it. If it fails, it must be because an assembly in a different division is
merging with i. If it succeeds, it processes a subset of the guarded updates of i in
a round-robin manner, executing their guards and, if the guards are enabled, their
updates. This subset of guarded updates to be executed is chosen heuristically. In
some applications, better performance comes from executing all guarded updates
in the assembly under consideration (we call this the depth-first execution strategy),
while in some others, it is better to deschedule the assembly after executing one
or two of them (we call this the breadth-first strategy).

As for the execution of guarded updates (lines 18–27), the interesting case is
when the guard involves a remote merge by i on a reference o (i.e., when the object
o is in a different division). In this case, the executor does not carry out the merge
right away, instead placing the pair (i, o) in a second division-level queue Blockq(D)

storing assemblies blocked on remote merge requests. Such blocked assemblies are
temporarily removed from the work queue.

Local merges (i.e., merges within the same division) are carried out immedi-
ately. Splits produce a set of assemblies that are kept local to the division. If a
split happens, the new assemblies are put into Workq(D) and the next top-level
iteration starts. Otherwise, once the selected subset of updates in i are executed,
i is unlocked, and if it is still active (this can be checked during guard evaluation),
put back into Workq(D).

The JChorus runtime uses a simple token-passing strategy to manage remote
merges. Divisions are assumed to be arranged in an implicit ring in which a
single global token for remote merges is passed. At the beginning of each top-level
iteration, the executor thread for D checks if D currently owns the token. If so,
a certain number k of remote merges are carried out in a batch (lines 5–12; see
Section 3.4.1.3 for explanations on Line 10). In case the target of a remote merge
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Heap Objects

Figure 3.15. Divisions in a heap

is busy, the assembly seeking the merge is put back into Blockq(D).
Note that the only synchronization needed for atomically executing an assem-

bly’s action is the lock acquisition on the assembly; we do not have locks on objects.
This is because our assemblies can only access objects in their own regions.

A simple termination detection strategy (lines 3–4) is woven into the remote
access phase of the executor. Here, we let the global token track the last active
division that owned it. If D finds that its work and blocked queues are empty
(i.e., all assemblies in it are inactive) and it is the last division to have accessed
the token, then the current parallel phase of the program (recall that JChorus

allows parallel and sequential phases) has reached a terminating state.

Deadlock-freedom. Recall that by our definition, a deadlock arises when two
assemblies i1 and i2 both have locally enabled merges along an edge, are unable to
proceed, and yet are not terminated by a merge.

If i1 and i2 are in the same division D and i1 is picked by the executor of D,
then i1 can merge with i2 unless an assembly in a different division is merging with



42

1: while (true)
2: if (ownsToken())
3: if (token.last = D and Blockq(D) = empty

and Workq(D) = empty)
4: terminate;
5: repeat k times
6: (i,o) := dequeue (Blockq(D));
7: if Assembly(o) is busy
8: enqueue (Blockq(D), (i,o));
9: else
10: migrate assemblies;
11: performMerge(i,o);
12: enqueue (Workq(D), i);
13: update token.last;
14: passToken(D.next());
15: i := dequeue (Workq(D));
16: if (locking i fails)
17: continue;

/* We have assembly i locked */
18: for act in i.action.guardedupdates()
19: if act.guard is false
20: continue;
21: if act.guard involves merge with

remote object o
22: enqueue (Blockq(D),(i,o));
23: break;
24: else if act.guard involves merge with

local object o
25: performMerge(i,o);
26: execute act.update();
27: if i was split then break;
28: unlock i;
29: if i was a split
30: enqueue all children in Workq(D);
31: else
32: if i was not found to be inactive or

added to Blockq(D)
33: enqueue (Workq(D),i);

Figure 3.16. Executor thread loop for division D
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i2 when i1 attempts the merge. In the latter scenario, i2 is nonexistent from this
point on, so that there is no deadlock.

Now suppose i1 and i2 are respectively in distinct divisions D1 and D2, and D1

possesses the token. One scenario is that i2 is in the blocked queue of D2. In this
case, it is not in the work queue of D2, which means that it cannot be currently
locked by D2 (since D2 does not have the token, it cannot be executing Lines 6–8
using i2 either). In this case, the merge goes through.

The other scenario is that i2 is currently in the work queue of D2. In this case,
it is possible that i2 is currently locked by D2. However, in this case the executor
of D2 will eventually discover that i2 has an enabled remote merge, and will send
it to its blocked queue, and the earlier scenario will take effect.

Simple scheduling. As an alternative to the above execution strategy, we allow
for a simple scheduler that does not offer the guarantee of deadlock-freedom, but
has lower overheads. Here, a division does not carry a queue of blocked assem-
blies. Instead, all assemblies in it are kept in its work queue, and are selected and
executed in a round-robin manner.

In one of the two applications on which we ran experiments (Boruvka’s algo-
rithm), this strategy led to significantly better performance due to lower overheads.
At the same time, this scheduler has the potential of livelock, as two divisions can
try to repeatedly, and simultaneously, merge assemblies that have edges into each
other (as each assembly is locked, neither of these merges succeeds). Of course,
as divisions typically contain numerous active assemblies, such livelocks perhaps
extremely unlikely. In particular, we did not face livelocks in our experiments with
this scheduler.

Perhaps this scheduler can also benefit from randomized strategies for livelock
avoidance. Here, after an unsuccessful attempt to merge along an edge, a division
waits for an increasing, randomly chosen time span before locking the assembly
in question again. The purpose is to break the symmetry between attempts by
different divisions to synchronize. We leave this direction for future research.
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3.4.1.3 Assembly migration and load-balancing

To cope with the dynamic nature of irregular applications, divisions in our setting
need to be dynamically reconfigurable. To minimize communication overheads,
our goal is to maintain the divisions so that the ratio of remote accesses to local
accesses is as low as possible. Therefore, we try to ensure that for most assemblies
i, if i is in a division D, then so are most of its neighbors.

We achieve the above goal through a simple heuristic (invoked at Line 10 of
Figure 3.16). Consider a merge between a assembly i and an assembly i′, respec-
tively on divisions D and D′ (where D 6= D′) along an edge (u, f, v) in the heap.
Every time such a merge happens, the assembly i′, as well as all assemblies in D′

reachable from v by a certain number m of pointer indirections, are migrated to D.
The intuition is that just as updates in our applications happen in local regions
in the heap, merges typically happen in local regions in the assembly graph. The
heuristic dynamically adapts divisions to exploit this locality. The quantity m is
a parameter for the runtime system, and is known as the indirection depth.

In fact, we enrich the above heuristic with a simple form of load-balancing.
Observe that in the above scenario involving i and i′, there is no inherent reason
why the assembly migration has to be from D′ to D and not the other way round.
This observation leads to a load-balancing heuristic. Each division now keeps track
of the number of assemblies in it. During remote merges, migration always happens
from the division with a greater number of assemblies.

3.4.1.4 Use of Union-Find

The Concurrent Assemblies abstract model requires that we keep track of the
relationship between objects and object assemblies. Given a reference to an object,
the runtime needs to determine the assembly to which it belongs. This information
is needed for merges, which are requested on object references. It is also needed
whenever an assembly dereferences an object to perform some operation, as the
runtime must then determine if the object belongs to the assembly. Additionally,
assemblies need to determine the complete set of objects that they own. This
information is necessary when an assembly ends its execution by splitting, where
each owned object becomes the single object of a new assembly.
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The choice of data structures for maintain ownership information can impact
the performance of the runtime in a significant way. The operations that are at
the heart our model, namely split, merge and object dereference, impose different
constraints. Consider, first, the merge and object-dereference operations. Given
the fact that assemblies constitute disjoint sets of objects, these operations can be
supported by an ownership directory represented using Tarjan’s Union-Find data
structure. Our implementation allows the optional use of this structure.

Here, given a number of disjoint sets, only two operations are performed on
them: (1) set union (needed for merges), and (2) set membership test (needed for
ownership lookups). The problem has a complexity lower bound of Ω(n+mα(m+

n, n)) for a sequence consisting of n− 1 unions and m finds; where α is an inverse
of Ackermann’s function [21]. If we consider single operations, there is a tradeoff
between the cost of the union and that of the find. This lower bound is achieved by
representing each set as a tree, where each element has a pointer to its parent (and
no pointers to its children), and implementing the operation using two techniques:
(1) union by rank and (2) path compression [21].

In order to implement the split operation efficiently, objects are embedded in
a linked-list structure. This allows to perform the join of two list in O(1) thus not
affecting the cost of the merge. The object list must be traversed to perform the
split.

3.5 Experiments

We have performed a preliminary experimental evaluation of our approach using
the Delaunay mesh refinement and Minimum Spanning Tree applications. These
applications were chosen because they are non-trivial and of practical importance,
and because they produce results that can be examined for correctness (the last
of these is not true, for example, for the Focused Communities application).

We wrote complete implementations of these two applications in JChorus.
The baseline for performance comparisons was sequential Java. One of the com-
peting approaches used hand-coded, fine-grained locking. In addition, we wanted
to compare our performance with that of a well-established, publicly available,
Java-based system for high-level parallel programming. We settled on DSTM2,
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a state-of-the-art library of software transactions supporting dynamic-sized data
structures [22, 23].

The experiments were run on an 8-core (dual quad-core) Intel Xeon X5550
with 2.66Ghz CPU speed per core, 24GB memory, a 64-bit Linux operating system
(kernel version 2.6.18), and Java version 1.6.0_14, 64-bit.2

3.5.1 Delaunay Mesh Refinement

The first set of experiments involved the Delaunay mesh refinement applica-
tion. Three datasets for this application are available in the Lonestar benchmark
suite [19]—we selected the largest one. The dataset defines a 2-dimensional input
mesh containing 100,364 triangles, approximately half of which do not satisfy the
desirability criteria.

The JChorus implementation used in the comparisons was as in Section 3.3.1
and Figure 3.1. The initial partitioning into divisions was spatial—i.e., the mesh
resides in a unit square and is recursively subdivided in four as many times as
needed to equal or exceed the number of threads. The token-based scheduler in
Figure 3.16 was used, with a depth-first execution strategy. Assembly migration
was performed with an indirection depth of 4. The union-find data structure was
not used. For comparison purposes, we defined a conflict to be a cavity that started
executing, but could not finish its work due to being merged by adjacent ones.

For the sequential implementation, we started with an implementation available
in the Lonestar benchmarks and hand-optimized it, removing some inefficiencies.
In the fine-grained-locking-based implementation, locks were acquired at the tri-
angle level. Each thread tried to acquire locks as it built a cavity in a non-blocking
fashion. If it could not acquire a lock on a triangle, then it released all triangles
it possessed, placed the bad triangle at the end of the worklist, and picked a new
bad triangle to work with. Each such incident was considered to be a conflict.

Finally, the DSTM2 implementation was derived from the lock-based imple-
mentation in the most natural way possible. As DSTM2 permits a number of
different transaction managers, the one with the best performance in this applica-
tion was chosen. A conflict here is an aborted transaction.

2The source code of JChorus and the datasets used in the experiments are available at
http://www.cse.psu.edu/∼swarat/chorus.



47

As we worked on an 8-core system, we ran these competing approaches varying
the number of threads from 1 to 8. Figure 3.17 depicts these comparisons. The
first set of measurements compared the speedup over the baseline sequential im-
plementation. We observe that we only start getting speedups over the sequential
code at 8 cores (though DSTM does far worse). We ascribe this to the fact that
JChorus works as a layer over Java, does not have direct access to the JVM or
hardware threads, and makes expensive method calls for various runtime checks.
In future, lower-level implementations, these overheads will hopefully come down.

The next set of measurements compared the self-relative speedup of the compet-
ing approaches—i.e, the ratio of the performance of an approach at n threads, to
that of the same approach at 1 thread. This measure tries to eliminate the effects
of constant overheads in a runtime. We observe that the self-relative speedups of
DSTM and our approach are comparable.

The third set of measurements compared the amount of contention in the two
systems as the number of threads increased. Here, we used the definition of con-
flicts given earlier, and plotted the change in the percentage of conflicts to the
total number of initiated retriangulation tasks (cavities) as the number of threads
increased.

3.5.2 Boruvka’s algorithm for minimum spanning trees

Our experiments with the minimum spanning tree application used a graph dataset
from the 9th Dimacs implementation challenge for shortest paths. The graph
represents a road network of the Western USA United States and has 6,262,104
nodes and 15,248,146 edges.

The JChorus implementation used was as in Figure 3.9. The initial partition
of the graph into divisions was random. The simple scheduler, with a breadth-first
strategy, was used.

The fine-grained-locking implementation locked the graph at the level of com-
ponents (recall that Boruvka’s algorithm is based on repeatedly merging the com-
ponents in a graph). If a component tried to acquire the lock for the component
to merge and could not, then it placed the current component at the end of the
worklist, released its lock, and proceeded to the next component. The DSTM2
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version was built from this implementation.
In this case, the DSTM2 implementation aborted due to lack of memory. Fig-

ure 3.18 shows the speedup over the baseline sequential implementation as well as
the self-relative speedup. Note the bizarre behavior of fine-grained locking at 8
threads. We suspect that this behavior is due to the garbage collector; however,
as we do not have a performance model of this version of Java, we are unsure of
its exact cause.
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Figure 3.17. Delaunay Mesh Refinement benchmark results. Top: Speedup results
over sequential baseline. Center: Speedup over 1-thread version. Bottom: Percentage
of tasks that end up in conflict (for JChorus conflicts occur when incomplete cavities
are discarded. For DSTM2 and Galois conflicts occur when tasks are aborted and rolled
back.)
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Chapter 4
The Habanero-Chorus

Programming Language

In this chapter we present the second programming model built on top of Con-
current Assemblies, Habanero-Chorus. The main programming abstraction in
Habanero-Chorus is an asynchronous isolated task, i.e. an asynchronous soft-
ware transaction. In a sense programming in Habanero-Chorus is no different
than programming Java with software transactions.

4.1 Main Abstractions in Habanero-Chorus

In Chapter 3 we showed that JChorus was a programming language suitable
for cautious algorithms, i.e. algorithms where the main concurrent tasks access
all necessary objects before performing any modification to the heap. However
programming more general algorithms in JChorus might prove challenging. In
this chapter we present a high level programming language Habanero-Chorus

which is suitable for programming general algorithms.
The main abstraction in Habanero-Chorus is that of an asynchronous iso-

lated task, i.e. tasks that may run concurrently but that operate in isolation.
Asynchronous isolated tasks are similar to software transactions, where either all
the effects of a task are visible to the others or none.

Consider, then, a scenario that is unavoidable in any dynamic approach to
isolation: tasks A and B, executing isolated code and each owning parts of the
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1: Mesh m = /* read input mesh */ !

2: List wl = "

         new List(m.getBad());!

3: foreach Triangle t in wl { !

4:   Cavity c = new Cavity(t);!

5:   c.expand();!

6:   c.retriangulate();!

7:   m.updateMesh(c); !

8:   wl.add(c.getBad());  }!

(b) 

(a) 

! 

A
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B

! 

u

Figure 4.1. A conflict

heap, conflict over an object u in the shared heap. (See Fig. 4.1; here nodes
represent shared objects, edges represent pointers between objects, the shaded
ovals represent the regions of objects owned by the two tasks.) Clearly, only one
of the two tasks—say A—should be allowed to access u. But what happens to B?
Letting B block while maintaining ownership of some data does not seem to be
a good idea: not only will tasks seeking B’s data now have to wait, in the worst
case, we will have deadlocks. Another option is to let the task manager retry
B. If we retry B too soon, we will have unnecessary contention that will degrade
performance; in the worst case, we will have livelocks. If we do not retry B soon
enough, do we release all objects held by B? If so, what if a task C acquires some
of this data before B is retried?

We note that the “right” strategy for concurrent execution here depends to a
large extent on the structure of the data, and it is imperative in these settings
that task and data management are somehow “coupled.” Unfortunately, this is not
the case in many traditional dynamic approaches to isolation. Rather than using
an operational semantics that relates tasks with data in a principled manner, they
often resolve conflicts using heuristics like exponential back-off [24] that do not offer
solid guarantees, are divorced from high-level programming models, and depend
on ad hoc parameters.

In contrast, the Habanero-Chorus execution model uses Concurrent As-
semblies to implement isolated asynchronous tasks. Each such task is modeled
as an assembly. If multiple tasks are trying to operate in the same region of the
shared heap in an isolated manner, then concurrency among them is not serving
any useful purpose, and we can do better if a single task takes over all the work.
This task has explicit ownership of a local region in the shared heap, and can only
access objects in that region. As in Concurrent Assemblies , such a task is called a
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1: Mesh m = /* read input mesh */
2: List wl = new List(m.getBad());
3: foreach Triangle t in wl {
4: Cavity c = new Cavity(t);
5: c.expand();
6: c.retriangulate();
7: m.updateMesh(c);
8: wl.add(c.getBad()); }

Figure 4.2. Delaunay mesh refinement (sequential)

(concurrent) assembly.
In case of conflicts among concurrently executing assemblies the merge op-

eration over the conflicting assemblies occurs. In particular, consider the sce-
nario in Figure 4.1: A and B are assemblies, and the shaded ovals depict their
owned regions. Now suppose B attempts to access the object u via a pointer. In
Habanero-Chorus, this conflict scenario is handled by letting B delegate itself
and its owned region to A. In essence, A and B are now “merged,” and from now
on, A: (1) owns the region that B passed to A; and (2) has the responsibility of
completing the task that B set out to do. We can see this as a form of delega-
tion, where a task that detects a conflict delegates its work to the task owning the
objects that caused the conflict.

At a high level of abstraction merging as above is the only communication
primitive in Habanero-Chorus, as merge is the only communication primitive
for Concurrent Assemblies . This delegation mechanism is transparent to the user
and is accessed by the programmer using a simple programming model similar to
that of software transactions. The core model contains only two parallel constructs:
a two-word keyword “async isolated” that forks an asynchronous task that is to
be executed in an isolated manner, and a keyword “finish” for synchronization.
This Cilk [25]-style framework for scoped fork-join parallelism allows creation and
joining of isolated tasks. While the “finish” construct (akin to “sync” in Cilk) is
a form of task synchronization, there is no data communication involved in it and
it does not introduce issues such as deadlocks or livelocks. Semantically, any two
tasks that join at the same program point and operate on different parts of the
shared data structure are causally independent, and can be executed in any order.

We observe that the above programming model is quite general and can be inte-
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1: main () {
2: for (t in initial set of bad triangles)
3: processTriangle(t); }

4: processTriangle(t) {
5: async isolated {
6: if (t in mesh) {
7: Cavity c = new Cavity(t);
8: c.expand();
9: c.retriangulate();

10: for (s in c.badTriangles())
11: processTriangle(s); }

}
}

Figure 4.3. Delaunay Refinement in the Habanero-Chorus programming model

grated with any imperative parallel language; in particular, we have implemented it
on top of the Habanero-Java language [26]. Note that the underlying program-
ming language may have other primitives for task creation that offer no guarantees
of isolation—for example, in Habanero-Java, there is a keyword “async” for cre-
ating such tasks. Such tasks do not fall within the ambit of Habanero-Chorus.

Provided access to shared memory only happens from within blocks declared
“async isolated,” isolation and race-freedom are guaranteed in Habanero-

Chorus. This is because the only objects accessed by an assembly A are those it
owns. Deadlocks and livelocks are ruled out because when two assemblies conflict,
one of them always delegates to the other, and the “merged” assembly continues
to progress.

4.1.1 Extended example: Delaunay mesh refinement

To see how the Habanero-Chorus programming and execution model work, let
us consider again the classic irregular application Delaunay mesh refinement [16,
27] discussed in Chapters 1 and 3. Given a set of points in the euclidean space,
a Delaunay triangulation partitions their convex hull into a set of triangles such
that no point lies in any triangle’s circumcircle. As before [16], there are further
qualitative constraints on the resulting triangles. To meet these constraints, a
Delaunay triangulation often needs to be refined; triangles that do not satisfy this
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property are “bad.” The mesh refinement problem is to retriangulate the mesh so
that there are no bad triangles left.

In a parallel version of the sequential algorithm presented in Section 3.1.1, the
isolation requirement is that c.retriangulate executes atomically—logically, a
cavity is a unit of isolation. In practice, cavities are almost always small, which
means that a typical instance of the problem has a significant amount of available
parallelism. At the same time, there is no a priori way here to tell if two parallel
tasks carrying out retriangulations in parallel will conflict—i.e., if during cavity
expansion, one task will demand access to a triangle under use by another. Conflict
management, therefore, has to be dynamic.

In the Habanero-Chorus approach to the problem, the programmer codes
the application as in Figure 4.3. The main function is a sequential loop that
calls the method processTriangle on each bad triangle. While executing a call
to the method processTriangle on input t, the Habanero-Chorus runtime
notices a block of code K marked as “async isolated”. Such a task is executed
by the Habanero-Chorus runtime in an isolated manner—i.e., as an assembly.
Therefore, in the current scenario, a new assembly B is created.

As in Concurrent Assemblies an assembly contains a region of the heap and a
thread of control. The thread of control in Habanero-Chorus assemblies may
contain code for the current async isolated tasks as well as for all the tasks that
have been delegated to it. This code is represented by sequential composition.

The code K is executed following standard sequential semantics—only, any new
triangle accessed by K is first added to its region by merging. Objects that are not
owned by any async isolated tasks are represented in Concurrent Assemblies as
belonging to “inert” assemblies (which have a fixed type ε). In the program on
Figure 4.3, the first triangle added to the assembly region will be t. This way,
the assembly can only access objects in its owned region. Unless there is a conflict
(see below), B completes the execution of K and proceeds to execute the code for
the delegated async isolated tasks if any. The challenging scenario is when K

tries to access a triangle in the owned region of some other assembly A (or vice
versa). In this conflict scenario, B delegates its work (all the code for itself and its
delegated tasks. to A. Thus, delegation coarsens the granularity of parallelism in
the heap, in a local and data-centric way.
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Note that the code that caused a conflict must be executed from the beginning
at a subsequent time. As our language is imperative, this code may, in general,
already have performed modifications to the heap; therefore, Habanero-Chorus

rolls back its effects by relying in the underlying mechanism of Concurrent Assem-
blies .

As mentioned in chapter 3 an important class of irregular applications are cau-
tious algorithms. In principle, we could use a static analysis [28] that identifies
an application or assembly as cautious—given such an analysis, we could elimi-
nate the runtime overhead of maintaining rollback logs in many cases (including
every assembly created in Delaunay refinement). The current implementation of
Habanero-Chorus does not use any such optimization.

Also, the retriangulation triangle t may have been removed from the mesh by
the time A gets to executing the delegated retriangulation (Line 6, Figure 4.3). In
this case, A simply skips it, and moves on to the next closure in QA.

Finally, note that a block marked “async isolated” is in a sense an asyn-
chronously executed transaction. The asynchrony entails that the recursive call
inside the method processTriangles is not really a nested transaction; instead,
it is a new asynchronously executed assembly.

4.2 Formal Semantics

Now we formalize a foundational subset of Habanero-Chorus, henceforth re-
ferred to as Core Habanero-Chorus.

Core Habanero-Chorus uses the same concurrency constructs as our imple-
mentation of Habanero-Chorus; however, the former makes several simplifying
assumptions about the sequential language underlying the model. For example,
statements in Core Habanero-Chorus do not call methods on objects, create
new objects, or declare new local variables. Also, we let objects be untyped and
assume that all objects are shared.

4.2.1 Syntax

Habanero-Chorus is implemented on top of a framework for fork-join paral-
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lelism. In Core Habanero-Chorus as well as our implementation, the program-
mer creates assemblies by enclosing imperative code blocks within the construct
“async isolated {...}”. The construct “finish {...}” defines a scope at the
end of which all assemblies created within the scope must join. Note that “finish”-
blocks and “async isolated” blocks can be arbitrarily nested.

Prog ::= Prog ; Prog | finish {Prog} |
async isolated {Prog}
async isolated {Stmt} | finish {Stmt}

Stmt ::= v := u.f | v.f := u | Stmt ; Stmt

where v, u ∈ Var and f ∈ F .

Figure 4.4. Syntax of Habanero-Chorus

Formally, let us assume a universe Var of variables and a universe F of field
names; also, let us assume a standard syntax for side-effect-free arithmetic expres-
sions Exp and boolean expressions Bexp. The syntax of programs Prog in Core
Habanero-Chorus is shown in Fig. 4.4. We denote by Var(P ) the set of vari-
ables appearing in a program P—these are assumed to be implicitly declared at
the beginning of P .

4.2.2 Semantics

The semantics of Habanero-Chorus will be given as a translation to Concurrent
Assemblies . The main idea of the translation is to map async isolated tasks to
concurrent assemblies of type τ and “free” objects as belonging to “inert” assemblies
of type ε. Each access to a reference is performed by nondeterministically choosing
to:

• merge along the edge with an assembly of type ε. This choice represent the
“acquisition” of a “free” object.

• merger along the edge with an assembly of type τ . This choice represents
a “conflict”, as the required object is owned by an active assembly. This
operation will result in a rollback and delegation.

• an access to the specific object, u.f = · · · . This choice represents a local
operation.
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• merge to accept incoming delegations. This choice represent a conflict, where
the assembly that detected the conflict will merge and delegate with the
assembly accepting the merge.

The isolation aspect of an execution of a Core Habanero-Chorus program is
translated directly into the local update operations in the Concurrent Assemblies
formal model semantics.

Let [[.]] by the translation function from Habanero-Chorus into Concurrent
Assemblies . In the sequel we sketch the function [[.]] :

[[u.f = v]] def
= merge([[u]]exp, ε, [[u.f]]exp = [[v]]exp; · · · )+

merger([[u]]exp, τ)+
[[u.f]]exp = [[v]]exp+
merge([[u.f]]exp = [[v]]exp; · · · )

[[Stmt1;Stmt2]]
def
= [[Stmt1]];[[Stmt2]]

Figure 4.5. Sematics of Core Habanero-Chorus

At each reference access, for example u.f, one of three things can happen:

• either u is a reference to a local object, in which case the program proceeds
to dereference u and continue or

• either u is not a reference to a local object, in which case the object may be
owned by another async isolated task or the object is “free” or

• some other assembly merges with the current assembly in which case the
combined assembly will continue to execute the code for the current assembly
followed by the code in the merging assembly.

Note that in the above semantics, we assume that delegation happens atomi-
cally. At the level of the implementation, this atomic delegation step could have
been built using straightforward, coarse-grained locking. This would make the
atomicity of delegation obvious. However, to achieve greater performance, our
implementation of delegation uses a more sophisticated fine-grained locking ap-
proach.

Section 4.3 describes this implementation and explains in detail how delegation
is handled in all conflict scenarios. The key points are that all assemblies in the
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system are ordered and can be locked, and locks on assemblies are obtained in
order. Therefore, if assembly A tries to delegate to assembly B just as B is trying
to delegate to A, both A and B will attempt to obtain locks on A and B in the
same order, and only one will succeed.

4.2.3 Properties of Habanero-Chorus

Now we discuss the safety and liveness guarantees that Habanero-Chorus offers.
Isolation. The property of isolation demands that a concurrent task read or

write shared-memory objects without interference from other tasks. In Habanero-

Chorus, an assembly can only read or write objects in its own region; also, if A1

delegates work to A2, the ability of A2 to read or write its objects is not compro-
mised. Therefore, Core Habanero-Chorus guarantees isolation. In our imple-
mentation of the model, the guarantee of isolation holds for all memory accesses
performed from within async isolated blocks; as in transactional memory sys-
tems, we do not offer guarantees on memory accesses made outside blocks declared
to be isolated.

Deadlock-freedom. There are only two synchronization operations in
Habanero-Chorus: scoped joining of assemblies and delegation. As the former
operation does not depend on data at all, it clearly does not introduce deadlocks.
As for delegation, the only plausible deadlock scenario involving two assemblies is
the following: “Assembly A tries to delegate to assembly B, B tries to delegate to
A, and neither can progress.” This scenario, however, is impossible in Habanero-

Chorus. If A and B try to simultaneously delegate to each other, then one of
the two requests (let us say the one from B) will be nondeterministically selected
and honored. Let u be the object that A needed to access in the statement that
triggered the delegation request from A to B. After B delegates to A, A will have
all objects that B previously owned. Therefore, the request from A will no longer
be a conflict—the request from A to access u will succeed, and A will be able to
progress.

It is easy to generalize the above argument to cyclic deadlocks between n assem-
blies. Of course, while our semantics for Core Habanero-Chorus is deadlock-
free, we have to ensure that our implementation of Habanero-Chorus semantics



60

is deadlock-free as well. We do so in Sec. 4.3.
Livelock-freedom. In Habanero-Chorus two assemblies A1 and A2 would

be livelocked if they constantly try to delegate to each other, none of them pro-
gressing. However, in such a scenario, Habanero-Chorus would destroy one of
the two assemblies, delegating its work to the other—the other assembly would
then be able to progress. This is in contrast to transactional memory systems
where there is always a non-zero probability of a livelock.

Bound on conflicts/commit ratio Finally, an extremely interesting prop-
erty of Core Habanero-Chorus is that in any execution, the number of conflicts
is bounded by the number of commits. This property works as a sort of per-
formance guarantee in high contention-scenarios, where, in many state-of-the-art
systems, there may be too many aborted tasks and too few commits. As we show
in Section 4.4, this property lets us achieve better performance in high-contention
scenarios than other approaches to irregular parallelism, such as Galois and soft-
ware transactional memory (with DSTM2 as an example).

4.3 Habanero-Chorus Implementation Details

A key aspect of our model, that presents challenges not present in other concur-
rency models, is the fact that ownership changes operate on sets of objects rather
than on the individual objects themselves. This is illustrated in a conflict scenario,
where an assembly will delegate its code as well as transfer its region of ownership
to the assembly it has a conflict with. We use a parallel version of a union-find data
structure for disjoint sets [21, 29] to implement this ownership transfer efficiently.

Figure 4.6 summarizes the main abstractions in the Habanero-Chorus run-
time: shared objects, assemblies, and isolated code.

Here, the “Assembly” objects represent a collection of “IsolatedCode” blocks
that represent all the tasks for whose execution the assembly is responsible.
When created using the Habanero-Chorus “async isolated” construct, the
“Assembly” object will contain an empty region and a single task in the queue. As
the program progresses, assemblies either accumulate data and tasks, finish their
execution and terminate, or delegate their data and tasks to another assembly and
terminate.



61

class hj.lang.Object {
// owner is only changed using CAS
private Assembly owner;

// unowned objects are acquired
// using this method
public boolean acquireObject(

Assembly newOwner);

// called on the first access to this
//object by the current owner
public void acquire();

// get the owner by navigating
// the union−find data structure
public Assembly owner();

// methods for rollback and restore
public Copy copyValues();
public void restoreValues(Copy v);

}

class hj.runtime.wsh.IsolatedCode {
// points to an Assembly in the
// union find structure
private Assembly owner;

// get the owner by navigating
// the union find data structure
public Assembly owner();

// holds information on how to
// restore objects on roll back
private List<Copy> rollbackLog;

// actual code from the user program
// is run through this method
public void run();

// the commit action, done
// in constant time
public void commit();

// restore all accessed object to
// their pre−execution state
public void rollback();

}

class hj.runtime.wsh.Assembly {
// parent pointer in the union−find tree
private Assembly parent;

// for union by rank
long rank;

// a unique assembly id
private long id;

// a queue of delegated isolated code
private Queue<IsolatedCode>

delegatedCodeQueue;

// find the representative assembly
public Assembly find();

// An assembly that finished the execution
// of all its tasks. Free objects are represented
// by belonging to a dead assembly
public boolean dead();

// implements the delegation through union
public void delegateTo(Assembly to);

// next IsolatedCode to run
public IsolatedCode next();

// acquire assemblies a1 and a2 in order
static Locks orderedLock(Assembly a1,

Assembly a2);
}

Figure 4.6. Principal abstractions in the Habanero-Chorus implementation
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1 Method Acquire, Input : Object obj
2 objAssembly = obj.owner();
3 currAssembly = this.owner();
4 if objAssembly == currAssembly then go to 13;
5 if acquireObject(obj, currAssembly) then go to 13

// Conflict! Delegate to other assembly
6 locks = orderedLock (currAssembly, objAssembly);

// If anything changed, retry
7 if (objAssembly 6= obj.owner() ∨ objAssembly.dead() ∨ currAssembly 6=

this.owner()) then
8 locks.release(); go to 2;

9 rollback (); // rollback the assembly’s state
10 delegateTo (objAssembly);
11 locks.release();
12 die ();
13 if (write operation ∧ obj /∈ writeSet) then
14 rollbackLog.add(obj.copyValues());
15 writeSet = writeSet ∪ {obj}

Figure 4.7. Algorithm for acquiring an object

During the execution of an “async isolated” block, the runtime needs to per-
form ownership checks when accessing shared objects. These checks are performed
by calling “Object.acquire()” whose pseudocode is shown in Figure 4.7. Note
that a given “async isolated” block needs to acquire a particular shared object
only once, the first time the object is accessed.

The algorithm for “Object.acquire” ensures that the check for object own-
ership and any delegation is done atomically with respect to the other assemblies
in the system. Lines 6 and 7, discussed below, are critical for guaranteeing this
atomicity.

“Object.acquire” first checks if the assembly that is executing the code al-
ready owns the object, in which case it can continue execution (adding the object
to its write set if necessary) on line 13. The assembly then tries to acquire the
object (line 5), which will succeed if the object is not currently owned by any other
assembly. If successful, the assembly can continue (line 13).

Otherwise, there is a conflict and the assembly needs to delegate itself to the
one that holds the ownership of the object. It first acquires the locks on the
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current assembly and on the assembly that owns the desired object (line 6). To
avoid deadlock, all assemblies that are created in the program have a unique ID
and the locks are always acquired in order.

Upon acquiring the locks, the assembly checks on line 7 if anything has changed
in the meantime. The assembly that owned the object might have delegated its
tasks to another assembly and transferred the ownership of its objects, the assembly
that owned the object might have finished the execution of all its activities and
died (transferring the ownership of its objects to the unowned object pool) or the
representative for the current assembly might also have changed (a consequence
of a requirement for the performance guarantees in the disjoint set data structure,
delegations can result in the representative for the current assembly to change). If
any of that has happened both assemblies are released and the process of acquiring
the object is retried.

If nothing has changed, the assembly proceeds with the delegation process. It
first rolls back all the changes it has made to the objects in its writeSet, then per-
forms the delegation, which copies all the IsolatedCode tasks from the currently
assembly’s queue to the queue of the object’s owner. This is done in constant
time by concatenating the delegation queues together. The delegation process also
transfers the ownership of all the objects owned by the current assembly to the
assembly it is delegation to. The assembly then releases the locks and dies (returns
the execution to the runtime).

As already mentioned, if all the accesses to the shared memory in the pro-
gram are done only inside the isolated blocks, our implementation of the isolated
construct using assembly delegation as described in the algorithm in Figure 4.7
guarantees isolation and race freedom.

We use a union-find data structure to track object ownerships. This allows us to
perform near-constant time object ownership checks, and constant time ownership
transfers when an assembly delegates itself to another one, as well as constant time
releases of all the objects owned by the assembly when the assembly finishes its
execution.

Figure 4.8 show the union-find data structure we use to track the ownership of
objects. Each object has an owner reference, which points to the assembly that
owns it. Assemblies merged by delegation are represented as a tree with the root
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owner	  

object	  A	  

owner	  

object	  B	  

owner	  

object	  C	  

parent	  

assembly	  1	  

parent	  

deadAssembly	  

parent	  

assembly	  2	  

parent	  

assembly	  3	  

owner	  

object	  D	  

parent	  

assembly	  4	  

owner	  

object	  E	  

owner	  

object	  F	  

Figure 4.8. Union find data structure to track object ownerships

being the representative assembly. Assemblies also have a parent reference that
points to their parent in this tree. On Figure 4.8, object C is owned by assembly
3, while objects A and B are owned by assembly 2. When an assembly delegates
to another assembly, it transfers the ownership of its objects, which will result
in setting either its parent reference to point to the assembly it delegated to or
vice-versa, depending on the shapes of their union-find trees.

To efficiently keep track of all the objects that have been released, assemblies
that have finished execution are marked as dead. An object is free if its owner
reference is NULL (which will be the case if it has never been acquired by anyone),
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or if the find algorithm determines that its owner is dead (which will be the case if
it has been acquired by some assembly and then the assembly or its delegate has
finished execution). In Figure 4.8, objects F, D and E are not owned by anyone.

Assemblies that are not at the root of the union-find tree are eventually garbage
collected when no objects point to them. References to these assemblies are re-
moved by find since it is performed with path compression. Assembly 1 in Fig-
ure 4.8 will become unreferenced when, for example, a find is performed on object
B.

4.4 Experimental Evaluation

We have used two platforms for our experimental evaluation: (a) a 64-way (single-
socket, 8 cores, 8 threads per core) 1.2 GHz UltraSPARC T2 (Niagara 2) with
32 GB main memory running Solaris 10 and Sun JDK 1.6 64-bit version; (b) 16-
way (quad-socket, quad-core per socket) Intel Xeon 2.4GHz system with 30GB of
memory and running Red Hat Linux (RHEL 5) and Sun JDK 1.6 64-bit version.
All benchmark were allocated 3.5 gigabytes in the JVM heap with the exception of
DSTM2 that needed a 15G heap to complete. Each benchmark was run 7 times in
each platform/programming model. The result reported are the average excluding
the first run to factor out just-in-time compilation effects.

4.4.1 Benchmarks

We evaluate our approach on a set of four different benchmarks described below.
The performance on each benchmark is measured only for the parallel stage of the
algorithms .

4.4.1.1 Boruvka minimum spanning tree

We consider a classical algorithm for computing the minimum spanning tree of an
undirected graph [14]. The main idea is to proceed by fusing nodes through their
minimal weight edge, maintaining for each fused set of nodes the minimal span-
ning tree. As the algorithm progresses it builds larger and larger local minimum
spanning trees until only one node remains. Initially a parallel task is spawned for
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1: start(nodes){
2: finish {
3: for(n in nodes)
4: mergeMinEdge(n);
5: }
6: }

7: mergeMinEdge(c) {
8: async isolated {
9: c’ = c.getMinEdge();

10: // merge c into c’
11: c’.addEdges(c);

12: // change x -> c into x -> c’
13: // change c -> x into c’-> x
14: // remove c -> c’ and c -> c’
15: c’.fixEdges(c);
16: }
17: }

Figure 4.9. Boruvka Minimum Spanning Tree pseudocode

1: start(nodes){
2: finish {
3: for 0...40000
4: task()
5: }
6: }

7: task() {
8: async isolated {
9: for 0..20 // 20 operations per task

10: v = *;
11: do * => insert(v) // 5%
12: * => delete(v) // 5%
13: * => contains(v) // 90%
16: }
17: }

Figure 4.10. HashTable and RBTree pseudocode
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each node in the graph. As they grow their local minimal spanning trees, the tasks
need to merge their local tree with the tree of their minimal weight edge neighbor.
This algorithm starts with the maximum parallelism available and the parallelism
decreases as the tree is built. For evaluation we used a graph representing the road
network for the state of New York from [30]. The road network graph consists
of 264,346 nodes and 733,846 edges. A pseudocode for the algorithm is shown in
figure 4.9. This benchmark is part of the Lonestar Benchmark Suite [19].

4.4.1.2 Delaunay mesh refinement

As mentioned earlier, this algorithm refines a 2D Delaunay mesh so that each
of the triangles satisfy a quality constraint. In our evaluation, we start with a
triangle mesh consisting of 100,770 triangles of which 47,768 do not satisfy the
quality constraint. This benchmark and the dataset used are part of the Lonestar
Benchmark Suite [19].

4.4.1.3 Hash table and Red-black tree

Whereas all other benchmarks are parallel implementations of some algorithm
to exploit the inherent data parallelism, these two benchmarks illustrate a sce-
nario where several clients access shared data structures concurrently. In these
benchmarks we model 40,000 concurrent tasks performing 20 operations each in
an isolated manner. Operations are chosen at random with a 90% chance of an
operation being a query, 5% being an insert and 5% being an update. The values
are also chosen at random. In the RBTree benchmark operations are performed
on a red-black tree while in HashTable they are performed on a 256-bucket hash
table. A pseudocode for the algorithms is shown in figure 4.10. These bench-
marks are based on the red-black tree and hashtable benchmark implementations
in DSTM2 [22].

4.4.2 Methodology

We compare our approach with several alternate parallel programming models :

• JChorus: This programming model described in detail in chapter 3
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• DSTM2: DSTM2 [22] provides an implementation of dynamic software
transactional memory. The red-black tree and hashtable benchmarks are
provided in the DSTM2 distribution. .

• HJ (SEQ): Habanero-Java [26, 31] sequential. The sequential baseline
versions of all benchmarks are implemented using the Habanero-Chorus

data structures and runtime and a sequential version of the code.

• HJ (ISO): Habanero-Java with isolation provided by the Habanero-

Java “isolated” construct. This multithreaded version of the benchmarks
were implemented using the same code and data structures as in Habanero-

Chorus. The isolated construct in Habanero-Java is implemented as
a coarse-grained lock.

• Java (FGL) The fine-grained locking implementation of the Delaunay and
Boruvka benchmarks. Several worker threads obtain work units from a global
first-in-first-out worklist, they attempt to acquire all needed shared objects
and if failed the work unit is returned to the worklist.

• Galois: In this programming model [32], algorithms are expressed as se-
quential operations on an unordered worklist. The runtime executes the
loop bodies in parallel and through annotations the programmer can specify
locking and logging policies as well as many policy options for the implemen-
tation of the abstract worklist. The Delaunay mesh refinement and Boruvka
minimum spanning tree benchmarks are included in the Galois distribution.
The red-black tree and hashtable benchmarks where implemented by us for
this paper using the graph data structures from the Galois distribution.

4.4.3 Experimental Results

A comprehensive collection of all timing results is shown on Table 4.2. We have
also extracted some of the most interesting results and plotted them on graphs
discussed below.
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Figure 4.11. Delaunay mesh refinement on a 16-core Xeon (Note: For reasons of scale
DSTM2 is left out of the plot. DSTM2 -1 thread: 962s, 16 threads: 177s)

4.4.3.1 Self relative speedups

Figures 4.15 and 4.16 show the speed up with respect to the 1 threaded execution
for Delaunay mesh refinement and Boruvka minimum spanning tree respectively.
Self relative speedup measures the scalability of the different approaches factoring
out their respective overheads. As shows in the figures Habanero-Chorus show
the most consistent speedup compared to all other approaches.

4.4.3.2 Execution times

Figures 4.11 and 4.12 show the execution times for Delaunay mesh refinement
on the 16-core Xeon and the 64-way UltraSPARC T2 respectively. Habanero-

Chorus shows a speedup of 5.4× over sequential HJ at 16 threads compared to
the next best approach which is Galois at 3.3× over sequential HJ at 14 threads
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Figure 4.12. Delaunay mesh refinement on a 64-way UltraSPARC T2 (Note: For
reasons of scale DSTM2 is left out of the plot . DSTM2 -1 thread: 795s, 64 threads: 81s)

(where Galois has a maximum speedup) on the Xeon architecture. The self-relative
speedups are 7.8× for Habanero-Chorus and 4.1× for Galois. On the Ultra-
SPARC T2 architecture, Habanero-Chorus peaks at 11.9× speedup against
sequential HJ at 32 threads whereas Galois again is the next best and peaks at
11.5× with 64 threads.

Figures 4.13 and 4.14 show the performance numbers for Boruvka minimum
spanning tree on the on the 16-core Xeon and the 64-way UltraSPARC T2 re-
spectively. Habanero-Chorus shows a speedup of 1.16× over sequential HJ at
16 threads being the third best approach bettered by Java fine-grained locking
at 1.37× (at 12 threads) and also by Galois at 1.36× (at 14 threads). The self-
relative speedups are 3.6× for Habanero-Chorus, 2.4× for Java FGL and 2.3×
for Galois. On the UltraSPARC T2 architecture, on the other hand, Habanero-

Chorus peaks at 2× speedup against sequential HJ at 16 threads whereas Galois
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Figure 4.13. Boruvka minimum spanning tree on a 16-core Xeon (Note: For reasons of
scale HJ (ISO) and DSTM2 are left out of the plot HJ (ISO)- 1 thread: 5.5s, 16 threads:
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is at 1.7× at 64 threads and both are bettered by Java FGL at 3.3× at 16 threads.
The self-relative speedups are 8.8× for Habanero-Chorus, 7.1× for Galois and
4.23× for Java FGL.

The speedups and performance numbers indicate that Habanero-Chorus is a
very competitive approach for parallelizing irregular applications, especially when
compared with other JVM based systems. The reduced speedup of Habanero-

Chorus and Galois over Java fine-grained locking on Boruvka tree is due to the
overhead involved in keeping track of ownerships, conflicts and the maintenance
of rollback logs, compared to a much lighter-weight implementation in Java using
fine-grained locks. In Boruvka, the transactions perform very little work, so the
relative impact of the bookkeeping overhead is very high, as evidenced by the
difference between self-relative and sequential-relative speedups.
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Habanero-Chorus is one to two orders of magnitude faster than both Ga-
lois and DSTM2 on HashTable and RBTree benchmarks. Since the Galois im-
plementation of these two benchmarks was straightforward and was done using
minimal programming effort (about the same effort that is required to write these
benchmarks in DSTM2 or Habanero-Chorus), we suspect that a more careful
implementation using more annotations and done by a Galois expert might yield
better results than what we have obtained in Table 4.2. Either way, we feel that
these two benchmarks are much better suited to illustrate the effects of speculation
discussed below, than for raw speed comparisons.

4.4.3.3 Aborted speculative work

DSTM2, Galois and Habanero-Chorus, like many approaches to parallelization
and concurrency, rely on speculative execution to improve performance. However,
in scenarios with relatively high contention, speculative execution might hinder
performance and resource usage. Figure 4.17 compares the impact of speculative
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Figure 4.16. Boruvka self relative speedup

execution for Habanero-Chorus Galois and DSTM2 in terms of the numbers
of commits and aborts for a given workload. Habanero-Chorus offers a lower
bound on the number of aborted speculative tasks compared to most transactional
memory implementations. As discussed in Section 4.2.3, Habanero-Chorus

guarantees that there will be only as many aborted speculative tasks as there are
successful ones, whereas DSTM2 only bounds the number of aborted tasks in rela-
tion to the total number of shared objects. Galois provides a probabilistic progress
guarantee based on exponential back-off for conflict resolution. Figures 4.17 (a)
and (b) show DSTM2 having an order of magnitude and Galois having two orders
of magnitude more aborts than Habanero-Chorus.

We have shown the HashTable and RBTree benchmark results with a 90% read-
only and 10% write operation mix, which is generally considered to be a realistic
medium-to-high contention scenario [24, 33]. We also tested even higher contention
scenarios, where as expected Habanero-Chorus fared even better compared to
Galois and DSTM2.
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Benchmark Model 1 2 4 8 16

RBTree
Habanero-Chorus 0.62 0.55 0.52 0.57 0.63
Galois 21.07 19.50 19.68 22.24 22.87
DSTM2 41.89 49.29 50.54 53.84 62.458

HashTable
Habanero-Chorus 5.58 2.19 1.83 1.90 1.98
Galois 182.92 164.10 196.63 166.84 153.124
DSTM2 414.54 266.84 290.72 268.23 306.64
HJ (SEQ) 5.27
Habanero-Chorus 7.65 4.03 2.98 1.70 0.97

Delaunay Galois 6.58 4.15 2.94 1.77 1.70
Mesh Java (FGL) 7.55 5.33 3.05 2.13 2.21
Refinement JChorus 13.37 9.02 6.73 5.88 6.11

HJ (ISO) 10.37 9.02 10.74 10.46 10.41
DSTM2 962.55 291.84 258.46 225.95 176.92
HJ (SEQ) 0.64
Habanero-Chorus 2.00 1.20 1.02 0.69 0.55

Boruvka Galois 1.09 0.83 0.73 0.69 0.57
Minimum Java (FGL) 1.11 0.86 0.58 0.47 0.55
Spanning JChorus 2.22 1.56 1.12 0.89 0.95
Tree HJ (ISO) 5.45 5.56 6.49 8.08 10.27

DSTM2 4.821 6.453 4.64 3.58 19.22

Table 4.1. Benchmark results a 16-core Xeon (time in seconds).

4.4.3.4 Overhead

Our performance numbers indicate that the sequential overhead of our Habanero-

Chorus implementation is similar to that of Galois. We note that as the work
performed in isolation increases, the relative overhead decreases, evidenced by the
different single thread slowdowns with respect to a sequential code.

4.4.3.5 Programmability

In this section we compare Habanero-Chorus, to the most successful approach
to our knowledge to parallelize irregular applications. Kulkarni, Pingali et al’s
Galois project[27, 34] aims to enhance thread-based, optimistic parallelism with
data-types for unordered and partially ordered sets, which give the runtime in-
formation about data dependencies [27], and heuristics for data partitioning [34].
The Galois programming system is a library on top of the Java programming
language. Being a library based approach its programmability is hampered by
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Benchmark Model 1 2 4 8 16 32 64

RBTree
Habanero-Chorus 3.43 3.21 4.16 4.26 4.36 4.42 4.56
Galois 106.64 109.53 110.01 123.28 110.13 124.17 123.52
DSTM2 203.25 197.46 206.10 188.39 201.17 228.33 260.35

HashTable
Habanero-Chorus 92.10 65.39 90.33 89.97 89.68 90.44 97.03
Galois 649.00 539.74 516.02 556.72 600.46 640.21 705.85
DSTM2 1636.41 1120.30 901.04 886.22 899.95 914.31 903.24
HJ (SEQ) 23.87
Habanero-Chorus 25.43 18.67 9.54 5.47 3.08 2.01 2.32

Delaunay Galois 23.39 15.59 8.08 4.67 3.02 2.48 2.07
Mesh Java (FGL) 24.72 17.32 10.15 6.21 4.72 4.33 4.98
Refinement JChorus 33.35 32.94 24.25 19.44 17.85 17.33 18.6

HJ (ISO) 50.30 48.23 48.58 48.99 49.00 48.78 48.83
DSTM2 795.34 423.83 282.02 187.95 133.12 101.32 81.01
HJ (SEQ) 1.26
Habanero-Chorus 5.52 2.81 1.49 0.88 0.63 0.63 0.73

Boruvka Galois 5.33 3.37 2.06 1.31 0.93 0.79 0.75
Minimum Java (FGL) 1.61 1.20 0.69 0.45 0.38 0.55 0.91
Spanning JChorus 14.25 11.36 9.86 9.4 10.7 11.75 13.62
Tree HJ (ISO) 37.74 37.30 37.75 38.14 41.19 46.32 50.25

DSTM2 19.22 18.66 12.72 8.66 7.76 10.97 10.77

Table 4.2. Benchmark results ona 64-way UltraSPARC (time in seconds).

1: void doCavity(Triangle start) {
2: async isolated {
3: if (start.isActive()) {
4: Cavity c = new Cavity(start);
5: c.initialize(start);
6: c.retriangulate();

// launch retriagnulation on new bad triangles.
7: Iterator bad = c.getBad().iterator();
8: while (bad.hasNext()) {
9: final Triangle b = (Triangle)bad.next();

10: doCavity(b);
}

// if original bad triangle was NOT retriangulated,
// launch its retriangulation again

11: if (start.isActive())
12: doCavity(start);

}
} // end isolated

}

Figure 4.18. Actual code for Delaunay Refinement in the Habanero-Chorus pro-
gramming model
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the heavy syntax of function calls and anonymous classes as we will show in the
sequel. Even factoring out the aforementioned aspects, the Galois project also
requires a heavy use of programmer annotations in order to achieve performing
implementations.

// The parallel loop
1: GaloisRuntime.foreach(badNodes,
2: new Lambda2Void<... >() {
3: public void call(GNode<Element> item,
4: ForeachContext<GNode<Element>> ctx) {

5: if (!mesh.contains(item, MethodFlag.CHECK_CONFLICT))
6: WorkNotUsefulException.throwException();

7: Cavity cavity = new Cavity(mesh);
8: cavity.initialize(item);
9: cavity.build();

10: cavity.update();

//remove the old data
11: List<...> preNodes = cavity.getPre().getNodes();
12: for (int i = 0; i < preNodes.size(); i++)
13: mesh.remove(preNodes.get(i), MethodFlag.NONE);

//add new data
14: Subgraph postSubgraph = cavity.getPost();
15: List<...> postNodes = postSubgraph.getNodes();
16: for (int i = 0; i < postNodes.size(); i++) {
17: GNode<Element> node = postNodes.get(i);
18: mesh.add(node, MethodFlag.NONE);
19: Element element = node.getData( MethodFlag.NONE);
20: if (element.isBad())
21: ctx.add(node, MethodFlag.NONE);

}
24: List<...> postEdges = postSubgraph.getEdges();
25: for (int i = 0; i < postEdges.size(); i++) {
26: ObjectUndirectedEdge<...> edge = postEdges.get(i);
27: mesh.addEdge(edge.getSrc(), edge.getDst(),
28: edge.getData(), MethodFlag.NONE);

}
29: if (mesh.contains(item, MethodFlag.NONE )) {
30: ctx.add(item, MethodFlag.NONE);

}
}

31: }, Priority. first(ChunkedFIFO.class)
.thenLocally(LIFO.class)) ;

Figure 4.19. Delaunay Refinement in the Galois programming model
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Figures 4.18 and 4.19 contrast the code for Delaunay Mesh Refinement in
Habanero-Chorus and Galois respectively to show the differences in programma-
bility between these two approaches. Galois uses three different types of annota-
tions: annotations to denote the scope of the parallel loop, performance oriented
hints and annotations regarding task scheduling policies. Lines 1-4 in In the afore-
mentioned example define the scope of the parallel loop.

Galois provides three performance oriented hints to annotate each access to
a shared data structure: NONE, CHECK_CONFLICT and SAVE_UNDO. By default in
each access to the shared data structure the runtime checks whether the nodes
are being in use by a concurrent tasks, and saves state information in a log to
provide for an eventual undo. The NONE hint instructs the runtime not to perform
any check nor save undo data. This flag reduces most of the overhead and is used
in lines 13, 18, 19, 28 and 30. The CHECK_CONFLICT hint instructs the runtime
not to save undo data and is used on line 5. Finally the annotation at line 31-
32 instructs the runtime to group activities into chunks and use a global FIFO
queue for the chunks, and a local LIFO stack for tasks in a chunk. Habanero-

Chorus in contrast, requires only an extra annotation with respect to sequential
Java code which is the fragment “async isolated” in line 2 to denote the scope
of the isolated asynchronous task.



Chapter 5
Related Work

We itemize the work related to ours as follows.

The Galois project. Of related work, the closest to us is Kulkarni, Pingali et al’s
Galois project, which also aims to parallelize irregular, data-intensive applications
(indeed, the Lonestar benchmarks that we use for assessing the performance of our
approach came out of this project). The solutions there [27, 34] are to enhance
thread-based, optimistic parallelism with data-types for unordered and partially
ordered sets, which give the runtime information about data dependencies [27], and
heuristics for data partitioning [34]. While these papers were inspirations for our
work, they do not have a language design where structures like assemblies actively
drive a parallel computation.

A more recent paper from the project [35] proposes amorphous parallelism—
the combination of locality and dynamism that we also exploit—as the essence of
parallelism in irregular applications, and establishes this with a profiling tool. A
subsequent technical report [18] proposes an approach to amorphous parallelism
using operators that morph and update local regions in a graph, substantiating
this with a masterly review of irregular applications. However, these papers do
not offer a concrete, high-level language, and do not have analogs of assemblies,
merges and splits. In fact, our paper may be seen as a response to the hope ex-
pressed in the conclusion of [18]: “...that insights into amorphous data-parallelism
in irregular algorithms will spur research into the design of abstract data types,
concrete representations, and synchronization mechanisms.”
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PGAS languages. Also related are Partitioned Global Address Space languages
like X10 [36, 37] and Chapel [38], which allow each thread to only access certain
partitions in the heap (for example, in X10, accesses outside a task’s “place” lead to
exceptions, just like our out-of-region accesses). However, these languages do not
offer high-level abstractions for dynamic creation and/or reconfiguration of places,
and are thus unable to capture the dynamic growth and shrinkage of assemblies
that is essential to our model.

Actors. The Actor model [39, 40] is one of the earliest data-centric models of
concurrency, and is the backbone of concurrency in Erlang, Scala, and Singular-
ity. Actors are active, concurrent entities that encapsulate some private data and
communicate via asynchronous message-passing. One point of difference between
Chorus and Actors is that the latter, in general, permits the transmission of refer-
ences via messages, and is therefore not race-free. On the other hand, in a version
of the Actor model where passing of references is disallowed, shared-memory ap-
plications such as ours would require copying of data. Finally, Chorus operates at
a high-level, and does not need hand-coded message-passing.

More recent work on isolation-typed, ultralightweight actors [41] presents an
actor framework where mutable messages do not have internal aliases, and can
only be owned by a single actor at a time. This system—called Kilim—bears
some similarities with ours. One difference is that it does not offer guarantees of
deadlock-freedom. More importantly, isolation here is statically enforced, obtained
by keeping the set of mutable objects reachable from one actor’s local variables
disjoint from another’s. It seems that this would make Kilim unsuitable for ir-
regular applications, where parallelism is highly instance-dependent, and involves
complex data-structures like meshes and graphs that are almost impossible to an-
alyze statically (the same critique applies to other static approaches to isolation,
including ownership types [42, 43] and linear types [44]). In contrast, we forgo the
static route altogether, instead building an execution model that maintains and
reconfigures isolation dynamically via merges and splits.

Language-level transactions. The language-level transaction [45, 46, 23] is a
composable, declarative abstraction for atomicity that is typically implemented
using transactional memory. This abstraction, however, was not designed with
locality of heap access in mind—as Kulkarni et al. [27, 34] point out, most im-
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plementations of transactional memory track reads and writes to the entire mem-
ory to detect conflicts, and consequently perform poorly in irregular applications.
Proposals to overcome these shortcomings include those for privatizing transac-
tions [47] and combining them with data-centric synchronization [48]. While these
systems share some design intentions with us, they do not have anything akin to
our assembly-level parallelism or merge and split abstractions.

In this work a flavor of software transactions, Habanero-Chorus, is defined
via a mapping into the Chorus abstract model. Hence the Concurrent Assemblies
abstract model can be seen as a lower-level formalism than that of language-level
transactions.

Habanero-Chorus provides a high-level minimalistic programming model
similar to Transactional Memory [49], with a single construct (async isolated)
to define blocks of code to be executed concurrently and in isolation. Habanero-

Chorus guarantees livelock-freedom, which is heuristic-based and implementation-
dependent in software transactional memory systems. One of the main objections
to software implementations of transactional memory has been their inability to
deliver competitive performance [50], Habanero-Chorus on the other hand, per-
forms on par with Galois, perhaps the most successful existing approach to irregular
data parallelism. Transactional memory is also not data centric.

Fine-grained Locking. Fine-grained locking has long been the most successful
method of achieving high performance for irregular parallel applications. It has a
data-centric approach, but is only usable by expert programmers. Programmability
is very poor, and there are no safety guarantees. The inadequacy of non-expert
programmers to express complex concurrent algorithms using fine-grained locking
is the main reason for the proliferation of higher-level parallel programming models.

Programming models such as OpenMP [51] and Cilk [25] provide efficient sup-
port for reductions in deterministic parallel programs, but those constructs are not
applicable to the nondeterministic, irregular parallelism supported by Habanero-

Chorus.
Solaris uses a synchronization scheme similar to delegation in its FireEngine

network stack [52]. The operating system has a fixed number of locks that corre-
sponds to the number of processors, and every network connection is assigned to
one of these locks using a hash. When a network connection requires processing,
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e.g., a packet arrives, if the current processor cannot acquire the lock, it queues the
packet for processing by the current lock holder. Aida implements a much more
general programming model that is applicable to a wide range of applications (not
just networking), does not require any operating system support, and the number
of tasks is not limited to the number of processors in the system.



Chapter 6
Conclusions

Isolation has long been one of the most basic concerns in parallel programming.
Despite the recent attention paid to software and hardware approaches to transac-
tional memory, achieving a practical balance between programmability, correctness
guarantees, and scalability in isolated execution has remained a thorny challenge
for the community. In this dissertation, we have taken a step towards meeting
this challenge in the context of a notoriously difficult problem domain: imperative
parallel computations over large, shared, irregular data structures.

The Concurrent Assemblies execution model provides a sound basis for mod-
eling parallel programs operating on shared irregular data structures. JChorus

and Habanero-Chorus programming languages offer several high-level correct-
ness guarantees. One can argue that JChorus is a suitable vehicle to implement
cautious algorithms, allowing the programmer to reason about their correctness by
only considering the relevant interleavings. On the other hand the Habanero-

Chorus programming language requires minimal programmer expertise— indeed,
the only extension needed to a fork-join parallel framework (such as OpenMP 3.0
or Habanero Java) is an isolated statement construct akin to that used in trans-
actional memory. However, Habanero-Chorus execution model is shown to be
orders-of magnitude faster on irregular applications than the DTSM2 software-
based transactional memory system, and to yield performance comparable to that
of fine-grain locking and the Galois system with a simpler and more general pro-
gramming model.

Regarding future work, one immediate goal is develop a sound basis for nested



85

software transactions [53] by adding a notion of hierarchy to Concurrent Assem-
blies. As we discussed earlier, some characteristics of parallel algorithms, i.e. cau-
tiousness, can be exploited to render more efficient programs. To further such an
objective we aim to develop a static analysis toolkit for optimizing Habanero-

Chorus programs. For example, some of our runtime overheads are unnecessary
for cautious applications [15], and we will benefit from static analyses establishing
that an assembly is cautious by using approaches such as [28]. On the language
design end, we would like greater integration of Habanero-Chorus with exist-
ing Habanero Java constructs for locality and directed synchronization, such as
hierarchical place trees [54] and phasers [55].

Finally, the Concurrent Assemblies model seems to provide notions that are
very useful when considering distribution. The fact that connected areas of the
heap are represented in the model provides a notion for data migration in dis-
tributed environments.
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