
932 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 18, NO. 3, JULY 2021

Online Partial Conditional Plan Synthesis for
POMDPs With Safe-Reachability Objectives:

Methods and Experiments
Yue Wang , Abdullah Al Redwan Newaz, Member, IEEE, Juan David Hernández, Senior Member, IEEE,

Swarat Chaudhuri, and Lydia E. Kavraki , Fellow, IEEE

Abstract— The framework of partially observable Markov
decision processes (POMDPs) offers a standard approach to
model uncertainty in many robot tasks. Traditionally, POMDPs
are formulated with optimality objectives. In this article, we study
a different formulation of POMDPs with Boolean objectives.
For robotic domains that require a correctness guarantee of
accomplishing tasks, Boolean objectives are natural formulations.
We investigate the problem of POMDPs with a common Boolean
objective: safe reachability, requiring that the robot eventually
reaches a goal state with a probability above a threshold while
keeping the probability of visiting unsafe states below a different
threshold. Our approach builds upon the previous work that
represents POMDPs with Boolean objectives using symbolic con-
straints. We employ a satisfiability modulo theories (SMTs) solver
to efficiently search for solutions, i.e., policies or conditional
plans that specify the action to take contingent on every possible
event. A full policy or conditional plan is generally expensive to
compute. To improve computational efficiency, we introduce the
notion of partial conditional plans that cover sampled events to
approximate a full conditional plan. Our approach constructs a
partial conditional plan parameterized by a replanning proba-
bility. We prove that the failure rate of the constructed partial
conditional plan is bounded by the replanning probability. Our
approach allows users to specify an appropriate bound on the
replanning probability to balance efficiency and correctness.
Moreover, we update this bound properly to quickly detect
whether the current partial conditional plan meets the bound and
avoid unnecessary computation. In addition, to further improve

Manuscript received August 8, 2019; revised December 17, 2020; accepted
January 13, 2021. Date of publication February 23, 2021; date of current
version July 2, 2021. This article was recommended for publication by Editor
L. Tapia upon evaluation of the reviewers’ comments. This work has been
supported in part by NSF grants 1139011, 1162076, 1317849, and 1514372.
(Yue Wang and Abdullah Al Redwan Newaz contributed equally to this work.)
(Corresponding author: Lydia E. Kavraki.)

Yue Wang was with the Department of Computer Science, Rice University,
Houston, TX 77005 USA. He is now with Facebook, Bellevue, WA 98004
USA (e-mail: yw27@rice.edu).

Abdullah Al Redwan Newaz was with the Department of Computer Science,
Rice University, Houston, TX 77005 USA. He is now with North Carolina
Agricultural and Technical State University, Greensboro, NC 27411 USA
(e-mail: redwan.newaz@rice.edu).

Juan David Hernández was with the Department of Computer Science,
Rice University, Houston, TX 77005 USA. He is now with the Centre in AI,
Robotics and Human-Machine Systems (IROHMS), School of Engineering,
Cardiff University, Cardiff CF24 3AA, U.K. (e-mail: juandhv@rice.edu).

Swarat Chaudhuri was with the Department of Computer Science, Rice
University, Houston, TX 77005 USA. He is now with the Computer Science
Department, The University of Texas at Austin, Austin, TX 78712 USA
(e-mail: swarat@rice.edu).

Lydia E. Kavraki is with the Department of Computer Science, Rice
University, Houston, TX 77005 USA (e-mail: kavraki@rice.edu).

This article has supplementary material provided by the authors and color
versions of one or more figures available at https://doi.org/10.1109/
TASE.2021.3057111.

Digital Object Identifier 10.1109/TASE.2021.3057111

the efficiency, we cache partial conditional plans for sampled
belief states and reuse these cached plans if possible. We validate
our approach in several robotic domains. The results show that
our approach outperforms a previous policy synthesis approach
for POMDPs with safe-reachability objectives in these domains.

Note to Practitioners—This article was motivated by two
observations. On the one hand, in robotics applications where
uncertainty in sensing and actions is present, the solution to the
classical partially observable Markov decision process (POMDP)
formulation is expensive to compute in general. On the other
hand, in certain practical scenarios, formulations other than the
classical POMDP make a lot of sense and can provide flexibility
in balancing efficiency and correctness. This article considers a
modified POMDP formulation that includes a Boolean objective,
namely safe reachability. This article uses the notion of a partial
conditional plan. Rather than explicitly enumerating all possible
observations to construct a full conditional plan, this work
samples a subset of all observations to ensure bounded replanning
probability. Our theoretical and empirical results show that the
failure rate of the constructed partial conditional plan is bounded
by the replanning probability. Moreover, these partial conditional
plans can be cached to further improve the performance. Our
results suggest that for domains where replanning is easy,
increasing the replanning probability bound usually leads to
better scalability, and for domains where replanning is difficult or
impossible in some states, we can decrease the bound and allocate
more computation time to achieve a higher success rate. Hence,
in certain cases, the practitioner can take advantage of their
knowledge of the problem domain to scale to larger problems.
Preliminary physical experiments suggest that this approach
is applicable to real-world robotic domains, but it requires a
discrete representation of the workspace. How to deal with
continuous workspace directly is an interesting future direction.

Index Terms— Partially observable Markov decision
processes (POMDPs) with Boolean objectives, planning,
robots, safe reachability, uncertainty.

I. INTRODUCTION

PLANNING robust executions under uncertainty, e.g.,
uncertain effects from imperfect controllers and sensors,

is a fundamental concern in robotics. Partially observable
Markov decision processes (POMDPs) [1] provide a standard
framework for modeling many robot tasks under uncertainty
(see [2]–[7]). The solutions to POMDPs are policies [1] or
conditional plans [8] that specify the actions to take under all
possible events during execution.

Traditionally, the goal of solving POMDPs is to find optimal
solutions with respect to a quantitative objective such as
that maximize (discounted) rewards [2], [3], [5], [8]–[13].
While this purely quantitative formulation is suitable for

1545-5955 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0002-9416-1336
https://orcid.org/0000-0003-0699-8038

WANG et al.: ONLINE PARTIAL CONDITIONAL PLAN SYNTHESIS FOR POMDPs 933

Fig. 1. Robot with imperfect actuation and perception navigates through
an office to pick up the blue can on the table while avoiding collisions with
uncertain obstacles such as floor signs and file cabinets.

many applications, some robotic settings demand synthesis
concerning Boolean requirements. For example, consider a
robot with imperfect actuation and perception working in an
office environment with uncertain obstacles, such as floor signs
and furniture (see Fig. 1). Due to uncertainty, the locations of
the robot and the obstacles are partially observable, and the
robot’s action effects and observations are both probabilistic.
In this probabilistic setting, a reasonable task requirement for
the robot is to eventually pick up the target object with a
probability above a threshold while keeping the probability of
collision below a different threshold. This task requirement is
naturally formulated as a Boolean objective written in temporal
logic. Moreover, formulating Boolean requirements implicitly
as quantitative objectives by assigning proper rewards for goal
states and unsafe states does not always yield good solutions
for certain domains [14]. Therefore, POMDPs with explicit
Boolean objectives are better formulations than quantitative
POMDPs in these domains.

Policy synthesis for POMDPs with Boolean objectives has
been studied in previous works [4], [15]–[17], where the
goal is to satisfy a temporal property with probability 1
(almost-sure satisfaction). A more general policy synthesis for
POMDPs with Boolean objectives is to synthesize policies
that satisfy a temporal property with a probability above a
threshold. In this work, we study this problem for the special
case of safe-reachability objectives, which require that with
a probability above a threshold, a goal state is eventually
reached while keeping the probability of visiting unsafe states
below a different threshold. Many robot tasks such as the one
in Fig. 1 can be formulated as a safe-reachability objective.

Our previous work [6] has presented a method called
bounded policy synthesis (BPS) for POMDPs with safe-
reachability objectives. BPS computes a valid policy over
the goal-constrained belief space rather than the entire belief
space to improve efficiency. The goal-constrained belief space
only contains beliefs visited by desired executions achieving
the safe-reachability objective and is generally much smaller
than the original belief space. BPS is an offline synthesis
method that computes a full policy before execution. Another
category of approaches to planning under uncertainty is online
planning that interleaves planning and execution [5], [12],
[13], [18]–[21]. Offline synthesis offers a strong correctness

guarantee, but it is difficult to scale. Online planning is much
more scalable and works well when replanning is likely to
succeed, but it often fails when replanning is difficult or
infeasible in some states, making it hard to ensure correctness.

In this work, our goal is to scale up our previous
BPS method further through online planning. Specifically,
we present a method called online partial conditional plan
synthesis (OPCPS) for POMDPs with safe-reachability objec-
tives. OPCPS is based on the new notion of partial conditional
plans, which only contains a sampled subset of all possible
events and approximates a full policy. OPCPS computes a
partial conditional plan parameterized by a replanning proba-
bility, i.e., the probability of encountering an event not covered
by the partial conditional plan, thus requiring replanning.
We offer a theoretical analysis of this framework, showing
that the failure rate of the constructed partial conditional plan
is bounded by the replanning probability. OPCPS allows users
to specify an appropriate bound on the replanning probability
to balance efficiency and correctness: for domains where
replanning is likely to succeed, increasing the bound usually
leads to better scalability, and for domains where replanning
is difficult or impossible in some states, users can decrease
the bound and allocate more time to achieve a higher success
rate.

To further improve the performance, OPCPS updates the
replanning probability bound properly during the partial con-
ditional plan construction. This bound update enables quicker
detection of the current partial conditional plan meeting the
bound and avoids unnecessary computation. For a better safety
guarantee, OPCPS checks whether the successor belief of
every uncovered observation of the constructed partial con-
ditional plan satisfies the safety requirement. Thus, OPCPS
guarantees that the robot still satisfies the safety requirement
when replanning fails. Section IV-B has more details on the
bound update and the safety guarantee of OPCPS. What is
more, we cache partial conditional plans for sampled belief
states and reuse these plans if possible to avoid repetitive
computation. In certain cases, as we explain in Section IV-C,
caching partial conditional plans leads to increased computa-
tional efficiency.

We evaluate OPCPS in the kitchen domain presented in [6]
and the tag domain [3]. We also validate OPCPS on a Fetch
robot for the domain shown in Fig. 1. The results demonstrate
that OPCPS scales better than BPS and can solve problems
that are beyond the capabilities of BPS within the time limit.

This article is a significant extension of the preliminary
findings presented in [22]. First, we extend the OPCPS algo-
rithm presented in [22] with partial conditional plan caching.
Second, we show that OPCPS with caching greatly improves
running times in the experiments. Third, we conducted a
physical experiment to validate OPCPS with the new caching
option on a Fetch robot. Hence, the algorithms presented
in this article can be regarded as improved versions of the
algorithms in [22].

II. RELATED WORK

The analysis of POMDPs can be divided into three
categories. In the first category, the objective is to find optimal

934 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 18, NO. 3, JULY 2021

solutions concerning quantitative rewards. Many previous
POMDP algorithms [3], [5], [8], [10]–[13] focus on maximiz-
ing (discounted) rewards. In the second category, the objective
combines the quantitative rewards of the traditional POMDPs
with notions of risk and cost. Recently, there has been a grow-
ing interest in constrained POMDPs [14], [23]–[25], chance-
constrained POMDP [26], and risk-sensitive POMDPs [27],
[28] that handle cost/risk constraints explicitly. The third
category consists of POMDPs with high-level Boolean require-
ments written in temporal logic. Some works [4], [15] have
investigated almost-sure satisfaction of POMDPs with tem-
poral properties, where the goal is to check whether a
given temporal property can be satisfied with probability 1.
A more general policy synthesis problem of POMDPs with
safe-reachability objectives has been introduced in our pre-
vious work [6]. It has been shown that for robotic domains
that require a correctness guarantee of accomplishing tasks,
POMDPs with safe reachability provide a better guaran-
tee of safety and reachability than the quantitative POMDP
formulations [6].

While several works [29], [30] propose different types of
reinforcement learning algorithms to address policy synthesis
problems for MDP, to the best of our knowledge, there are a
few works on policy synthesis based on reinforcement learning
for POMDPs [31]. In recent work, Flaspohleret al. [32] pre-
sented macroaction discovery from a low-level POMDP model
by chaining sequences of open-loop actions together with the
task-specific value of information. Bhattacharya et al. [33]
proposed a reinforcement learning-based POMDP solver for
autonomous sequential repair problems. They use a neural
network classifier for approximating successive policies.
Garg et al. [34] modeled adaptive grasping using tactile and
visual sensors as a POMDP problem and proposed a com-
bination of the model-based POMDP planning and imitation
learning to learn a robust strategy for grasping previously
unseen objects.

In this work, we focus on POMDPs with safe-reachability
objectives and evaluate our previous BPS approach [6]. While
BPS synthesizes a full policy (conditional plan) offline that
covers all possible events, our approach is an online method
that interleaves the computation of a partial conditional plan
and execution. Since a partial conditional plan only contains
a sampled subset of all possible events, our method achieves
better scalability than BPS and can solve problems that are
beyond the capabilities of BPS within the time limit.

The idea of partial conditional plans resembles the state-
of-the-art online POMDP algorithm based on determinized
sparse partially observable tree (DESPOT) [5], [12]. Both
DESPOT and our partial conditional plans contain a subset
of all possible observations to improve efficiency. There are
two major differences between our method and DESPOT.
First, DESPOT handles POMDPs with (discounted) rewards,
whereas our approach solves POMDPs with safe-reachability
objectives. Second, DESPOT contains all action branches,
whereas our approach constructs partial conditional plans
(see Fig. 2) that only contains one action per step, which is
part of the desired execution satisfying the safe-reachability
objective.

Fig. 2. Full conditional plan γk contains both solid and dotted branches.
a1, a0

2 , . . . are actions. o1 and o2 are observations. A partial conditional
plan γ

p
k contains only solid branches.

III. PROBLEM FORMULATION

We follow the notation in [6] for POMDPs with safe-
reachability objectives.

A. Partially Observable Markov Decision Process

Definition 1 (POMDP [1]): A POMDP is a tuple P =
(S,A,T ,O,Z), where S is a finite set of states, A is a finite
set of actions, T is a probabilistic transition function, O is a
finite set of observations, and Z is a probabilistic observation
function. T (s, a, s�) = Pr(s �|s, a) specifies the probability of
moving to state s� ∈ S after taking action a ∈ A in state s ∈ S.
Z(s �, a, o) = Pr(o|s�, a) specifies the probability of observing
o ∈ O after taking action a ∈ A and reaching s� ∈ S.

Due to uncertainty, states are partially observable, and
typically, we maintain a probability distribution (belief) over
all states b : S �→ [0, 1] with

∑
s∈S b(s) = 1. The set of all

beliefs B = {b : S �→ [0, 1] | ∑
s∈S b(s) = 1} is the belief

space.
The belief space transition function TB : B ×A ×O→ B

is deterministic. bo
a = TB(b, a, o) is the successor belief for a

belief b ∈ B after taking an action a ∈ A and receiving an
observation o ∈ O, defined according to Bayes rule: ∀ s� ∈ S,
bo

a(s
�) = ((Z(s�, a, o)

∑
s∈S T (s, a, s�)b(s))/(Pr(o|b, a))),

where Pr(o|b, a) = ∑
s �∈S Z(s�, a, o)

∑
s∈S T (s, a, s�)b(s) is

the probability of receiving the observation o after taking the
action a in the belief b.

Definition 2 (Plan): A k-step plan is a sequence σ =
(b0, a1, o1, . . . , ak, ok, bk) such that for all i ∈ (0, k],
the belief updates satisfy the transition function TB, i.e., bi =
TB(bi−1, ai , oi), where ai ∈ A is an action and oi ∈ O is an
observation.

B. Safe-Reachability Objective

In this work, we consider POMDPs with safe-reachability
objectives.

Definition 3 (Safe-Reachability Objective): A safe-
reachability objective is a tuple G = (Dest, Safe), where
Safe = {b ∈ B | ∑

s violates safety b(s) < δ2} is a set of safe
beliefs and Dest = {b ∈ Safe | ∑

s is a goal state b(s) > 1−δ1} ⊆
Safe is a set of goal beliefs. δ1 and δ2 are small values that
represent tolerance.

WANG et al.: ONLINE PARTIAL CONDITIONAL PLAN SYNTHESIS FOR POMDPs 935

A safe-reachability objective G compactly represents the
set �G of valid plans:

Definition 4 (Valid Plan): A k-step plan σ = (b0, a1,
o1, . . . , ak, ok, bk) is valid with respect to a safe-reachability
objective G = (Dest, Safe) if bk is a goal belief (bk ∈
Dest) and all beliefs visited before step k are safe beliefs
(∀ i ∈ [0, k), bi ∈ Safe).

Note that the safety requirement in the safe-reachability
objective only states that for every step of the plan, the
probability of being in an unsafe state is within the threshold.
This safety requirement does not necessarily extend to the
safety of the whole plan, i.e., the probability of visiting an
unsafe state is within the same threshold when executing the
plan starting from the initial belief. To achieve the safety of
the whole plan, we should consider the chance constraints
presented in [26], which is beyond the scope of this article
and a possible future extension of this work.

C. Solution to POMDPs With Safe-Reachability Objective

The solution to POMDPs with safe-reachability objective is
a valid policy that specifies the action to take contingent on
all possible events:

Definition 5 (Valid Policy): A valid policy π : B → A is
a function that maps a belief b ∈ B to an action a ∈ A.
A policy π defines a set of plans in belief space: �π = {σ =
(b0, a1, o1, . . .) | ∀i > 0, ai = π(bi−1), and oi ∈ O}. For each
plan σ ∈ �π , the action ai at each step i is chosen by the
policy π . For a valid policy, the set �π of plans defined by
the policy π is all valid plans.

D. Partial Conditional Plan

Computing an exact policy over the entire belief space B
is intractable, due to the curse of dimensionality [35]: B is
a high-dimensional space with an infinite number of beliefs.
To make the problem tractable, we can exploit the reachable
belief space Bb0 [3], [10]. Bb0 only contains beliefs reachable
from the initial belief b0 and is generally much smaller than B.
Therefore, instead of computing a policy π : B �→ A over the
entire belief space, we only compute a policy πBb0

: Bb0 �→ A
over the reachable belief space.

Our previous BPS work [6] has shown that the perfor-
mance of policy synthesis for POMDPs with safe-reachability
objectives can be further improved based on the notion of a
goal-constrained belief space BG . BG combines the reachable
belief space Bb0 and the set �G of valid plans defined by
the safe-reachability objective G. BG only contains beliefs
reachable from the initial belief b0 under a valid plan σ ∈ �G
and is generally much smaller than the reachable belief
space Bb0 .

Previous results [36]–[38] have shown that the problem
of policy synthesis for POMDPs is generally undecidable.
However, when restricted to a bounded horizon, this prob-
lem becomes PSPACE-complete [35], [39]. Therefore, BPS
computes a bounded policy π over the goal-constrained belief
space BG within a bounded horizon h, where the horizon
(number of steps) of the policy is less than a given bound h.

This bounded policy π is essentially a set of conditional
plans [8].

Definition 6 (Conditional Plan): A k-step conditional plan
γk ∈ �k is a tuple γk = (b, a, νk), where b ∈ B is a belief, a ∈
A is an action, and νk : O �→ �k−1 is an observation strategy
that maps an observation o ∈ O to a (k − 1)-step conditional
plan γk−1 = (b�, a�, νk−1) ∈ �k−1, where b� = TB(b, a, o) is
the successor belief.

Fig. 2 shows an example k-step conditional plan
γk = (b0, a1, νk). γk defines a set �γk of k-step plans σk =
(b0, a1, o1, . . . , ak, ok, bk). For each plan σk ∈ �γk , the action
a1 at step 1 is chosen by the k-step conditional plan γk , the
action a2 at step 2 is chosen by the (k − 1)-step conditional
plan γk−1 = νk(o1), . . . , and the action ak at step k is chosen
by the one-step conditional plan γ1 = ν2(ok−1).

Definition 7 (Valid Conditional Plan): A k-step conditi-
onal plan γk is valid with respect to a safe-reachability
objective G if every plan in �γk is valid (�γk ⊆ �G).

It is clear that the number of valid plans in a valid
k-step conditional plan γk grows exponentially as the horizon
k increases. To address this challenge, our method computes
partial conditional plans that only contain a small number of
valid plans to approximate full conditional plans:

Definition 8 (Partial Conditional Plan): A k-step partial
conditional plan is a tuple γ

p
k = (b, a,O p

k , ν
p
k), where b ∈ B

is a belief, a ∈ A is an action, O p
k ⊆ O is a subset of

the observation set O, and ν
p
k : O p

k �→ �
p
k−1 is a partial

observation strategy that maps an observation o ∈ O p
k to a (k−

1)-step partial conditional plan γ
p

k−1 = (b�, a�,O p
k−1, ν

p
k−1),

where b� = TB(b, a, o) is the successor belief. When O p
k = O,

the partial conditional plan γ
p

k is a full conditional plan
γk ∈ �k . For k = 1, the observation strategy of γ

p
1 is ν1 = ∅.

Similarly, a k-step partial conditional plan γ
p

k defines a set
�γ

p
k

of k-step plans σk in belief space, and we can define a
valid partial conditional plan:

Definition 9 (Valid Partial Conditional Plan): A k-step
partial conditional plan γ

p
k is valid with respect to a

safe-reachability objective G if every plan in �γ
p

k
is valid.

E. Replanning Probability

Since a partial conditional plan γ
p

k = (b, a,O p
k , ν

p
k) only

contains a subset of all observation branches at each step
(see Fig. 2), during online execution, it is possible that an
observation branch o ∈ O −O p

k that is not part of the partial
conditional plan is visited. In this case, we need to recursively
compute a new partial conditional plan for this new branch o.
However, since γ

p
k does not consider all possible observation

branches, it is possible that the action chosen by γ
p

k is invalid
for the new observation branch o, even for a valid partial
conditional plan. As a result, there are no partial conditional
plans for the new observation branch o and execution fails.

To preserve correctness, we would like to bound the failure
rate pfail(γ

p
k) = Pr(failure|γ p

k) measured under a valid partial
conditional γ

p
k = (b, a,O p

k , ν
p
k). However, computing pfail

is costly because it requires checking whether the action a
chosen by γ

p
k is valid for every uncovered observation branch

o ∈ O − O p
k , which essentially computes a full conditional

936 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 18, NO. 3, JULY 2021

Fig. 3. Overall structure of the OPCPS algorithm.

plan. Alternatively, we can easily compute the replanning
probability preplan(γ

p
k) = Pr(replanning|γ p

k) of reaching an
uncovered observation branch o ∈ O − O p

k and requiring
replanning

preplan
(
γ

p
k

) = ∑
o∈O p

k

Pr(o|b, a)preplan
(
ν

p
k (o)

)

+
∑

o∈O−O p
k

Pr(o|b, a). (1)

For the base case k = 1, preplan(γ
p

1) =∑
o∈O−O p

1
Pr(o|b, a).

The following theorem states that for a valid partial con-
ditional plan γ

p
k , the failure rate pfail(γ

p
k) is bounded by the

replanning probability preplan(γ
p

k):
Theorem 1: For any valid partial conditional plan γ

p
k ,

pfail(γ
p

k) ≤ preplan(γ
p

k).
Proof: We prove Theorem 1 by induction. First, we define

δfail(b) : B �→ {0, 1} as an indicator, and when δfail(b) = 1,
there are no valid partial conditional plans for belief b and
execution fails.

1) Base Case (k = 1): Since γ
p

1 = (b, a,O p
1 ,∅) is

valid, for every covered observation o ∈ O p
1 , b� =

TB(b, a, o) ∈ Dest is the terminal goal belief and thus
δfail(b�) = 0. Therefore,

pfail
(
γ

p
1

) = ∑
o∈O−O p

1

Pr(o|b, a)δfail(b
�)

≤
∑

o∈O−O p
1

Pr(o|b, a) = preplan
(
γ

p
1

)
since δfail(b�) ≤ 1 where b� = TB(b, a, o) is the succes-
sor belief for the uncovered observation o ∈ O −O p

1 .
2) Inductive Case (k > 1): Since γ

p
k = (b, a,O p

k , ν
p
k)

is valid, for every covered observation o ∈ O p
k , the

corresponding (k−1)-step partial conditional plan ν
p
k (o)

is also valid. Assume that pfail(ν
p
k (o)) ≤ preplan(ν

p
k (o)),

and then

pfail
(
γ

p
k

) = ∑
o∈O p

k

Pr(o|b, a)pfail
(
ν

p
k (o)

)

+
∑

o∈O−O p
k

Pr(o|b, a)δfail(b
�)

≤
∑

o∈O p
k

Pr(o|b, a)preplan
(
ν

p
k (o)

)

+
∑

o∈O−O p
k

Pr(o|b, a) = preplan
(
γ

p
k

)

Fig. 4. Component of partial conditional plan synthesis in Fig. 3.

since δfail(b�) ≤ 1, where b� = TB(b, a, o) is the succes-
sor belief for the uncovered observation o ∈ O −O p

k .

Therefore, for any k-step valid partial conditional plan γ
p

k =
(b, a,O p

k , ν
p
k), pfail(γ

p
k) ≤ preplan(γ

p
k). �

F. Problem Statement

Given a POMDP P , an initial belief b0, a replanning
probability bound δpreplan , a safe-reachability objective G, and
a horizon bound h, our goal is to synthesize a valid k-step
(k ≤ h) partial conditional plan γ

p
k = (b0, a,O p

k , ν
p
k) with a

replanning probability preplan(γ
p

k) ≤ δpreplan .
Since the replanning probability preplan(γ

p
k) is bounded

by δpreplan , by Theorem 1, γ
p

k guarantees achieving the given
safe-reachability objective with a probability at least 1−δpreplan .
Note that when preplan(γ

p
k) = 0, γ

p
k is a full conditional

plan.

IV. ONLINE PARTIAL CONDITIONAL PLAN SYNTHESIS

Fig. 3 shows the overall structure of OPCPS (Algorithm 1).
OPCPS follows the typical online planning paradigm [40]
that interleaves synthesis of valid partial conditional plans
(line 1) and execution (lines 6–8). If there are no valid partial
conditional plans within the horizon bound (line 2), execution
fails. Otherwise, OPCPS follows the generated partial condi-
tional plan until a goal belief is reached (line 9: execution
succeeds) or a new observation o ∈ O − O p

k is received
(line 13). In the latter case, OPCPS recursively replans for
the observation o. Next, we describe the partial conditional
plan synthesis algorithm (Fig. 4) used in OPCPS.

A. Partial Conditional Plan Synthesis

In partial conditional plan synthesis (Fig. 4 and
Algorithm 2), we replace the policy generation component in
BPS [6] with a new partial conditional plan generation (the
green dashed component). For completeness, we offer a brief
summary of the constraint generation and plan generation
components in BPS (see [6] for more details).

In constraint generation (Fig. 4), given a POMDP P ,
an initial belief b0, and a safe-reachability objective
G = (Dest, Safe), we first construct a constraint 	k to
symbolically encode the goal-constrained belief space over a

WANG et al.: ONLINE PARTIAL CONDITIONAL PLAN SYNTHESIS FOR POMDPs 937

Algorithm 1 OPCPS
Input: POMDP P = (S,A,T ,O,Z), Initial Belief binit ,

Replanning Probability Bound δpreplan ,
Safe-Reachability Objective G = (Dest, Safe),
Horizon Bound h

Output: A boolean: true - success, false - failure
/* Generate the partial conditional plan */

1 γ
p

k ← PartialContionalPlanSynthesis(P , binit , G, δpreplan ,
h)

2 if γ
p

k = ∅ then
/* No partial conditional plans: failure */

3 return false

4 repeat
5 (a,O p

k , ν
p
k)← γ

p
k

6 Execute action a
7 Receive observation o
8 binit ← TB(binit , a, o) /* Update belief */

9 if binit ∈ Dest then
/* reach a goal belief: success */

10 return true

/* Get the next partial conditional plan */

11 γ
p

k ← ν
p
k (o)

12 h ← h − 1 /* Reduce the horizon bound */

13 until γ
p

k = ∅
/* recursively perform OPCPS on new branch */

14 return OPCPS(P , binit , G, h)

bounded horizon k based on the encoding from bounded model
checking [42] (lines 15, 19, and 21). 	k compactly represents
the requirement of reaching a goal belief b ∈ Dest safely in
k steps. In constraint generation (Fig. 4), we use the bounded
model checking [42] encoding to construct 	k , which contains
three parts.

1) Start from the initial belief (line 15): b0 = binit .
2) Unfold the transition up to horizon k (line 19):∧k

i=1(bi = TB(bi−1, ai , oi)).
3) Satisfy the objective G (line 21): G(σk,G, k) =∨k

i=0(bi ∈ Dest ∧ (
∧i−1

j=0(b j ∈ Safe))).

Then, in plan generation (see Fig. 4), we compute a valid
plan σk by checking the satisfiability of 	k (line 23) through
an SMT solver [41]. Note that the horizon k restricts the plan
length, and thus, the robot can only execute k actions before
reaching a goal belief b ∈ Dest.

If 	k is satisfiable, the SMT solver returns a valid plan
σk = (bσk

0 , aσk
1 , oσk

1 , . . . , bσk
k). This valid plan σk only covers a

particular observation oσk
i at step i . In partial conditional plan

generation (see Fig. 4), we generate a valid partial conditional
plan γ

p
k with a replanning probability preplan(γ

p
k) ≤ δpreplan

(line 25) from this valid plan σk by sampling a subset O p
k ⊆ O

of observations (solid branches in Fig. 2) at each step, where
δpreplan is the given replanning probability bound. If this partial
conditional plan generation fails, we construct an additional
constraint φ to block invalid plans (line 27) and force the
SMT solver to generate another better plan. Note that φ is
only valid for current horizon k, and when we increase the

Algorithm 2 PartialConditionalPlanSynthesis
Input: POMDP P , Initial Belief binit , Replanning

Probability Bound δpreplan , Safe-Reachability
Objective G = (Dest, Safe), Horizon Bound h

Output: Valid partial conditional plan γ
p

k with
preplan(binit , γ

p
k) ≤ δpreplan

/* 	k is the constraint to symbolically encode

the goal-constrained belief space */

15 	k ← (b0 = binit) /* Start from initial belief */

16 k ← 0 /* k is the number of steps */

17 while k ≤ h do
/* Add transition at step k if k > 0 */

18 if k > 0 then
19 	k ← 	k ∧ (bk = TB(bk−1, ak, ok))

20 push(k) /* Push scope */

/* Add goal constraints at step k */

21 	k ← 	k ∧ G(σk,G, k)
22 repeat

/* Plan generation: check satisfiability of

	k via an satisfiability modulo

theory (SMT) solver [41] */

23 σk ← IncrementalSMT(k)
24 if σk �= ∅ then /* Find valid plan */

/* Generate partial conditional plan */

25 γ
p

k , φ = PartialConditionalPlanGeneration(P,
δpreplan ,G, σk, 1, k)

26 if ∅ = γ
p

k then /* Generation failed */
/* Blocking invalid plans */

27 	k ← 	k ∧ φ
28 else
29 return γ

p
k

30 until σk = ∅
31 pop(k) /* Pop goal and φ at step k */

32 k ← k + 1 /* Increase the horizon */

33 return ∅

horizon, we should pop the scope related to the additional
constraints φ from the stack of the SMT solver (line 31) so that
we can revisit σk with the increased horizon. The incremental
SMT solver can efficiently generate alternate valid plans by
maintaining a stack of scopes for the “knowledge” learned
from previous satisfiability checks [6], [41], [43].

If 	k is unsatisfiable and there is no valid plan for the
current horizon, we increase the horizon (line 32) and repeat
the above steps until a valid partial conditional plan is found
(line 29) or a given horizon bound is reached (line 17).
Next, we describe the new partial conditional plan generation
component.

B. Partial Conditional Plan Generation

In partial conditional plan generation (Algorithm 3), we con-
struct a valid partial conditional plan γ

p
k that satisfies the given

bound δpreplan from a valid plan σk . For each step i , we first
recursively construct a next-step conditional plan γ

p
next for oσk

i
(line 38). If the replanning probability preplan(γ

p
k) is greater

938 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 18, NO. 3, JULY 2021

Algorithm 3 PartialConditionalPlanGeneration
Input: POMDP P = (S,A,T ,O,Z), Replanning

Probability Bound δpreplan , Safe-Reachability
Objective G = (Dest, Safe), Valid k-Step Plan
σk = (bσk

0 , aσk
1 , oσk

1 , . . . , bσk
k), Step i , Horizon

Bound h
Output: Valid partial conditional plan γ

p
k with

replanning probability preplan(γ
p

k) ≤ δpreplan ,
Constraint φ for blocking invalid plans

34 if i > k then /* Reach the last step k */

/* Terminal belief: γ
p

k specifies nothing */

35 γ
p

k ← (bσk
k ,∅,∅,∅)

36 return γ
p

k ,∅
/* Initialize */

37 O p
k ← ∅, δ�preplan

← δpreplan , b← bσk
i−1, a← aσk

i , o� ← oσk
i

/* Recursively process next step */

38 γ
p

next ←
PartialConditionalPlanGeneration(P, δ�preplan

,G, σk , i+1, h)

39 if γ
p

next = ∅ then /* Construction failed */

40 Construct φ using Formula 2, return ∅, φ

/* Add o� to γ
p

k */

41 O p
k ← O p

k ∪ {o�}, ν
p
k (o�)← γ

p
next, γ

p
k ← (b, a,O p

k , ν
p
k)

42 while preplan(γ
p

k) > δpreplan do
/* Bound update */

43 δ�preplan
← δ�preplan

+ Pr(o�|b,a)(δ�preplan
−preplan(ν

p
k (o�))∑

o∈O−Op
k −{o� }

Pr(o|b,a)

44 o� ← sampled observation in O −O p
k based on the

probability of occurrence
45 b� ← TB(b, a, o�) /* Get new initial belief */

46 if b� ∈ M then /* Check the cache M */

47 γ
p

next ←M(b�)
48 else

/* Recursively construct a next-step partial

conditional plan */

49 γ
p

next ←
PartialConditionalPlanSynthesis(P, b�, δ�preplan

,G, i, h)
/* Update the cache */

50 M(b�)← γ
p

next

51 if γ
p

next = ∅ then /* Construction failed */

52 Construct φ using Formula 2, return ∅, φ

53 O p
k ← O p

k ∪ {o�}, ν
p
k (o�)← γ

p
next /* Add o� to γ

p
k */

/* Final safety check */

54 foreach observation o ∈ O −O p
k do

55 b� ← TB(b, a, o) /* Try observation o */

56 if b� �∈ Safe then /* Violates safety */

57 Construct φ using Formula 2, return ∅, φ

58 return γ
p

k , ∅

than the bound δpreplan (line 42), we add more observation
branches to γ

p
k by sampling a new observation o� according

to the probability of occurrence (line 44) and recursively
constructing a next-step partial conditional plan γ

p
next for o�

(line 49). This is another partial conditional plan synthesis
problem with a new initial belief b� (line 45) and can be solved
recursively using Algorithm 2 shown in Fig. 4.

If we successfully construct a valid γ
p

next for o�, we add o�
to γ

p
k (line 41 or 53). Otherwise, this input plan σk cannot be

an element of a valid partial conditional plan γ
p

k (σk �∈ �γ
p

k
).

Therefore, the prefix (bσk
0 , aσk

1 , oσk
1 , . . . , bσk

i−1, aσk
i) of the input

plan σk is invalid for the current horizon k and we construct
the following additional constraint φ to block invalid plans:

¬
((

b0 = bσk
0

) ∧ (
ai = aσk

i

)

∧
(

i−1∧
m=1

(
am = aσk

m

) ∧ (
om = oσk

m

) ∧ (
bm = bσk

m

)))
. (2)

φ blocks the invalid plans that have this prefix and avoids
unnecessary checks of these plans (checking σk has already
shown that these plans are invalid).

1) Updating Replanning Probability Bound: As we add
more observation branches to the current partial conditional
plan γ

p
k = (b, a,O p

k , ν
p
k), we update the replanning probabil-

ity bound δ�preplan
(line 43) for the remaining uncovered obser-

vation branches O −O p
k to avoid unnecessary computation.

Initially, O p
k is empty and δ�preplan

is the input bound
δpreplan (line 37). δ�preplan

bounds the replanning probability
preplan(ν

p
k (o)) of the next-step partial conditional plan ν

p
k (o)

for every remaining uncovered observation o ∈ O − O p
k .

δ�preplan
guarantees that the replanning probability preplan(γ

p
k)

satisfies the original bound δpreplan , i.e., preplan(γ
p

k) =∑
o∈O Pr(o|b, a)preplan(ν

p
k (o)) ≤ ∑

o∈O Pr(o|b, a)δ�preplan
≤

δ�preplan
= δpreplan since preplan(ν

p
k (o)) ≤ δ�preplan

based on the
definition of δ�preplan

.

During partial conditional plan generation, after adding a
new observation o� ∈ O − O p

k to the partial conditional
plan γ

p
k (line 41 or 53), we update δ�preplan

to avoid
unnecessary computation. Suppose that we construct a new
next-step partial conditional plan γ

p
next with the same

replanning probability α for every remaining uncovered
observation o ∈ O−O p

k −{o�}. Then, the replanning probabi-
lity of the observation branches O − O p

k is Pr(o�|b, a)
preplan(ν

p
k (o�)) + α

∑
o∈O−O p

k−{o�} Pr(o|b, a) ≤ ∑
o∈O−O p

k

Pr(o|b, a)δ�preplan
. Therefore, α ≤ δ�preplan

+ ((Pr(o�|b, a)

(δ�preplan
− preplan(ν

p
k (o�)))/(

∑
o∈O−O p

k−{o�} Pr(o|b, a))). Then,
the new bound for the remaining uncovered observation
o ∈ O − O p

k − {o�} should be δ�preplan
+ ((Pr(o�|b, a)

(δ�preplan
− preplan(ν

p
k (o�)))/(

∑
o∈O−O p

k−{o�} Pr(o|b, a))), and this
new bound is at least δ�preplan

since preplan(ν
p
k (o�)) ≤ δ�preplan

according to the definition of δ�preplan
. When the replanning

probability bound becomes larger, computing a partial
conditional plan is usually less expensive. Therefore, updating
the replanning probability bound (line 43) usually improves
efficiency and still makes the current partial conditional
plan γ

p
k satisfy the original bound δpreplan .

2) Safety Guarantee: After we construct a valid partial con-
ditional plan γ

p
k = (b, a,O p

k , ν
p
k), if the uncovered observation

set is not empty (O−O p
k �= ∅), then the replanning probability

preplan(γ
p

k) > 0. Though this replanning probability is bounded
by the given bound δpreplan and by Theorem 1, we know that
the execution failure rate pfail(γ

p
k) is also bounded by δpreplan .

WANG et al.: ONLINE PARTIAL CONDITIONAL PLAN SYNTHESIS FOR POMDPs 939

However, if preplan(γ
p

k) > 0, during execution, the robot might
receive an uncovered observation o ∈ O − O p

k and there
are no valid partial conditional plans for this observation o.
Then, execution fails due to unsuccessful replanning. In this
case, though we cannot achieve the safe-reachability objective,
a guarantee of the robot still satisfying the safety requirement
is preferable to the situation where the robot violates the safety
requirement. Our approach OPCPS can provide this safety
guarantee by checking whether the successor belief of every
uncovered observation o ∈ O −O p

k of the constructed partial
conditional plan γ

p
k is a safe belief (lines 54–57).

C. Caching

The algorithm we have discussed so far recursively con-
structs a partial conditional plan for every sampled belief state.
In some cases, those sampled beliefs are revisited under similar
k-step plans starting from the initial belief. For instance, dif-
ferent invalid k-step plans can lead to the same belief state that
violates our safety requirement. The original OPCPS presented
in [22] does not cache partial conditional plans for sampled
belief states, resulting in repetitive computation of partial
conditional plans for revisited belief states. Computing par-
tial conditional plans requires invoking the incremental SMT
solver, which is typically quite expensive. Therefore, it is more
efficient to reuse previous computed partial conditional plans
rather than constructing a new one from scratch. Moreover,
for revisited belief states that violate the safety constraints
and thus correspond to the empty partial conditional plan φ,
caching also helps quickly invalidate the plans since we cached
the empty partial conditional plan φ for these invalid beliefs.

Algorithm 3 augments the corresponding procedure
from [22] with caching. For every sampled belief state, we
first check whether this belief state is in the cache (line 46).
In this work, we are focusing on discrete POMDPs and the
belief state specifies the probability for each discrete state,
which can be represented as a finite vector. When checking
whether a belief state is in the cache, we are checking whether
the belief state matches any belief state in the cache, i.e., we
compare finite vectors. If we find this belief state in the cache,
we can reuse the previous computed partial conditional plan
(line 47). Otherwise, we compute a partial conditional plan
for this belief state as in the previous OPCPS (line 49). Then,
we cache the new partial conditional plans for this sampled
belief state (line 50). One can argue that in a large belief
space caching, each sampled belief might not be a feasible
approach. However, we are dealing with the goal constrained
belief space BG , which is generally much smaller than the
reachable belief space Bb0 . In our case, the lack of caching
previously computed partial conditional plan leads to a slower
convergence rate. To provide some intuitions, consider an
invalid plan where there is a constraint violation near the
goal belief but far from the initial belief. The incremental
SMT solver dodges this violation by slightly modifying the
k-step plan. In this case, the new k-step plan does not change
drastically compared to the previous invalid plan. When not
caching the previous solution conditional plans, OPCPS will
spend a lot of time to recursively compute a new partial
conditional plan at each planning step. It is reasonable to

Fig. 5. Kitchen domain [6]: a robot navigates through the kitchen to pick
up a green cup from the black storage area (reachability) while avoiding
collisions with uncertain obstacles (e.g., chairs) modeled as cylinders placed
in the yellow “shadow” region (safety).

recursively compute a partial conditional plan in very dynamic
or adversarial environments where one can observe constraint
violation in each planning step. However, in many applica-
tions, the environment is mostly static and it is more efficient
to reuse a previous solution rather than constructing a new one
from scratch.

D. Algorithm Complexity

In the worst case, OPCPS will generate a full conditional
plan (policy) and requires O(I |O|h) calls to the SMT solver
similar to BPS [6], where I is the number of interactions
between plan generation and partial conditional plan genera-
tion, |O| is the size of observation set O, and h is the horizon
bound. In general cases, OPCPS can achieve a much better
practical performance compared to BPS, due to the carefully
designed partial conditional plan generation with replanning
probability bound update and caching.

V. EXPERIMENTS

We test OPCPS on the kitchen domain (horizon bound
h = 30) presented in [6] and the classic tag domain [3]
(h = 100). We use Z3 [41] as our backend SMT solver. All
experiments were conducted on a 3.0 GHz Intel processor
with 32 GB of memory. We set the time-out to be 1800 s.
For all the tests of the kitchen and tag domains, the results
are averaged over 50 independent runs.

In a kitchen domain [6] (see Fig. 5), a robot needs to
eventually pick up a cup from the storage while avoiding
collisions with M uncertain obstacles. This kitchen domain
is an example scenario that requires a correctness guarantee
of accomplishing tasks, and POMDPs with safe-reachability
objectives provide a better correctness guarantee than the
traditional quantitative POMDP formulations [6].

The kitchen environment is discretized into N = 36 regions.
The actuation and perception of the robot are imperfect,
modeled as ten uncertain robot actions: move and look in four
directions, pick-up using the left or right hand. We assume
that the robot starts at a known initial location. However,
due to the robot’s imperfect perception, the location of the
robot and the locations of obstacles are all partially observable
during execution. This kitchen domain has a large state space
|S| = C(N, M) · N , where C(N, M) is the number of
M-combinations from the set of N regions. In the largest test
(M = 7), there are more than 108 states (see [6] for more
details regarding the kitchen domain POMDP setup). We also
validate the presented approach on a Fetch robot [44].

A. Performance

We evaluate our previous BPS method [6] and OPCPS
(with the replanning probability bound δpreplan ranging

940 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 18, NO. 3, JULY 2021

Fig. 6. Performance results for the kitchen domain as the bound δpreplan increases. Different plots correspond to tests with different numbers M of obstacles.
Missing data points in a plot indicate time-out. The red dashed line is the plot of time = 1800 s (time-out). The blue dashed line passes through the data
points generated by BPS. All the results are averaged over 50 independent runs. (a) Average computation time of one synthesis call. (b) Average number of
synthesis calls. (c) Average total computation time. (d) Average computation time per step.

from 0.1 to 0.9) in the kitchen domain with various numbers
of obstacles. BPS computes a full conditional plan that covers
all observation branches and is equivalent to OPCPS with
δpreplan = 0.

Fig. 6(a)–(d) shows the average computation time of one
synthesis call, the average number of synthesis calls, the aver-
age total computation time, and the average computation time
per step as the bound δpreplan increases, respectively. As shown
in Fig. 6(a) (semilog scale) and (b), the computation time of
one synthesis call decreases very quickly, while the number
of calls to partial conditional plan synthesis [see Fig. 6(b)]
does not increase much as δpreplan increases. Therefore, the
total computation time [see Fig. 6(c)] keeps decreasing as
δpreplan increases. In addition, as we can see from Fig. 6(c)
(semi-log scale), BPS can only scale up to four obstacles
within 1800 s, while OPCPS with replanning probability
bound δpreplan = 0.9 can scale up to seven obstacles. With
a small bound δpreplan = 0.1, we observe a big performance
gain compared to BPS: for the test case with M = 4
obstacles, the speedup is around five times, and for the test
case with M = 5 obstacles, BPS times out, while OPCPS with
δpreplan = 0.1 can solve this test in around 9 min. Therefore,
OPCPS achieves better performance than BPS in the tests
by computing partial conditional plans to approximate full
conditional plans. The results of the average computation
time per step [Fig. 6(d)] also show the same trend. These
results suggest that for domains where replanning is easy,
increasing the replanning probability bound usually leads to
better scalability.

B. Success Rate
For all the previous performance tests, the constructed

partial conditional plans by OPCPS with different
bounds δpreplan always achieve the safe-reachability objective
(success rate = 100%) because the robot can move in four
directions. When the robot enters a region surrounded by
obstacles in three directions, the robot can always move back
to its previous position, which means that replanning is always
possible. However, in some domains such as autonomous
driving and robot chefs, when the robot commits to an action
and finds something wrong, it is difficult or impossible to
reverse the action effects and replan. To evaluate how OPCPS
performs in these scenarios, we test OPCPS in the kitchen
domain with different numbers M of obstacles (M ≤ 4 since
BPS times out for tests with more than four obstacles), but
we disable the robot’s move-north action. Therefore, when
the robot performs move-south and enters a region surrounded
by obstacles in three directions, replanning fails. However,
the robot still satisfies the safety requirement, due to the
safety guarantee of OPCPS.

Fig. 7 shows the success rate as the bound δpreplan increases.
For all the tests, the success rate is always greater than
1.0−δpreplan (all data points are above the plot of success rate =
1.0 − δpreplan). This matches Theorem 1: the failure rate of a
valid partial conditional plan is bounded by the replanning
probability. Moreover, as the bound δpreplan decreases to 0,
OPCPS produces a valid full conditional plan with 100%
success rate. These results suggest that for some domains
where we anticipate that replanning is difficult, users can

WANG et al.: ONLINE PARTIAL CONDITIONAL PLAN SYNTHESIS FOR POMDPs 941

Fig. 7. Success rate as δpreplan increases. The green dotted line shows the plot of success rate = 1.0−δpreplan . The red dashed line is the plot of success rate = 1.0.
The blue dashed line passes through the data points generated by BPS.

Fig. 8. Replanning probability and total computation time as the bound δpreplan increases (M = 4). The green dotted line shows the plot of
replanning probability = δpreplan . The blue dashed line passes through the data points generated by BPS. (a) Average replanning probability. (b) Average
total computation time.

decrease the bound δpreplan and allocate computational resources
for a high success rate.

Note that the replanning probability bound is a conservative
upper bound of the failure rate since it pessimistically assumes
all the uncovered observation branches that require replanning
will fail, which is a rare case in practice. As we can see
from Fig. 7, even with a high replanning probability bound
δpreplan = 0.9, the failure rate is at most 30%, which is much
smaller than the given bound δpreplan = 0.9.

C. Gains From Updating Replanning Probability Bound

As we discussed in Section IV-B, updating the replanning
probability bound during partial conditional plan generation is
important for avoiding unnecessary computation and improv-
ing efficiency. To evaluate the gains from this bound update
step, we test OPCPS with and without the bound update in
the kitchen domain with M = 4 obstacles.

Fig. 8(a) and (b) (semilog scale) shows the average replan-
ning probability of the constructed partial conditional plans
and the average total computation time as the bound δpreplan

increases, respectively. As shown in Fig. 8(a), with both set-
tings (with and without the bound update) OPCPS constructs
a partial conditional plan with a replanning probability smaller
than δpreplan . However, OPCPS without the bound update con-
structs a partial conditional plan with a lower replanning
probability than that constructed by OPCPS with the bound
update. Therefore, OPCPS without the bound update performs
unnecessary computation and constructs a partial conditional
plan with more branches and thus spends more time than
OPCPS with the bound update, as shown in Fig. 8(b). For
the tests with δpreplan = 0.1, 0.2, 0.3 that take more time to
solve than those with δpreplan > 0.3, OPCPS with the bound
update achieves a 2–5 times speedup.

D. Gains From Caching

To evaluate the gains from caching, we compare the per-
formance of OPCPS with caching against BPS and OPCPS
without caching in the kitchen domain. For the kitchen domain
with the number of obstacles ranging from 5 to 7, we
compare the results from OPCPS with and without caching
only since BPS is not able to solve these problems within
the time limit. We evaluated OPCPS with or without caching
in the kitchen domain with different replanning probability
thresholds. In Fig. 9, we present a complete benchmark for the
performance evaluation of OPCPS with replanning probability
bound δpreplan = 0.5. We can see that OPCPS with caching
performs much better than BPS and OPCPS. In fact, OPCPS
with caching is 2.5 times faster on average. Our experimental
results demonstrate that OPCPS with caching gains computa-
tional efficiency by reusing previously computed conditional
plans.

However, it is often a question whether or not the better
performance of OPCPS with caching holds with different
replanning probability bounds δpreplan . Because of the huge
computational times involved (e.g., δpreplan = 0.7 with 5, 6, 7
obstacles require 72–96 CPU hours), we present a spot check
in Table I for assessing performance gains from caching with
different values of δpreplan . From Table I, we observe similar
trends for different replanning probability thresholds, e.g.,
δpreplan = 0.9, 0.8, 0.7, 0.6. Even when we choose a higher
replanning probability, OPCPS with caching is 40%–57%
faster than OPCPS without caching both in average and worst
case runs.

E. Physical Validation

We conducted several physical validations using the mobile
manipulator Fetch [44], which is equipped with a single
7-DOF arm, as well as a base-mounted laser scanner and a

942 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 18, NO. 3, JULY 2021

Fig. 9. Performance comparison between BPS, OPCPS with and without caching.

TABLE I

SPOT CHECK FOR ASSESSING PERFORMANCE GAINS FROM CACHING WITH DIFFERENT VALUES OF δpreplan . THE RESULTS SHOWED

THAT THE PERFORMANCE OF OPCPS IS SIGNIFICANTLY IMPROVED WITH CACHING FOR BOTH AVERAGE AND WORST CASE
CONDITIONS. ALL RESULTS ARE AVERAGED OVER 50 INDEPENDENT RUNS

Fig. 10. Physical validation of OPCPS for the domain shown in Fig. 1. (a) Initial state. (b) Move south. (c) Move west. (d) Move west. (e) Pick up the
target.

head-mounted 3-D camera for perception. These validations
were initially attempted in simulation using Gazebo [45],
where the Fetch can be simulated over different environ-
ments. Both the simulated and the real-world robots are fully
controlled via the robot operating system (ROS) [46]. The
software control architecture of the robot includes a simul-
taneous localization and mapping (SLAM) system [47]. The
SLAM utilizes the laser information to incrementally create
a 2-D map of the surroundings, which is used to provide a
global localization of the robot [48]. For navigation purposes,
the robot is equipped with a move action that takes the robot
to a given position and orientation with respect to a global
reference.

We validate OPCPS on the Fetch for the domain shown
in Fig. 1. The setup is similar to the kitchen domain. The
Fetch needs to pick up a target object (the blue can on the
table) while avoiding collisions with uncertain obstacles such
as floor signs and file cabinets, which can be placed in different
locations. The POMDP’s state space consists of locations of
the robot and objects. We use the Vicon tracking system [49]
to detect object locations, which is often accurate but can
still produce false negative and false positive due to occlu-
sion or inappropriate Vicon marker configurations on objects.

We estimate the false negative and false positive probabilities
by counting the false negative and false positive events during
100 Vicon detections. The POMDP’s probabilistic observation
function is defined based on the false negative and false
positive probabilities.

To test the effects of different replanning probability bounds,
we only allow the Fetch to move in three directions (west,
east, and south), similar to the setup of the success rate
experiments. Sometimes, the Fetch may fail to move its base
when given a move action command and stay in the same
place. We estimate the failure probability of these move
actions by counting the failure events during 100 move action
executions. The POMDP’s probabilistic transition function is
defined based on this failure probability. Fig. 10(a) shows the
initial state. There are two uncertain obstacles (a wet-floor
sign and a file cabinet). We test OPCPS with two bounds
δpreplan = 0.9 and δpreplan = 0.1.

With δpreplan = 0.9, after observing no obstacle in the south
direction, the Fetch decides to move south [see Fig. 10(b)]
because the partial conditional plan constructed with a high
replanning probability bound does not cover the case where the
Fetch is surrounded by obstacles and the wall. Then, replan-
ning fails, but the Fetch still satisfies the safety requirement

WANG et al.: ONLINE PARTIAL CONDITIONAL PLAN SYNTHESIS FOR POMDPs 943

Fig. 11. Physical validation of OPCPS with caching for the lab domain. The Fetch requires to reach the table in (d) while avoiding white cabinets. The red
rectangle in (a) and the blue rectangle in (d) represent the target and the start locations, respectively. The black line is the traversed path, while following the
policy generated by OPCPS with caching. (a) Initial state. (b) Move north. (c) Move north. (d) Final state: goal reached.

Fig. 12. Performance results for the tag domain as the replanning probability bound δpreplan increases. All the results are averaged over 50 independent runs.
(a) Average total computation time. (b) Average total computation time per step.

as shown in Fig. 10(b), due to the safety guarantee provided
by OPCPS.

However, with δpreplan = 0.1, after observing no obstacles
in the south direction, the Fetch decides to move west
[see Fig. 10(c)] because the partial conditional plan
constructed with a low replanning probability bound covers
the case where the robot is surrounded by obstacles. In order
to avoid this situation, the Fetch needs to move west and
gather more information. Then, the Fetch observes an
obstacle in the south direction and decides to move west
again [see Fig. 10(d)]. Next, the Fetch observes no obstacle
in the south direction, and now, it can move south. Unlike
the case shown in Fig. 10(b) where the robot is surrounded
by two obstacles and the wall, in the situation shown in
Fig. 10(d), if there is another obstacle in the south direction,
the Fetch can still move west since there are only two
obstacles. Finally, the Fetch moves to the table and picks up
the target object [see Fig. 10(e)].

We also validate OPCPS with caching on a Fetch robot in
the same lab domain. The Fetch needs to reach a goal location
while avoiding collisions with uncertain obstacles such as
file cabinets. In this experiment, there are two uncertain
obstacles (white cabinets) in the lab domain. The executions
of the policy generated by OPCPS with caching are shown in
Fig. 11(a)–(d). As shown in the figures, the Fetch success-
fully reached the goal location [near the table in Fig. 11(d)]
following the policy generated by OPCPS with caching. Our
physical experiments show that the assumptions made in this
work can correspond to realistic settings and that the behavior
of the real robot is intuitive and correct.

F. Tag Domain

To further demonstrate the advantage of OPCPS over
BPS, we evaluate OPCPS on a classic POMDP domain [3].

The task for the robot is to search for and tag a moving agent
in a grid with 29 locations. The agent follows a fixed strategy
that intentionally moves away from the robot. Both the robot
and the agent can move in four directions or stay. The robot’s
location is fully observable, whereas the agent’s location is
unobservable unless the robot and the agent are in the same
location.

This tag domain is challenging for BPS because of a large
number of observations (|O| = 30) and, more importantly,
a huge planning horizon for computing a full conditional
plan. However, computing a full conditional plan is unnec-
essary since replanning is easy in this domain. Fig. 12(a)
and (b) shows that the average total computation time and
the average computation time per step for the reachability
provide as the bound δpreplan increases. These results show a
similar trend to the previous kitchen domain tests: with a
small bound δpreplan = 0.1, we observe a big performance
gain compared to BPS. BPS cannot solve this test within
the 1800-s time limit, whereas OPCPS with δpreplan = 0.1
can solve this test in around 40 s and the computation time
per step is less than 1 s. We also perform a spot check for
assessing performance gains from caching in this domain as
well. With δpreplan = 0.4, we observe a significant performance
gain compared to OPCPS without caching. In this setting,
OPCPS without caching takes 658 s on average and 1541 s
on worst cases, whereas OPCPS with caching takes 254 s on
average and 611 s on worst case to solve this test.

VI. DISCUSSION

We presented a new approach, called OPCPS, to policy syn-
thesis for POMDPs with safe-reachability objectives. We intro-
duce the notion of a partial conditional plan to improve
computational efficiency. Rather than explicitly enumerating
all possible observations to construct a full conditional plan,

944 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 18, NO. 3, JULY 2021

OPCPS samples a subset of all observations to ensure bounded
replanning probability. Our theoretical and empirical results
show that the failure rate of a valid partial conditional plan
is bounded by the replanning probability. Moreover, OPCPS
guarantees that the robot still satisfies the safety requirement
when replanning fails. Compared to our previous BPS method
[6], OPCPS with a proper replanning probability bound scales
better in the tested domains and can solve problems that
are beyond the capabilities of BPS within the time limit.
The results also suggest that for domains where replanning
is easy, increasing the replanning probability bound usually
leads to better scalability, and for domains where replanning
is difficult or impossible in some states, we can decrease
the replanning probability bound and allocate more compu-
tation time to achieve a higher success rate. Our results also
indicate that by updating the replanning probability bound
during partial conditional plan generation, we can quickly
detect whether the current partial conditional plan satisfies
the bound and avoid unnecessary computation. Moreover,
compared to OPCPS without caching, OPCPS with caching
reuses constructed partial conditional plans for sampled belief
states and greatly improves the computational efficiency as
shown in the results.

In this work, we focus on discrete POMDPs. While many
robot applications can be modeled using this discrete rep-
resentation, discretization often suffers from the curse of
dimensionality. Investigating how to deal with continuous
POMDPs [8], [9], [11], [20] directly is a promising future
direction. OPCPS constructs partial conditional plans by sam-
pling observations according to the probability of occurrence
(Algorithm 3, line 44), which does not consider the importance
of observations [13]. How to extend OPCPS to handle critical
observations is another important ongoing question.

ACKNOWLEDGMENT

The authors would like to thank the reviewers for their
insightful comments. They also thank Bryce Willey and
Constantinos Chamzas for their assistance in the physical
experiments.

REFERENCES

[1] R. D. Smallwood and E. J. Sondik, “The optimal control of partially
observable Markov processes over a finite horizon,” Operations Res.,
vol. 21, no. 5, pp. 1071–1088, Oct. 1973.

[2] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and
acting in partially observable stochastic domains,” Artif. Intell., vol. 101,
nos. 1–2, pp. 99–134, May 1998.

[3] J. Pineau, G. Gordon, and S. Thrun, “Point-based value iteration: An
anytime algorithm for POMDPs,” in Proc. IJCAI, 2003, pp. 1025–1030.

[4] K. Chatterjee, M. Chmelik, R. Gupta, and A. Kanodia, “Qualitative
analysis of POMDPs with temporal logic specifications for robotics
applications,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), May 2015,
pp. 325–330.

[5] P. Cai, Y. Luo, D. Hsu, and W. S. Lee, “HyP-DESPOT: A hybrid parallel
algorithm for online planning under uncertainty,” Int. J. Robot. Res.,
Jul. 2020, doi: 10.1177/0278364920937074.

[6] Y. Wang, S. Chaudhuri, and L. E. Kavraki, “Bounded policy synthesis
for POMDPs with safe-reachability objectives,” in Proc. AAMAS, 2018,
pp. 238–246.

[7] S.-K. Kim, R. Thakker, and A.-A. Agha-Mohammadi, “Bi-directional
value learning for risk-aware planning under uncertainty,” IEEE Robot.
Autom. Lett., vol. 4, no. 3, pp. 2493–2500, Jul. 2019.

[8] J. Hoey and P. Poupart, “Solving POMDPs with continuous or large
discrete observation spaces,” in Proc. IJCAI, 2005, pp. 1332–1338.

[9] J. M. Porta, N. Vlassis, M. T. J. Spaan, and P. Poupart, “Point-based
value iteration for continuous POMDPs,” J. Mach. Learn. Res., vol. 7,
pp. 2329–2367, Nov. 2006.

[10] H. Kurniawati, D. Hsu, and W. Sun Lee, “SARSOP: Efficient point-
based POMDP planning by approximating optimally reachable belief
spaces,” in Proc. Robot., Sci. Syst. IV, Jun. 2008. [Online]. Available:
http://www.roboticsproceedings.org/rss04/p9.html

[11] H. Bai, D. Hsu, and W. S. Lee, “Integrated perception and planning in
the continuous space: A POMDP approach,” Int. J. Robot. Res., vol. 33,
no. 9, pp. 1288–1302, Aug. 2014.

[12] A. Somani, N. Ye, D. Hsu, and W. S. Lee, “DESPOT: Online POMDP
planning with regularization,” in Proc. NIPS, 2013, pp. 1772–1780.

[13] Y. Luo, H. Bai, D. Hsu, and W. S. Lee, “Importance sampling for
online planning under uncertainty,” Int. J. Robot. Res., vol. 38, nos. 2–3,
pp. 162–181, Mar. 2019.

[14] A. Undurti and J. P. How, “An online algorithm for constrained
POMDPs,” in Proc. IEEE Int. Conf. Robot. Autom., May 2010,
pp. 3966–3973.

[15] M. Svoreňová et al., “Temporal logic motion planning using POMDPs
with parity objectives: Case study paper,” in Proc. HSCC, 2015,
pp. 233–238.

[16] K. Chatterjee, M. Chmelík, and J. Davies, “A symbolic SAT-based algo-
rithm for almost-sure reachability with small strategies in POMDPs,” in
Proc. AAAI, 2016, pp. 3225 –3232.

[17] K. Chatterjee, M. Chmelík, R. Gupta, and A. Kanodia, “Optimal cost
almost-sure reachability in POMDPs,” Artif. Intell., vol. 234, pp. 26–48,
May 2016.

[18] L. P. Kaelbling and T. Lozano-Pérez, “Integrated task and motion
planning in belief space,” Int. J. Robot. Res., vol. 32, nos. 9–10,
pp. 1194–1227, Aug. 2013.

[19] D. Hadfield-Menell, E. Groshev, R. Chitnis, and P. Abbeel, “Modular
task and motion planning in belief space,” in Proc. IEEE/RSJ Int. Conf.
Intell. Robots Syst. (IROS), Sep. 2015, pp. 4991–4998.

[20] K. M. Seiler, H. Kurniawati, and S. P. N. Singh, “An online and
approximate solver for POMDPs with continuous action space,” in Proc.
IEEE Int. Conf. Robot. Autom. (ICRA), May 2015, pp. 2290–2297.

[21] L. P. Kaelbling and T. Lozano-Pérez, “Implicit belief-space pre-images
for hierarchical planning and execution,” in Proc. ICRA, May 2016,
pp. 5455–5462.

[22] Y. Wang, S. Chaudhuri, and L. E. Kavraki, “Online partial conditional
plan synthesis for POMDPs with safe-reachability objectives,” in Proc.
WAFR, 2018, pp. 127–143.

[23] J. D. Isom, S. P. Meyn, and R. D. Braatz, “Piecewise linear dynamic pro-
gramming for constrained POMDPs,” in Proc. AAAI, 2008, pp. 291–296.

[24] D. Kim, J. Lee, K.-E. Kim, and P. Poupart, “Point-based value iteration
for constrained POMDPs,” in Proc. IJCAI, 2011, pp. 1968–1974.

[25] P. Poupart, A. Malhotra, P. Pei, K.-E. Kim, B. Goh, and M. Bowling,
“Approximate linear programming for constrained partially observable
Markov decision processes,” in Proc. AAAI, 2015, pp. 3342–3348.

[26] P. Santana, S. Thiébaux, and B. Williams, “RAO*: An algorithm for
chance-constrained POMDP’s,” in Proc. AAAI, 2016, pp. 3308–3314.

[27] J. Marecki and P. Varakantham, “Risk-sensitive planning in partially
observable environments,” in Proc. AAMAS, 2010, pp. 1357–1368.

[28] P. Hou, W. Yeoh, and P. Varakantham, “Solving risk-sensitive
POMDPs with and without cost observations,” in Proc. AAAI, 2016,
pp. 3138–3144.

[29] D. Hadfield-Menell, S. Milli, P. Abbeel, S. J. Russell, and A. Dragan,
“Inverse reward design,” in Proc. Adv. Neural Inf. Process. Syst., vol. 30,
2017, pp. 6765–6774.

[30] Y. Chow, O. Nachum, E. Duenez-Guzman, and M. Ghavamzadeh, “A
Lyapunov-based approach to safe reinforcement learning,” in Proc. Adv.
Neural Inf. Process. Syst., vol. 31, 2018, pp. 8092–8101.

[31] H.-T.-L. Chiang, A. Faust, M. Fiser, and A. Francis, “Learning navi-
gation behaviors End-to-End with AutoRL,” IEEE Robot. Autom. Lett.,
vol. 4, no. 2, pp. 2007–2014, Apr. 2019.

[32] G. Flaspohler, N. A. Roy, and J. W. Fisher, III., “Belief-dependent
macro-action discovery in POMDPs using the value of information,” in
Proc. Adv. Neural Inf. Process. Syst., vol. 33, 2020. [Online]. Available:
https://papers.nips.cc/paper/2020/hash/7f2be1b45d278ac18804b79207a2
4c53-Abstract.html

[33] S. Bhattacharya, S. Badyal, T. Wheeler, S. Gil, and D. Bertsekas,
“Reinforcement learning for POMDP: Partitioned rollout and policy
iteration with application to autonomous sequential repair problems,”
IEEE Robot. Autom. Lett., vol. 5, no. 3, pp. 3967–3974, Jul. 2020.

http://dx.doi.org/10.1177/0278364920937074

WANG et al.: ONLINE PARTIAL CONDITIONAL PLAN SYNTHESIS FOR POMDPs 945

[34] N. P. Garg, D. Hsu, and W. S. Lee, “Learning to grasp under uncertainty
using POMDPs,” in Proc. Int. Conf. Robot. Autom. (ICRA), May 2019,
pp. 2751–2757.

[35] C. H. Papadimitriou and J. N. Tsitsiklis, “The complexity of Markov
decision processes,” Math. Oper. Res., vol. 12, no. 3, pp. 441–450, 1987.

[36] A. Paz, Introduction to Probabilistic Automata. New York, NY, USA:
Academic, 1971.

[37] O. Madani, S. Hanks, and A. Condon, “On the undecidability of
probabilistic planning and related stochastic optimization problems,”
Artif. Intell., vol. 147, nos. 1–2, pp. 5–34, Jul. 2003.

[38] K. Chatterjee, M. Chmelík, and M. Tracol, “What is decidable about par-
tially observable Markov decision processes with ω-regular objectives,”
J. Comput. Syst. Sci., vol. 82, no. 5, pp. 878–911, 2016.

[39] M. Mundhenk, J. Goldsmith, C. Lusena, and E. Allender, “Complexity
of finite-horizon Markov decision process problems,” J. ACM, vol. 47,
no. 4, pp. 681–720, Jul. 2000.

[40] S. Ross, J. Pineau, S. Paquet, and B. Chaib-Draa, “Online planning
algorithms for POMDPs,” J. Artif. Intell. Res., vol. 32, pp. 663–704,
Jul. 2008.

[41] L. De Moura and N. Bjørner, “Z3: An efficient SMT solver,” in Proc.
TACAS, 2008, pp. 337–340.

[42] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu, “Bounded
model checking,” Adv. Comput., vol. 58, pp. 117–148, 2003.

[43] N. T. Dantam, Z. K. Kingston, S. Chaudhuri, and L. E. Kavraki, “An
incremental constraintbased framework for task and motion planning,”
Int. J. Robot. Res., vol. 37, no. 10, pp. 1134–1151, Sep. 2018.

[44] M. Wise, M. Ferguson, D. King, E. Diehr, and D. Dymesich, “Fetch
and freight: Standard platforms for service robot applications,” in Proc.
Workshop Auton. Mobile Service Robots, Held Int. Joint Conf. Artif.
Intell., 2016.

[45] N. Koenig and A. Howard, “Design and use paradigms for Gazebo, an
open-source multi-robot simulator,” in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst. (IROS), vol. 3, Sep./Oct. 2004, pp. 2149–2154.

[46] M. Quigley et al., “ROS: An open-source robot operating system,” in
Proc. ICRA Workshop Open Source Softw., 2009.

[47] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. Cambridge,
MA, USA: MIT Press, 2005.

[48] G. Grisetti, C. Stachniss, and W. Burgard, “Improved techniques for grid
mapping with rao-blackwellized particle filters,” IEEE Trans. Robot.,
vol. 23, no. 1, pp. 34–46, Feb. 2007.

[49] Vicon. Accessed: Jun. 2019. [Online]. Available: https://www.vicon.com/

Yue Wang received the Ph.D. degree in computer
science from Rice University, Houston, TX, USA,
in 2018.

He is currently a Research Scientist at Facebook,
Menlo Park, CA, USA. His research interests include
robotics, formal methods, and task and motion plan-
ning/synthesis for robotic applications in adversarial
and/or partially observable environments.

Abdullah Al Redwan Newaz (Member, IEEE)
received the B.Sc. degree in mechanical engineering
from the Rajshahi University of Engineering and
Technology, Rajshahi, Bangladesh, in 2011, and
the M.S. and Ph.D. degrees in information sci-
ence from the Japan Advanced Institute of Science
and Technology, Nomi, Japan, in 2014 and 2017,
respectively.

He was a Post-Doctoral Researcher with Nagoya
University, Nagoya, Japan, and Rice University,
Houston, TX, USA, from 2017 to 2018 and from

2018 to 2020, respectively. He is currently a Post-Doctoral Research Associate
with North Carolina Agricultural and Technical State University, Greens-
boro, NC, USA. His research interests include autonomous systems, applied
machine learning, motion planning under uncertainty, optimal control, policy
synthesis, model checking, and related domains.

Juan David Hernández (Senior Member, IEEE)
received the B.Sc. degree in electronic engineer-
ing from Pontifical Xavierian University, Cali,
Colombia, in 2009, the M.Sc. degree in robotics and
automation from the Technical University of Madrid,
Madrid, Spain, in 2012, and the Ph.D. degree in
technology (robotics) from the University of Girona,
Girona, Spain, in 2017.

He worked as a Robotics Research Engineer at
the Netherlands Organisation for Applied Scientific
Research (TNO), The Hague, The Netherlands, from

2017 to 2018. He was a Post-Doctoral Research Associate with Rice Univer-
sity, Houston, TX, USA, from 2018 to 2019. He was a Senior Engineer for
simulation of autonomous systems at Apple Inc., Sunnyvale, CA, USA, from
2019 to 2020. He is currently a Lecturer (Assistant Professor) with Cardiff
University, Cardiff, U.K., where he is part of the Centre for AI, Robotics
and Human-Machine Systems (IROHMS). His research is focused on motion
planning algorithms and human–robot collaboration.

Dr. Hernández is a Senior Member of the IEEE Robotics and Automation
Society.

Swarat Chaudhuri received the bachelor’s
degree in computer science from IIT Kharagpur,
Kharagpur, India, in 2001, and the Ph.D. degree
in computer science from the University of
Pennsylvania, Philadelphia, PA, USA, in 2007.

He held faculty positions at Rice University,
Houston, TX, USA, and Pennsylvania State
University, State College, PA, USA. He is currently
an Associate Professor of computer science with
The University of Texas at Austin, Austin, TX,
USA. His research lies in the intersection of

programming languages (PLs) and machine learning (ML). Specifically,
he studies ways in which PL and ML techniques can be brought together
to build robust and trustworthy intelligent systems targeting complex tasks,
such as software development and robot control.

Dr. Chaudhuri was a recipient of the National Science Foundation
CAREER Award, the ACM SIGPLAN John Reynolds Doctoral Dissertation
Award, and the Morris and Dorothy Rubinoff Dissertation Award from the
University of Pennsylvania.

Lydia E. Kavraki (Fellow, IEEE) received the
Ph.D. degree in computer science from Stanford
University, Stanford, CA, USA, in 1996.

She is currently the Noah Harding Professor of
computer science, a Professor of bioengineering,
a Professor of electrical and computer engineering,
and a Professor of mechanical engineering with
Rice University, Houston, TX, USA. She is also the
Director of the Ken Kennedy Institute, Rice Uni-
versity. Work in her group has produced the Open
Motion Planning Library (OMPL), an open-source

library of motion planning algorithms. The library links directly with the
Robot Operating System (ROS) and MoveIt, and it is heavily used in industry
and in academia. She has authored more than 220 peer-reviewed journal and
conference publications and is one of the authors of the widely used robotics
textbook titled Principles of Robot Motion (MIT Press). Her research interests
span robotics, artificial intelligence (AI), and biomedicine. In robotics and AI,
she develops algorithms for motion planning for high-dimensional systems
with kinematic and dynamic constraints, integrated frameworks for reasoning
under sensing and control uncertainty, novel methods for learning and for
using experiences, and ways to instruct robots at a high level and collaborate
with them. In biomedicine, she develops computational methods and tools to
model protein structure and function, understand biomolecular interactions,
aid the process of medicinal drug discovery, and help integrate biological and
biomedical data for improving human health.

Dr. Kavraki is a member of the National Academy of Medicine (NAM),
the Academy of Medicine, Engineering, and Science of Texas (TAMEST),
the International Academy of Medical and Biological Engineering (IAMBE),
and the Academy of Athens. She is also a fellow of the Association for
Computing Machinery (ACM), the American Association for the Advance-
ment of Science (AAAS), the Association for the Advancement of Artificial
Intelligence (AAAI), and the American Institute for Medical and Biological
Engineering (AIMBE). She received the Association for Computing Machin-
ery (ACM) Grace Murray Hopper Award, the ACM Athena Lecturer Award,
the ACM/AAAI Allen Newell Award, and the Robotics Pioneer Award from
the IEEE Robotics and Automation Society.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

