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ABSTRACT

LOGICS AND ALGORITHMS FOR SOFTWARE MODEL CHECKING

Swarat Chaudhuri

Rajeev Alur

Software model checking, an algorithmic, specification-driven approach to software

analysis, has emerged as an active area of research in the last few years, produc-

ing a number of successful tools. The central question here is: does a model of a

procedural program (typically a context-sensitive or pushdown abstraction) satisfy

its requirements (typically expressed using temporal logics or automata)? In this

thesis, we study specification formalisms and analysis algorithms applicable to this

problem.

We start by observing that classical temporal logics like the µ-calculus or CTL

cannot specify “context-sensitive” requirements such as: “If a lock is not held before

a call, it must be released before the matching return.” A fix, we show, is to model

branching behaviors of programs not by computation trees, but by infinite graphs

called nested trees. Logics and automata interpreted on these new structures are

now defined, and the model checking problem is phrased as: “Does the nested tree

generated by a program satisfy a property?” This formulation lets us specify context-

sensitive requirements such as pre/post-conditions, “local” dataflow properties, and

stack-sensitive access control requirements, and, generally, leads to more modular

specifications. Yet, these formalisms are theoretically robust, the complexity of

model checking stays the same as before, and symbolic model checking is possible.

An application is a specification language (called Pal) that can modularly state

context-sensitive safety specifications, and has use in model checking and runtime

monitoring of C programs.

On the algorithmic end, we study reachability in recursive state machines (or equiv-

alently, pushdown systems), a problem central to software model checking and pro-

gram analysis that was, for long, believed to intrinsically cubic and behind the “cubic
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bottleneck” of its many applications. We show that we can solve this problem in

subcubic time by a simple adaptation of a known technique. We also show that a

better algorithm exists if the input machine does not have infinite recursive loops—

this algorithm is obtained via a new algorithm for graph transitive closure that is

possibly of independent interest— and identify a gradation in the complexity of the

pushdown reachability problem as recursion is restricted.

Note: The work in this thesis also appears in the following four articles:

• Rajeev Alur, Swarat Chaudhuri, and P. Madhusudan. A fixpoint calculus for

local and global program flows. In 33rd Annual Symposium on Principles of

Programming Languages (POPL), 2006.

• Rajeev Alur, Swarat Chaudhuri, and P. Madhusudan. Languages of nested

trees. In 18th International Conference on Computer-Aided Verification (CAV),

2006.

• Swarat Chaudhuri and Rajeev Alur. Instrumenting C programs with nested

word monitors (Tool paper). In 14th Workshop on Model Checking Software

(SPIN), 2007.

• Swarat Chaudhuri. Subcubic algorithms for recursive state machines. In 35th

Annual Symposium on Principles of Programming Languages (POPL), 2008.
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Chapter 1

Introduction

1.1 Reasoning about correctness

Since the 1960s, formally proving programs correct has been a grand challenge for

computer science. While the proof systems that Floyd and Hoare [Flo67, Hoa69]

designed in their seminal papers could in principle do such proofs, deploying them

in practice was difficult. As manual proofs were untenable for programs beyond a

certain size, efforts to partially automate deductive proofs were launched. In this

vision, a programmer proves a program correct using a proof assistant that checks

proofs and supplies hints for proof construction. Over the last few decades, many

heuristics and decision procedures for deduction have emerged in this area, known as

deductive verification [ORR+96, KMM00], leading to proofs of correctness of several

large and interesting software systems. However, proving programs correct in this

manner remains a herculean task, requiring enormous levels of expertise and effort.

A different set of methods, known collectively as program analysis [NNH99], arose

from the programming language community and stressed approximate solutions.

Sample questions here were: “What is a conservative approximation of the set of

variables a pointer variable may point to?” or “Is the variable x live at a certain

program location?” or “Is a certain memory location freed along paths through the

1



Abstraction

Model
checker

Requirement

Guarantee

Code

Error
trace

Context
sensitive
abstraction

Figure 1.1: Software model checking

current procedure?” Some of these tools aimed to infer information about data-

flow and memory use in programs for compile-time error detection; some were used

to optimize code and were invisible to the programmer. Practice preceded theory

in program analysis, and typically, scalability was considered more important than

depth of analysis. However, the theory of abstract interpretation [CC77] offers solid

foundations for sound (but incomplete) program analysis.

A third approach to reasoning about programs is model checking [CE81, QS82,

CGP99]. While deductive verification is proof-theoretic, this approach is language-

theoretic and involves answering a question of the type: “Does the temporal behavior

of a program belong to a formal language of “ specified” behaviors?” Concretely, a

program’s evolution over time is modeled by a logical structure. For example, we

could use an infinite tree to model a program’s branching behavior— each path in

this tree models a possibly infinite execution. A specification is a formal language

of “correct behaviors” given, typically, by an automaton or a formula in a logic. For

2



example, if a tree is used to model a program’s unfolding, a specification logic typi-

cally states properties such as: “on every path in the tree from a node satisfying a

proposition lock, there is a node satisfying a proposition unlock” (this corresponds to

the requirement: “every lock acquired by the program is eventually released”). The

corresponding formal language is the set of trees satisfying this formula. The model

checking problem is then: “do the logical structures generated by a given program

P belong to a language L?” The key idea in model checking is that the specification

language and its models are sufficiently restricted to make this question decidable,

so that algorithmic (typically search-based) methods can be applied. This raises

a number of questions: how far can the expressiveness of a logic be pushed with-

out sacrificing decidability? How much of this expressiveness is needed to capture

realistic specifications? Is the complexity manageable? How can we design better

algorithms and data structures for model checking?

The initial application of model checking was to verify finite-state programs describ-

ing hardware [McM93] or network protocols [Hol91]. Specifications were usually

in linear or branching-time propositional temporal logic [Pnu77], which can express

properties such as: “along all paths in the program, the proposition p holds un-

til a state satisfying q is reached,” or “p is true at infinitely many points on some

program path.” The model-checking problems for these logics (e.g., LTL, CTL, the

µ-calculus) were found to be decidable, though the use of novel data structures (e.g.,

the use of binary decision diagrams) and search techniques (e.g., on-the-fly traver-

sal) were needed to make verification applicable to real-life circuits and protocols,

where the number of program states can be enormous (the so-called state explosion

problem).

Research on temporal logic model checking had a symbiotic relationship with theo-

retical research on logics and automata. For example, the decidability of temporal

logics on word and tree models are really special cases of Büchi and Rabin’s seminal

results [Büc62, Rab69] on the decidability of monadic second order logic (MSO) on

3



words and trees. There are many deep connections between theories of logic, au-

tomata and games [Tho97, GTW02]— for instance, MSO logic (on words, trees) is

a logical characterization of finite-state automata (on words, trees), the µ-calculus

has polynomial translations to and from bisimulation-closed alternating automata

on trees [EJ91, JW96], parity games and their zero-memory determinacy provide

crucial steps that simplify the decidability proof, etc. On one hand, these results

have applications in practical algorithms in model checking—such as the automata-

theoretic procedures implemented in the Spin model checker. On the other hand,

inspired by model checking, new studies on expressiveness and decidability of logics

were launched.

1.2 Context-sensitive model checking

Because of concerted research over the last twenty-five years, hardware model check-

ing has by now become a mature technology that is used regularly in the industry.

Inspired by its success, researchers in formal methods have tried to apply model

checking to general software. For nearly all useful classes of software, this is an un-

decidable problem, and even if we accept non-termination or one-sided errors, the

problem remains highly challenging. Programs written in a modern programming

language have many complex features such as the stack, the heap, pointer aliases,

integer and floating point operations, and concurrent execution, reasoning about

which in any automated manner is a challenge.

Some progress has, however, been made in the last few years. A popular and suc-

cessful idea is to use data abstraction in conjunction with model checking. Instead

of analyzing a program P directly, analysis is now applied to an abstraction or over-

approximation P̂ that only has bounded data variables. Using techniques such as

predicate abstraction [SH97, BMMR01], it is possible to obtain such an abstraction

automatically. Now suppose we want to determine if every lock acquired in P is

4



eventually released. Instead of analyzing P to obtain an answer to this question,

we ask: “Does the abstraction P̂ release all the locks it acquires?” If P̂ satisfies

this property, then so does P , and we can terminate knowing that we have proved

a property of the original program. Otherwise, the model checker returns a sam-

ple path leading to the error state. Of course, because we are only analyzing an

abstraction, this “counterexample” may be spurious. To overcome this problem,

some software model checkers use an abstraction-refinement loop to automatically

determine whether a counterexample is false, and if so, try model checking again

with a more refined abstraction [CGJ+00]. Of course, abstraction, counterexample

checking, and refinement of software are all non-trivial problems, and will typically

require the help of a theorem prover. Such techniques have been applied in the Slam

toolkit [BR01], which was developed to verify Microsoft device drivers and has since

been transferred to driver writers as the Static Driver Verifier (SDV) [BCLR04].

This is one of the bigger success stories of software model checking.

A natural question is: what kind of abstractions do we pick? On one hand, the

simpler our abstractions, the likelier checking is to be tractable. It is because of

this that it is common in program analysis to stick to the simplest of program

abstractions: the control-flow graphs. On the other hand, the simplest abstractions

will usually not suffice if we insist on a reasonable degree of precision. For example,

almost all modern software is procedural, and thus has control flow dependent on a

procedural context—i.e., the state of a possibly unbounded call stack. Model checking

an abstraction that does not model this context-sensitive control flow turns out to

lead to many false counterexamples. As a result, it is common in this setting to

abstract programs into context-sensitive abstractions. These systems can precisely

capture the interprocedural control flow in a program written in a typical imperative

language with recursive calls, while abstracting its data into a finite domain. While

such a system has a finite set of control states, it has a potentially unbounded memory

of past contexts on which future execution depends. Importantly, the history of

5



contexts has a nested structure— if context A calls context B and C is called from

within B, then control, on return from C, will go back to B first. Note that this

nesting of contexts can be arbitrarily deep. An example abstraction of this sort is a

recursive state machine [ABE+05]— a collection of finite-state machines where each

component machine can call other component machines recursively. Other models

of provably equal expressiveness include pushdown systems [BEM97] and boolean

programs [BR00].

Model checking such a system would involve verifying whether it satisfies certain

linear or branching-time temporal requirements, specified using logics or automata.

Questions of interest include: “Is a certain configuration reachable along an execution

of the abstraction?” and “Is a certain control location involved in a cycle?” Answer-

ing these queries turns out to pose algorithmic challenges not arising in finite-state

verification.

In this thesis we are interested in the question of context-sensitive model checking

for sequential, procedural programs. More precisely, we ask the following questions:

1. What are the “right” logics and automata usable in context-sensitive model

checking? The traditional answers here have been temporal logics and au-

tomata on words and trees. Do these notations, inherited from classical model

checking, fail to express some important properties of context-sensitive pro-

gram abstractions— for example, requirements involving the nesting of con-

texts? If so, then can we increase their expressiveness without losing out on

tractability of model checking?

2. Can we offer improvements over the existing algorithms for context-sensitive

model checking? Here we focus on the model checking problem for linear-time

requirements on context-sensitive abstractions. For a fixed-size formula, this

problem reduces to the control-state reachability problem for recursive state

machines, or equivalently pushdown systems. Is the complexity of this problem

6



intrinsically cubic, as has long been believed, or is there an algorithm for it

with a subcubic complexity?

In Part I of this dissertation, we address the former question, and in Part II, we

tackle the latter. In the rest of this chapter, we give an overview of our methods and

results.

1.3 Context-sensitive specifications

Requirements in model checking have traditionally been written using word or tree

automata, or temporal logics such as LTL, CTL, CTL∗, and the modal µ-calculus.

Context-sensitive model checking for these formalisms are decidable— in fact, the

problem is decidable even for monadic second-order (MSO) logic, a logic that is ex-

pressively equivalent to tree automata and includes all the above logics as fragments.

However, all these formalisms suffer from a common shortcoming: they describe reg-

ular tree languages and cannot express “context-sensitive” requirements. Consider

Hoare-style preconditions and postconditions [Hoa69]: “If p holds at a procedure call,

then if the procedure terminates, q holds on return.” Such temporal requirements

on specific procedural contexts, rather than the global program execution, also arise

in modern interface specification languages such as JML [BCC+03]. Now, to express

this requirement, we need to pair calls with matching returns. This, however, is

beyond the expressive power of a finite-state tree automaton. Because of the con-

nections between tree automata and temporal logics, neither can this requirement

be expressed by a temporal logic like CTL or the µ-calculus.

A number of context-sensitive specifications also arise in software security. Take, for

example, the access control requirement: “A method A should be invoked only if

a privileged method B belongs to the call stack,” checked at runtime in the Java

or .NET stack inspection framework [WF98, NST01]. Or consider the inverse re-

quirement: “If A has ever been on the stack, do not execute sensitive operation

7



X,” or requirements that bound the size of the call stack to prevent stack overflow:

“after any point where p holds, the number of interrupt-handlers in the call-stack

should never exceed 5.” As the stack of a program is potentially unbounded, these

requirements cannot be expressed by classical temporal logics and automata.

Another source of context-sensitive properties is data flow analysis. In the program

analysis literature, it has been argued that data flow analysis, such as the compu-

tation of live variables and very busy expressions, can be viewed as evaluation of

µ-calculus or CTL formulas over abstractions of programs [Ste91, Sch98]. This cor-

respondence does not hold when we need to account for local data flow paths. For

instance, for an expression e that involves a variable local to a procedure P as well

as a global variable, the set of control points within P at which e is very busy (that

is, e is guaranteed to be used before any of its variables get modified) cannot be

specified using a µ-calculus formula.

Further, in certain cases specifications that can reason about branching in addition

to linear sequencing are needed. Consider the following property asserted at an

entry u to a procedure of a program with lock and unlock methods: “Either (1)

for all matching exits v of u, the resource X is locked at the time when control

reaches v, or (2) X is unlocked at all these points.” Here, the requirement on

matching introduces context-sensitivity, and since locking or unlocking can happen

along arbitrary points on paths from u from v, reasoning about multiple branches is

warranted. Other examples include certain interprocedural data flow requirements,

as well as pushdown reachability games that describe vulnerable “slices” in a program

where some procedures are compromised by an attacker.

Now, individual static analysis techniques are available for many of these require-

ments [JMT99, CW02, EKS03, CMM+04, BBFG04]. There are analyses for stack

inspection-type properties, and interprocedural data flow analysis [RHS95] can com-

pute data flow information involving local variables. The less understood phe-

nomenon is the class of languages to which these properties correspond and the
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way they relate to each other. Is there a unified logical formalism that can connect

all these seemingly disparate dots, extending the model-checking paradigm to prop-

erties such as above? Can we offer the programmer a flexible, decidable temporal

logic or automaton model to write these requirements?

These are not merely academic questions. A key attraction of model checking from

the practical point of view is that a programmer, once offered the freedom of a tem-

poral specification language, can tailor her requirements about a program’s behavior

without getting lost in implementation details. A logic as above would extend this

paradigm to interprocedural reasoning. Adding syntactic sugar to it, one could ob-

tain domain-specific applications—for example, one can conceive of a language for

security policies (even dynamic security policies) built on top of such a formalism.

At the same time, these questions open up avenues for interesting theoretical in-

vestigation. What would these logics look like in the first place? What kind of

expressiveness will they have? Will they be decidable? Where would the trade-off

between expressiveness and decidability lie?

1.3.1 Languages of nested trees

Traditionally, model-checking of branching-time requirements has involved deter-

mining whether the tree unfolding of the input program belongs to a tree language

defined by the requirement. The first natural extension of this framework to require-

ments such as above is to consider context-free tree languages [Rou70, CDG+02] as

specification. Unfortunately, this causes the model-checking problem to become un-

decidable. The intuition behind the proof is that the emptiness problem for the

intersection of two context-free languages—one encoding the program’s control flow

and the other the specification— is undecidable [HU79].

In this thesis, elaborating on work we have previously published as conference ar-

ticles [ACM06a, ACM06b, CA07] and building up on similar efforts for the sim-

pler linear-time setting [AM04, AM06], we identify an alternative phrasing of the
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Figure 1.2: A nested tree

branching-time model checking problem that does not suffer from this problem. The

key idea is to model a program’s branching behavior not by a tree, but by a graph

known as a nested tree that is similar to a tree but has some extra structure. More

precisely, a nested tree is obtained by augmenting a tree (comprising a set of tree

edges) with a set of properly nested jump-edges (see Figure 1.2; the jump-edges are

dashed). Intuitively, these edges connect nodes modeling calls to their matching

returns, and are the same as summary edges in interprocedural static analysis.

We show that context-sensitive program requirements can be phrased as regular

requirements on nested trees. We establish this by developing a theory of regular

languages of nested trees, which are accepted by finite-state automata and logics

interpreted on nested trees. These formalisms can argue about succession along tree

edges as well as jump-edges, generalizing automata and logics on trees. Since a

matching node is a mere jump-successor in a nested tree, they are naturally capable

of capturing context-sensitive program requirements such as pre/post conditions or

for interprocedural data flow specifications. We also find that they have a robust

theory and attractive computational properties, and can be directly applied to model

checking.
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1.3.2 A fixpoint calculus for nested trees

We start by introducing a fixpoint logic for infinite nested trees that is analogous to

the modal µ-calculus for trees. The reader is reminded that the µ-calculus [Koz83,

GTW02] is a modal logic with fixpoints interpreted over labeled transition systems,

or equivalently, over their tree unfoldings. It is an extensively studied specifica-

tion formalism with applications to program analysis, model checking, and database

query languages [Eme90, Sti91]. From a theoretical perspective, its status as the

canonical temporal logic for regular requirements is due to the fact that its expres-

siveness exceeds that of all commonly used temporal logics such as LTL, CTL, and

CTL∗, and equals that of alternating parity tree automata or the bisimulation-closed

fragment of monadic second-order theory over trees [EJ91, JW96]. Further, it is

known that algorithmic verification of µ-calculus properties of these abstractions is

decidable (EXPTIME-complete) [Wal01, BS99]. From a practical standpoint, iter-

ative computation of fixpoints, for instance in the above reachability requirement,

naturally suggests symbolic evaluation, and symbolic model checkers such as SMV

check CTL properties of finite-state models by compiling them into µ-calculus for-

mulas [BCD+92, McM93].

While designing a µ-calculus for nested trees, we have three goals in mind. First, we

want to express the sort of context-sensitive requirements that the classical µ-calculus

cannot express, while keeping model checking decidable. Second, we note that while

a µ-calculus formula describes a terminating, iterative computation in finite-state

programs, it does not necessarily do so in context-sensitive ones. Consequently,

the µ-calculus cannot quite serve as a directive for computation of interprocedural

requirements in pushdown models. While designing our logic, we aim to make it

an assembly language for interprocedural computations. In other words, a formula

in it should describe a concrete computation such as the classic summarization-

based algorithms [RHS95, BEM97, ABE+05] for interprocedural slicing or data flow

analysis. Third, the logic, ideally, should not be ad hoc and should be a canonical
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logic for regular requirements on nested trees.

Our candidate for such a logic is called NT-µ [ACM06a]. The variables of this fix-

point calculus evaluate not over sets of states, but rather over sets of substructures

that capture summaries of computations in the “current” program block. The fix-

point operators in the logic then compute fixpoints of summaries. For a node s of

a nested tree representing a call, consider the tree rooted at s such that the leaves

correspond to exits from the current context. Each formula of the logic is evaluated

over such a structure. The central construct of the logic corresponds to concatena-

tion of substructures: for example, a formula 〈call〉ϕ{ψ} asserts a constraint ϕ on

the new context, and requires ψ to hold at a designated set of return points of this

context (this designation is done by marking the leaves of a subtree using a set of

colors—see Chapter 3 for more details). To state local reachability, we would ask,

using the formula ϕ, that control returns to the current context, and, using ψ, that

the local reachability property holds at some return point. While this requirement

seems self-referential, it may be captured using a fixpoint formula.

We show that these features allow our calculus to express the context-sensitive pro-

gram requirements that we discussed earlier. As for model checking, we find that

this problem for NT-µ is not only decidable, but no more costly than traditional

branching-time logics. The complexity of model checking is exponential in the for-

mula and the context-sensitive abstraction. For a fixed formula, the problem is expo-

nential in the number of control locations where a procedure in the abstraction may

return and polynomial in the number of remaining locations. The precise general-

case complexity is EXPTIME-complete, which matches that of model-checking the

µ-calculus on these abstractions (and, for that matter, that for the far weaker logic

CTL [Wal01]). The model checking algorithm works by computing fixpoints of the

summary sets inductively, and illustrates how the semantics of the logic naturally

suggests a model checking algorithm. Fulfilling our second design criterion, the kind

of summary computation traditionally known in interprocedural slicing or data flow
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analysis is a special case of this algorithm. so that, just like the µ-calculus in case

of finite-state programs, NT-µ can arguably be used as a language into which inter-

procedural fixpoint computations can be compiled.

Finally, we show that NT-µ satisfies our third design requirement: there are good

reasons why it can be called a canonical logic for regular nested tree properties. The

reason is that it has a deep relationship with automata on (infinite) nested trees,

which we discuss next.

1.3.3 Automata on nested trees

Automata on infinite nested trees are a natural generalization of automata on infinite

trees. The latter, which accept ω-regular tree languages, are known to have a rich

theory and have found many applications in the last thirty years. While reading a

node in a tree, a tree automaton can nondeterministically pick different combinations

of states to be passed along tree edges. On the other hand, an automaton on nested

trees can send states along tree edges and jump edges, so that its state while reading

a node depends on the states at its parent and the jump-predecessor (if one exists).

Since there is an explicit jump-edge from a call to its matching return in a nested

tree, these automata are naturally capable of matching calls with returns.

Like tree automata, automata on nested trees come in nondeterministic and alternat-

ing flavors, and can accept nested trees by a variety of acceptance conditions—e.g.,

Büchi, parity, final state, etc. As parity is the most powerful of acceptance condi-

tions commonly used in ω-automata theory, we mainly focus on two classes of such

automata: nondeterministic parity automata on nested trees (NP-NTAs), and alter-

nating parity automata on nested trees (AP-NTAs), though we also briefly discuss

automata accepting by infinite trees by a final state. NP-NTAs can nondeterminis-

tically label a nested tree with states while maintaining constraints like “if a node

is labeled q, then all its tree-children are labeled q1 and all its jump-children are

labeled q2.” They can express a variety of context-sensitive requirements, and are,
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pleasantly, also closed under intersection. However, they are not closed under com-

plementation, so that they are unlikely to have an attractive logical characterization.

However, AP-NTAs do not suffer from this drawback. These automata are closed

under all Boolean operations (though not under projection) and are strictly more

expressive than NP-NTAs. While they have an undecidable emptiness problem, their

model-checking problem is EXPTIME-complete, matching that for alternating tree

automata on context-sensitive abstractions.

In a result analogous to the equivalence between the µ-calculus and parity tree

automata, we find that NT-µ has the same expressive power as AP-NTAs. This

strengthens our belief that NT-µ is not just another fixpoint logic, but captures the

essence of regularity in nested trees. Our proof offers polynomial translations from

AP-NTAs to NT-µ and vice versa, as well as insights about the connection between

runs of AP-NTAs and the notion of summaries in NT-µ. This result is especially

intriguing as the model checking algorithms for NT-µ and AP-NTAs are very differ-

ent in flavor—while the latter reduces to pushdown games, the former seems to have

no connection to the various previously known results about trees, context-free lan-

guages, and pushdown graphs. It also helps us compare the expressiveness of NT-µ

with that of classical temporal logics and the temporal logic Caret [AEM04], which

is a linear-time temporal logic for context-sensitive specification. Finally, this also

establishes that the satisfiability problem for NT-µ is undecidable. Note that this is

not an issue as we are really only interested in the model checking problem; in fact

the result serves to illustrate how powerful the logic NT-µ is.

1.3.4 Monadic second-order logic on nested trees

Given the appealing trinity of automata, µ-calculus, and monadic second-order logic

for regular tree languages, we study monadic second-order (MSO) logic over nested

trees, which has a predicate (x →֒ y) that can check the existence of a jump-edge be-

tween two nodes. We show that MSO-logic is strictly more expressive than NP-NTAs,
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and that the matching predicate is too powerful leading to undecidable satisfiability

and model checking problems. The undecidability proof shows that the difficulty

lies with combining second-order existential quantification with the matching predi-

cate. On the other hand, there seems to be no way to encode sets of summaries in

MSO-logic over nested trees, and we conjecture that NT-µ cannot be translated to

MSO-logic.

1.3.5 The Pal instrumentation language

Next we introduce Pal, a specification language based on the theory of context-

sensitive specifications that can be used in automatic safety analysis of C programs.

Since we are only interested in safety properties in this case, we do not need the

full power of NT-µ or nested tree automata. It suffices to consider deterministic

automata on finite nested words, which can be viewed as nested trees with a single

tree path.

The application is as follows. In program analysis tools like Blast [HJM+02] and

Slam [BR01], as in classical automata-theoretic model checking [Hol97], a specifica-

tion is a word automaton (or monitor) with finite-state control-flow that accepts all

“unsafe” program executions. Typical analysis constructs the “product” of a pro-

gram and a monitor, in effect instrumenting the program with extra instructions, so

that the input program fails its specification iff the product program fails an asser-

tion. The latter is then checked for possible assertion failures. Monitors also find use

in testing and runtime verification, where the product program is tested for assertion

violations at runtime.

As the control-flow of such traditional monitors is given by finite word automata,

they cannot express context-sensitive specifications. For example, the safety property

“There are no two successive file-write operations without a file-read operation in

between” can be expressed using a finite word automaton. However, the context-

sensitive analog “There are no two successive file-write operations in the same context
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without a file-read operation in between” is not. Given the theory we have developed,

this problem can be overcome if a program execution is modeled as a nested word

rather than a word, and monitors are based on automata on nested words.

Accordingly, we present a specification language—called Pal—based on nested word

automata, and a tool to instrument C code using it. Monitors in this language have

a set of variables that encode the automaton’s state; transitions are blocks of C code

that alter the values of these variables. We permit the variables to have arbitrary

data types—however, on data abstraction of a Pal monitor, we get a nested word

automaton. This language extends the Blast specification language [BCH+04], and

while its richer foundations lets it state context-sensitive properties, it has syntax

close to Blast’s and allows easy instrumentation. As is to be expected, the original

program satisfies the context-sensitive requirement if and only if the instrumented

program does not fail an assertion. The instrumented program may now be checked

for assertion failures using a variety of static and dynamic methods, including model

checking as well as static analysis, run-time verification, and testing.

Of course, being based on the theory of nested specifications, monitors in Pal work

irrespective of whether recursion is present. While they are theoretically only as

expressive as monitors in Blast in the absence of recursion, they are more modu-

lar, succinct and comprehensible even in this case. The reason is that Pal makes

it possible to break a program execution into parts wholly contained within a pro-

cedural context, and reason about these parts separately. In fact, Pal is the first

automata-based specification language that is directly usable in model checking, but

is designed with the goal of expressing interface contracts between procedures. We

believe, therefore, that these monitors present an example of structured specifications,

suitable for structured programs.

We have implemented Pal on top of the Blast query language. We use this imple-

mentation to write context-sensitive requirements for a few real (or at least realistic)

C programs. We show that a Pal monitor could be used to prevent a reported bug
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in fcron, a periodic command scheduler for Linux. We also show how to write Pal

monitors expressing stack-sensitive security requirements for C code and enforcing

context-sensitive error logging policies.

1.4 Context-sensitive reachability analysis

In Part II of this thesis, we study algorithms for reachability analysis of context-

sensitive program abstractions. Our abstractions of choice are recursive state ma-

chines [ABE+05], or finite-state machines that can call other finite-state machines

recursively. These machines (called RSMs from now on) are equivalent to push-

down systems, or finite-state machines equipped with stacks. They are also natural

abstractions of recursive programs: each component finite-state machine models con-

trol flow within a procedure, and procedure calls and returns are modeled by calls

and returns to/from other machines. Sound analysis of a program then involves

algorithmic analysis of an RSM abstracting it.

In this thesis, we study the most basic and widely applicable form that such analysis

takes: determination of reachability between states. Can an RSM, in some execution,

start at a state v and reach the state v′? Because RSMs are pushdown models, any

path that the RSM can take respects the nested structure of calls and returns, and

reachability analysis of an RSM abstraction of a program gives a context-sensitive

program analysis. A classic application is interprocedural data-flow analysis— “can

a data-flow fact reach a certain program point along a path respecting the nesting

of procedure calls?” In fact, the problem has a reduction from the problem of model

checking safety properties on context-sensitive program abstractions. Consider a

safety property: “the program never reaches an error state.” To prove that the

abstraction does not satisfy this property, we need to determine reachability in it.

As a result, algorithms solving this problem are at the heart of successful software

analysis tools like Slam [BR01]. The problem also shows up in many other program
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analysis contexts—for example field-sensitive alias analysis [Rep98], type-based flow

analysis [RF01], and shape analysis [Rep98].

Reachability for RSMs is equivalent to a well-known graph problem called context-

free language (CFL) reachability. The question here is: given an edge-labeled di-

rected graph and a context-free grammar over the edge labels, is there a path from

node s to node t in the graph that is labeled by a word generated by the grammar?

This problem, which may be viewed as a generalization of context-free recognition,

was originally phrased in the context of database theory [Yan90], where it was shown

that Datalog chain query evaluation on the graph representation of a database is

equivalent to single-source, single-sink CFL-reachability. It has since been identified

as a central problem in program analysis [Rep98, MR00].

All known algorithms for RSM and CFL-reachability follow a dynamic-programming

scheme known in the literature as summarization [SP81, ABE+05, BEM97]. The idea

here is to derive reachability facts of the form (v, v′), which says that the RSM can

start at state v with an empty stack and end at state v′ with an empty stack. The

most well-known algorithms following this scheme [HRS95, RHS95] discover such

pairs enumeratively via graph traversal. Unlike context-free recognition, which has

a well-known subcubic solution [Val75], RSM and CFL-reachability have not been

known to have subcubic algorithms even in the single-sink, single-source case (for

RSM-reachability, the size of an instance is the number of states in it; for CFL-

reachability, it is the number of nodes in the input graph). This raises the question:

are these problems intrinsically cubic? The question is especially interesting in pro-

gram analysis as problems like interprocedural data-flow analysis and slicing are not

only solvable using RSM-reachability, but also provably as hard. Believing that the

answer is “yes”, researchers have sometimes attributed the “cubic bottleneck” of

these problems to the hardness of RSM or CFL-reachability [Rep98, MR00].

In this thesis, we observe that summarization can benefit from a known technique [Ryt83,

Ryt85] for speeding up certain kinds of dynamic programming. The idea, developed
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in the context of language recognition for two-way pushdown automata, is to repre-

sent a computation accessing a table as a computation on row and column sets, which

are stored using a “fast” set data structure. The latter, a standard data structure in

the algorithms literature [ADKz70, Cha07], splits each operation involving a pair of

sets into a series of operations on pairs of sets drawn from a small sub-universe. If

the sub-universes are sufficiently small, all queries on them may be looked up from a

table precomputed exhaustively, allowing us to save work during an expensive main

loop. When transferred to the RSM-reachability problem with slight modifications,

Rytter’s method leads to an algorithm that phrases the computation of reachability

as a sequence of operations on sets of RSM states, and has an O(n3/ logn) time

complexity. The technique may also be applied to the standard algorithm for CFL-

reachability, referenced for example by Melski and Reps [MR00], leading to a similar

speedup. This implies subcubic solutions for Datalog chain query evaluation as well

as the many program analysis applications of RSM-reachability.

Our other contribution is an observation that the reachability problem for RSMs

gets easier, so far as worst-case complexity is concerned, as recursion is restricted.

We study the reachability problem for bounded-stack recursive state machines, which

are RSMs where the stack never grows unboundedly in any execution. Machines of

this sort have a clear interpretation in program analysis: they capture the flow of

control in procedural programs without infinite recursive loops. In spite of this extra

structure, they have not been known to have faster reachability algorithms than

general RSMs (note that a bounded-stack RSM is in fact a finite-state machine—

however, the latter can be exponentially larger than the RSM, so that it is not an

option to analyze it instead of applying an RSM-reachability algorithm). We show

that it is possible to exploit this structure during reachability analysis. The key

observation is that empty-stack-to-empty-stack reachability facts in bounded-stack

RSMs can be derived in a depth-first order—i.e., if state u has an edge to state v,

it is possible to first infer all the states empty-stack-to-empty-stack reachable from
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v and then use this information to infer the states reachable this way from v (this

is not possible for general RSMs). It turns out that, as a result, we can solve the

reachability problem using a transitive closure algorithm for directed graphs that

allows the following kind of modifications to the instance: “for an edge (u, v) that

goes from one strongly connected component to another, compute all descendants

v′ of v and add some edges from u based on the answer.” Unfortunately, none of

the existing subcubic algorithms for transitive closure can handle such modifications.

Consequently, we derive a new transitive closure algorithm for directed graphs that

can.

Our transitive closure algorithm speeds up a procedure based on Tarjan’s algorithm

to determine the strongly connected components of a graph. Such algorithms have

a sizable literature [Pur70, EKS77, Sch83]. Their attraction in our setting is that

they perform one depth-first traversal of the input graph, computing closure us-

ing set operations along the way, so that it is possible to weave the treatment of

added edges into the discovery of edges in the original graph. The idea behind the

speedup is, once again, to reuse computations on small patterns common to set

computations, except this time, it can be taken further and yields a complexity of

O(min{mn/ logn, n3/ log2 n}), where n is the number of nodes in the graph and m

the number of edges. This directly leads to an O(n3/ log2 n) solution for all-pairs

reachability in bounded-stack RSMs.

We finish our study of the interplay of recursion and reachability in RSMs with a note

on the reachability problem for hierarchical state machines [AY98]. These machines

can model control flow in structured programs without recursive calls and form a

proper subclass of bounded-stack RSMs. The one published reachability algorithm

for such models is cubic [AY98]; here, we give a simple alternative that has the same

complexity as boolean matrix multiplication. While this algorithm is almost trivial,

taken together with our other results, it indicates a gradation in the complexity of

RSM-reachability as recursion is constrained.
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1.5 Summary of contributions

We can now summarize the contributions of this thesis. First, we have phrased the

branching-time model checking problem for pushdown abstractions in a new way, us-

ing nested trees rather than tree unfoldings. Second, we have introduced logics and

finite automata that operate on nested trees rather than trees, and have found that

they can express a variety of interesting non-regular specifications such as pre/post

conditions, interprocedural data flow specifications, and security requirements in-

volving the stack. Third, we have shown that these logics and automata have a

robust theory, and that their model checking problem is not only decidable (as op-

posed to that of pushdown specifications), but no more costly than their weaker

counterparts for tree models. Fourth, we have implemented a “context-sensitive”

software monitoring language called Pal that applies the above theory in the spe-

cial case of safety properties. Fifth, we have given the first subcubic algorithm for

the reachability problem of recursive state machines (or, equivalently, pushdown sys-

tems or CFL-reachability), the central problem of interprocedural software analysis

that was for long believed to be intrinsically cubic. We have also identified a better

algorithm for the problem if recursion is restricted.

1.6 Thesis outline

The thesis is divided into two parts.

Part I, which studies context-sensitive requirement specification, is arranged as fol-

lows. In Chapter 2, we define nested trees and nested state machines. In Chapter 3,

we develop the fixpoint calculus NT-µ. In Chapter 4, we introduce nondeterministic

and alternating automata over nested trees and prove the equivalence of NT-µ and

bisimulation-closed NTAs. We also study the logic MSOmr . Chapter 5 introduces

the Pal software specification language and discusses its implementation and a few

case studies.
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Part II, which studies algorithms for reachability analysis of context-sensitive pro-

gram abstractions, has only one chapter: Chapter 6.

We wrap up the thesis with some discussion in Chapter 7.
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Part I

Logics
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Chapter 2

Preliminaries

In this chapter, we define nested trees, the models for the logics and automata we

use for context-sensitive specification, and nested state machines, the program ab-

stractions on which we perform model checking.

2.1 Nested trees

In the formal methods literature, it is common to model the branching behavior

of a nondeterministic program using an infinite tree [CGP99] on which specification

logics and automata are interpreted. The nondeterminism in the program is modeled

via tree branching, so that each possible program execution is a path in the tree.

However, this tree does not capture the nesting of procedure calls and returns in a

program. At any given time point during the execution, the tree edge relation tells

us what the possible program states are at the next time point. It does not, however,

give us the program states that can possibly arise when a procedure call made at

the current point returns. As a result, a tree model of a program’s behavior is not

suitable for context-sensitive specifications. As a replacement, we propose a new

structure called nested tree, obtained by augmenting a tree capturing a structured

program’s behavior with an extra edge relation, known as the jump-edge relation.
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Intuitively, a jump-edge connects a tree node representing a procedure call to the

node representing the matching return. Thus, this definition inherits a bit more

of the structure of the program than a tree model would. As calls and returns

in structured programs are nested, jump-edges in nested trees do not cross, and

calls and returns are defined respectively as sources and targets of jump-edges. In

addition, since a procedure call may not return along all possible program paths, a

call-node s may have jump-successors along some, but not all, paths from it. If this

is the case, we add a jump-edge from s to a special node ∞.

Formally, let T = (S, r,→) be an unordered infinite tree with node set S, root r and

edge relation→ ⊆ S×S. Let
+
−→ denote the transitive (but not reflexive) closure of

the edge relation, and let a (finite or infinite) path in T from node s1 be a (finite or

infinite) sequence π = s1s2 . . . sn . . . over S, where n ≥ 2 and si → si+1 for all 1 ≤ i.

A nested tree is a directed acyclic graph (T, →֒), where →֒⊆ S × (S ∪∞) is a set of

jump-edges. A node s such that s →֒ t or s →֒ ∞ (similarly t →֒ s) for some t is

a call (return) node; the remaining nodes are said to be local. The intuition is that

if s →֒ t, then a call at s returns at t; if s →֒ ∞, then there exists a path from s

along which the call at s never returns. We note that the sets of call, return and

local nodes are disjoint. The jump-edges must satisfy:

1. if s →֒ t, then s
+
−→ t, and we do not have s→ t (in other words, jump-edges

represent non-trivial forward jumps);

2. if s →֒ t and s →֒ t′, then neither t
+
−→ t′ nor t′

+
−→ t (this captures the

intuition that a call-node has at most one matching return along every path

from it);

3. if s →֒ t and s′ →֒ t, then s = s′ (every return node has a unique matching

call);

4. for every call node s, we have either (a) on every path from s, there is a node

t such that s →֒ t, or (b) s →֒ ∞ (a call either returns along all paths, or does

25



not);

5. if there is a path π such that for nodes s, t, s′, t′ lying on π we have s
+
−→ s′,

s →֒ t, and s′ →֒ t′, then either t
+
−→ s′ or t′

+
−→ t (jump-edges along a path

do not cross);

6. for every pair of call-nodes s, s′ on a path π such that s
+
−→ s′, if there is no

node t on π such that s′ →֒ t, then a node t′ on π can satisfy s →֒ t′ only if

t′
+
−→ s′ (if a call does not return, neither do the calls pending when it was

invoked).

A nested word is a nested tree as above, except the structure T is a word.

For an alphabet Σ, a Σ-labeled nested tree is a structure T = (T, →֒, λ), where

(T, →֒) is a nested tree with node set S, and λ : S → Σ is a node-labeling function

(labeled nested words are defined in the same way). All nested trees in this paper

are Σ-labeled.

input x;

procedure foo()

{

L1: write(e);

if(x)

L2: foo();

else

L3: think;

while (x)

L4: read(e);

L5: return;

}

Figure 2.1: A sample program

Consider the recursive procedure foo in Fig. 2.1. The procedure may read or write

an expression e or perform an action think, has branching dependent on an input
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variable x, and can call itself recursively. Actions of the program are marked by

labels L1–L5 for easy reference. We will abstract this program and its behaviors,

and subsequently specify it using temporal logics and automata.

Figure 2.2 shows a part of a nested tree modeling the branching behavior of this pro-

gram. Because the loop and the branch in the procedure depend on an environment-

dependent variable, we model them by a nondeterministic loop and a nondetermin-

istic branch. The choice of the alphabet Σ labeling this tree depends on the desired

level of detail. We choose it to consist of subsets of a set of atomic propositions

AP , comprising the propositions wr , rd , en, ex , tk , and end , respectively encoding

a write statement, a read statement, a procedure call leading to a beginning of a new

context, the return point once a context ends, the statement think, and the statement

return. A node is labeled by the proposition for a statement if it is the control point

from which the statement is executed— e.g., the control point immediately preceding

a read statement is labeled rd . Each path in the underlying tree captures a sequence

of program statements—for example, the path fragment starting at the node s and

ending at s′ captures a (partial) execution that first executes a write, then calls foo

recursively, then writes again, then makes another recursive call, ending once it has

exited both calls. Note that some of the maximal paths are finite—these capture

terminating executions of the program—and some are not. Note in particular how

a call may return along some paths from it, and yet not on some others. A path in

the nested tree that takes a jump-edge whenever possible is interpreted as a local

path through the top-level context.

If s →֒ t, then s is the jump-predecessor of t and t the jump-successor of s. Edges

from a call node and to a return node are known as call and return edges; the

remaining edges are local. The fact that an edge (s, t) exists and is a call, return or

local edge is denoted by s
call
−→ t, s

ret
−→ t, or s

loc
−→ t. For a nested tree T = (T, →֒, λ)

with edge set E, the tagged tree of T is the node and edge-labeled tree Struct(T ) =

(T, λ, η : E → {call , ret , loc}), where η(s, t) = a iff s
a
−→ t.
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Figure 2.2: A nested tree

A few observations: first, the sets of call, return and local edges define a partition

of the set of tree edges. Second, if s
ret
−→ s1 and s

ret
−→ s2 for distinct s1 and s2, then

s1 and s2 have the same jump-predecessor. Third, the jump-edges in a nested tree

are completely captured by the edge labeling in the corresponding tagged tree, so

that we can reconstruct a nested tree T from Struct(T ). We show how by making

a stronger statement. Consider any tree T = (S, r,
)
−→ whose edges are labeled by

tags call , ret and loc and that satisfies the constraint: if a node has an outgoing

edge labeled call , then all its outgoing edges are labeled call . Note that tagged trees

derived from nested trees satisfy this constraint. Now, let us call a word β ∈ I∗

balanced if it is of the form

β := ββ | call .β.ret | loc.

Let us now define a relation →֒′⊆ S × S as: for all s, s′, we have s →֒′ t iff
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1. there is a path s0s1s2 . . . sn such that s0 = s and sn = s′ in Struct(T );

2. the word η(s0, s1).η(s1, s2) . . . η(sn−1, sn) is balanced;

3. for no i > 0 is the word η(si, si+1).η(si+1, si+2). . . . η(sn−1, sn) balanced.

Now consider the set Suc of nodes suc such that: (1) outgoing edges from suc are

labeled call , and (2) there is no t ∈ S such that (suc, t) ∈→֒
′). Let us construct

the relation →֒′′=→֒′ ∪{(suc,∞) : suc ∈ Suc}. It is easily verified that (T, →֒′′) is a

nested tree, and that is T = Struct(T ) for some nested tree T , then T = (T, →֒′′).

Let NT (Σ) be the set of Σ-labeled nested trees. A language of nested trees is a

subset of NT (Σ).

2.1.1 Ordered, binary nested trees

Note that in the definition of nested trees we have given, the tree structure underlying

a nested tree is unordered. While this is the definition we will use as the default

definition in this thesis, we will find use for ordered, binary nested trees in a few

occasions.

Let T = (S, r,→1,→2) be an ordered binary tree, where S is a set of nodes, r is

the root, and →1,→2⊆ S × S are the left and right edge relations. Then (T, →֒) is

an ordered, binary nested tree if ((S, r,→1 ∪→2), →֒) is a nested tree by our earlier

definition. Labeled, ordered nested trees are analogous to labeled, unordered nested

trees: for an alphabet Σ, a Σ-labeled ordered nested tree is a structure T = (T, →֒, λ),

where (T, →֒) is a nested tree with node set S, and λ : S → Σ is a node-labeling

map.
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2.2 Nested state machines

Now we define our program abstractions: nested state machines (NSMs). Like push-

down automata and recursive state machines [ABE+05], NSMs are suitable for pre-

cisely modeling changes to the program stack due to procedure calls and returns.

The main difference is that the semantics of an NSM is defined using a nested tree

rather than using a stack.

Syntax

Let AP be a fixed set of atomic propositions; let us fix Σ = 2AP as an alphabet

of observables. A nested state machine (NSM) is a structure of the form M =

〈Vloc , Vcall , Vret , vin , κ,∆loc ,∆call ,∆ret〉. Here, Vloc is a finite set of local states, Vcall a

finite set of call states, and Vret a finite set of return states. We write V = Vloc∪Vcall∪

Vret . The state vin ∈ V is the initial state, and the map κ : V → Σ labels each state

with an observable. There are three transition relations: a local transition relation

∆loc ⊆ (Vloc∪Vret)×(Vloc∪Vcall ), a call transition relation ∆call ⊆ Vcall×(Vloc∪Vcall),

and a return transition relation ∆ret ⊆ (Vloc ∪ Vret)× Vcall × Vret .

A transition is said to be from the state v if it is of the form (v, v′) or (v, v′, v′′),

for some v′, v′′ ∈ V . If (v, v′) ∈ ∆loc for some v, v′ ∈ V , then we write v
loc
−→ v′;

if (v, v′) ∈ ∆call , we write v
call
−→ v′; if (v, v′, v′′) ∈ ∆ret , we write (v, v′)

ret
−→ v′′.

Intuitively, while modeling a program by an NSM, a call state models a program

state from which a procedure call is performed; the call itself is modeled by a call

transition in ∆call . A return state of an NSM models a state to which the control

returns once a called procedure terminates. The shift of control to a return state

is modeled by a return transition (v, v′, v′′) in ∆ret . Here, the states v and v′′ are

respectively the current and target states, and v′ is the state from which the last

“unmatched” call-move was made. The intuition is that when the NSM made a call

transition from v′, it pushed the state v′ on an implicit stack. On return, v′ is on top

30



of the stack right before the return-move, which can depend on this state and, on

completion, pops it off the stack. This captures the ability of a structured program

to use its procedural stack, which is the essence of context-sensitivity. A state that

is neither a call nor a return is a local state, and a transition that does not modify

the program stack is a local transition.

Let us now abstract our example program into a nested state machine Mfoo . The

abstraction simply captures control flow in the program, and consequently, has states

v1, v2, v3, v4, and v5 corresponding to lines L1, L2, L3, L4, and L5. We also have a

state v′2 to which control returns after the call at L2 is completed. The set Vloc of

local states is {v1, v3, v4, v5}, the single call state is v2, and the single return state is

v′2. The initial state is v1. Now, let us have propositions rd , wr , tk , en, ex , and end

that hold respectively iff the current state represents the control point immediately

before a read, write, think statement, procedure call, return point after a call, and

return instruction. More precisely, κ(v1) = {wr}, κ(v2) = {en}, κ(v′2) = {ex},

κ(v3) = {tk}, κ(v4) = {rd}, and κ(v5) = {end} (for easier reading, we will, from

now on, abbreviate singletons such as {rd} just as rd).

The transition relations ofMfoo are given by:

• ∆call = {(v2, v1)}

• ∆loc = {(v1, v2), (v1, v3), (v
′
2, v4), (v

′
2, v5), (v3, v4), (v3, v5), (v4, v4), (v4, v5)}, and

• ∆ret = {(v5, v2, v
′
2)}.

Branching-time semantics

The branching-time semantics of M is defined via a 2AP -labeled unordered nested

tree T (M), known as the unfolding of M. Consider the V -labeled (unordered)

nested tree T V (M) = (T, →֒, λ), known as the execution tree, that is the unique

nested tree satisfying the following conditions:

1. if r is the root of T , then λ(r) = vin ;
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2. for every node s and every distinct call, return or local transition in M from

λ(s), s has precisely one outgoing call, return or local tree edge;

3. for every pair of nodes s and t, if s
a
−→ t, for a ∈ {call , loc}, in the tagged tree

of this nested tree, then we have λ(s)
a
−→ λ(t) inM;

4. for every s, t, if s
ret
−→ t in the tagged tree, then there is a node t′ such that

t′ →֒ t and (λ(s), λ(t′))
ret
−→ λ(t) inM.

Note that a node s is a call or return node in this nested tree respectively iff λ(s) is a

call and return state ofM. Now we have T (M) = (T, →֒, λ′), where λ′(s) = κ(λ(s))

for all nodes s. For example, the nested tree in Figure 2.2 is the unfolding ofMfoo .

While unfoldings of nested state machines are most naturally viewed as unordered

nested trees, we can also define an NSM’s unfolding as an ordered, binary nested

tree. In this case, we fix an order on the transitions out of a state and allow at most

two outgoing transitions from every state (we can expand the state set to make this

possible). The left and right edge relations in the unfolding Tord (M) respectively

correspond to the 1st and 2nd transitions out of a state. We leave out the detailed

definition.
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Chapter 3

NT-µ: a fixpoint calculus for

nested trees

In this chapter, we develop NT-µ, our modal fixpoint calculus interpreted on nested

trees. The variables of this logic are evaluated not over sets of states, but over sets

of subtrees that capture summaries of computations capturing procedural context.

The fixpoint operators in the logic then compute fixpoints of summaries. The main

technical result is that the logic NT-µ can be model-checked effectively on nested

state machine abstractions of software.

The chapter is organized as follows. Section 3.1 introduces summaries, which are

the models for logic NT-µ, and Section 3.2 defines the logic itself. In Section 3.3 we

present context-sensitive requirements for software that can be expressed using NT-

µ. Section 3.4 shows how nested state machine models of programs can be model-

checked against NT-µ formulas, and Section 3.5 contains a result on expressiveness.

3.1 Summaries

Now we define summaries, the objects on which our logic is interpreted. These may

be viewed as substructures of nested trees capturing procedural contexts; a summary
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models the branching behavior of a program from a state s to each return point of

its context. Also, to capture different temporal obligations to be met on exiting via

different exits, we introduce a coloring of these exits—intuitively, an exit gets color

i if it is to satisfy the i-th requirement.

(a) (b)s1
s2

s2

s3

s3

s4

s4
s5

s5 s6

s6

s7
s7 s8

s8

s9
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s12
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s15

p

p

p

p

p

p

p

p

p

q

q

q

q

q

q

color 1

color 2

Figure 3.1: (a) A nested tree (b) A 2-colored summary

Formally, let a node t of T be called a matching exit of a node s if there is an s′ such

that s′
+
−→ s and s′ →֒ t, and there are no s′′, t′′ such that s′

+
−→ s′′

+
−→ s

+
−→ t′′, and

s′′ →֒ t′′. Intuitively, a matching exit of s is the first “unmatched” return along some

path from s—for instance, in Figure 3.1-(a), the node s8 and s12 are the matching

exits of the node s3, and s11 and s10 are the matching exits of s2. Let the set of

matching exits of s be denoted by ME (s).

For a non-negative integer k, a summary s in T is a tuple 〈s, U1, U2, . . . , Uk〉, where

s is a node, k ≥ 0, and U1, U2, . . . , Uk ⊆ ME (s) (such a summary is said to be rooted

at s). For example, in the nested tree in Figure 3.1-(a), 〈s1〉 is a valid 0-colored

summary, and 〈s2, {s11}, {s10, s11}〉 and 〈s3, {s8}, ∅〉 are valid 2-colored summaries.

The set of summaries in a nested tree T , each k-colored for some k, is denoted by

S. Note that such colored summaries are defined for all s, not just “entry” nodes of

procedures.
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Observe how each summary describes a subtree along with a coloring of some of its

leaves. For instance, the summary s = 〈s2, {s11}, {s10, s11}〉 marks the subtree in

Figure 3.1-(b). Such a tree may be constructed by taking the subtree of T rooted

at node s2, and chopping off the subtrees rooted at ME (s2). Note that because of

unmatched infinite paths from the root, such a tree may in general be infinite. Now,

nodes s11 is assigned the color 1, and nodes s10 and s11 are colored 2. Note that the

same matching exit might get multiple colors.

It is useful to contrast our definition of summaries with the corresponding definition

for the linear-time setting. In this case, a pair (s, s′), where s′ ∈ ME (s), would

suffice as a summary— in fact, this is the way in which traditional summarization-

based decision procedures have defined summaries. For branching-time reasoning,

however, such a simple definition is not enough.

3.2 The logic

3.2.1 Syntax

In addition to being interpreted over summaries, the logic NT-µ differs from classical

calculi like the modal µ-calculus [Koz83] in a crucial way: its syntax and semantics

explicitly recognize the procedural structure of programs. This is done using modal-

ities such as 〈call〉, 〈ret〉 and 〈loc〉 that can distinguish between call, return, and

local edges in a nested tree. Also, an NT-µ formula can enforce different “return

conditions” at differently colored returns in a summary by passing formulas as “pa-

rameters” to call modalities.

Formally, let AP be a finite set of atomic propositions, Var be a finite set of variables,

and {R1, R2, . . .} be a countable, ordered set of markers. For p ∈ AP , X ∈ Var , and

k ≥ 0, formulas ϕ of NT-µ are defined by:

ϕ := p | ¬p | X | ϕ ∨ ϕ | ϕ ∧ ϕ | µX.φ | νX.φ | 〈call〉 ϕ{ψ1, ψ2, ..., ψk} |
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[call ] ϕ{ψ1, ψ2, ..., ψk} | 〈loc〉 ϕ | [loc] ϕ | 〈ret〉 Ri | [ret ] Ri,

where k ≥ 0 and i ≥ 1. Let us define the syntactic shorthands tt = p ∨ ¬p

and ff = p ∧ ¬p for some p ∈ AP . Also, let the arity of a NT-µ formula ϕ be

the maximum k such that ϕ has a subformula of the form 〈call〉ϕ′{ψ1, . . . , ψk} or

[call ]ϕ′{ψ1, . . . , ψk}.

Intuitively, the markers Ri in a formula are bound by 〈call〉 and [call ] modalities,

and variables X are bound by fixpoint quantifiers µX and νX. We require our call -

formulas to bind all the markers in their scope. Formally, let the maximum marker

index ind(ϕ) of a formula ϕ be defined inductively as:

ind(ϕ1 ∨ ϕ2) = ind(ϕ1 ∧ ϕ2) = max{ind(ϕ1), ind(ϕ2)}

ind(〈loc〉ϕ) = ind([loc]ϕ) = ind(µX.ϕ) = ind(νX.ϕ)

= ind(ϕ)

ind(〈ret〉Ri) = ind([ret ]Ri) = i

ind(p) = ind(X) = 0 for p ∈ AP , X ∈ Var

ind(〈call〉ϕ{ψ1, . . . , ψk}) = ind([call ]ϕ{ψ1, . . . , ψk})

= max{ind(ψ1), . . . , ind(ψk)}.

We are only interested in formulas where for every subformula 〈call〉χ′{ψ1, . . . , ψk}

or [call ]χ′{ψ1, . . . , ψk}, we have ind(χ′) ≤ k. Such a formula ϕ is said to be marker-

closed if ind(ϕ) = 0.

The set Free(ϕ) of free variables in a NT-µ formula ϕ is defined as:

Free(ϕ1 ∨ ϕ2) = Free(ϕ1 ∧ ϕ2) = Free(ϕ1) ∪ Free(ϕ2)

Free(〈loc〉ϕ) = Free([loc]ϕ) = Free(ϕ)

Free(〈ret〉Ri) = Free([ret ]Ri) = ∅

Free(〈call〉ϕ{ψ1, . . . , ψk}) = Free([call ]ϕ{ψ1, . . . , ψk}) = Free(ϕ) ∪ (
k⋃

i

Free(ψi))

Free(p) = Free(¬p) = ∅ for p ∈ AP

36



Free(X) = {X} for X ∈ Var

Free(µX.ϕ) = Free(νX.ϕ) = Free(ϕ) \ {X}.

A formula ϕ is said to be variable-closed if it has Free(ϕ) = ∅. We call ϕ closed if it

is marker-closed and variable-closed.

3.2.2 Semantics

Like in the modal µ-calculus, formulas in NT-µ encode sets, in this case sets of sum-

maries. Also like in the µ-calculus, modalities and boolean and fixed-point operators

allow us to encode computations on these sets.

To understand the semantics of local (〈loc〉 and [loc]) modalities in NT-µ, consider

the 1-colored summary s = 〈s3, {s8}〉 in the tree T in Figure 3.1-(a). We observe

that when control moves from node s3 to s5 along a local edge, the current context

stays the same, though the set of returns that can end it and are reachable from the

current control point can get restricted — i.e., ME (s5) ⊆ ME (s3). Consequently,

the 1-colored summary s′ = 〈s5, {s8}〉 describes program flow from s5 to the end of

the current context, and is the local successor of the summary s. NT-µ allows us

to use modalities 〈loc〉 and [loc] to assert requirements on such local successors. For

instance, in this case, the summary s will be said to satisfy the formula 〈loc〉q, as s′

satisfies q.

An interesting visual insight about the structure of the tree Ts for s comes from

Figure 3.2-(a). Note that the tree Ts′ for s′ “hangs”’ from the former by a local edge;

additionally, (1) every leaf of Ts′ is a leaf of Ts, and (2) such a leaf gets the same

color in s and s′.

Succession along call edges is more complex, because along such an edge, a frame

is pushed on a program’s stack and a new procedural context gets defined. In
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Figure 3.2: (a) Local modalities (b) Call modalities (c) Matching contexts.

Figure 3.1-(a), take the summary s = 〈s1〉, and demand that it satisfies the two-

parameter call formula 〈call〉ϕ′{q, p}. This formula asserts a condition on a sub-

tree that: (1) is rooted at a child of s1, and (2) has colors 1 and 2 assigned re-

spectively to the leaves satisfying p and q. Clearly, a possible such summary is

s′ = 〈s2, {s10}, {s11}〉. Our formula requires that s′ satisfies ϕ′. In general, we could

have formulas of the form ϕ = 〈call〉ϕ′{ψ1, ψ2, . . . , ψk}, where ψi are arbitrary NT-µ

formulas.

Visually, we find that the above requires a split of the nested tree Ts for summary s

in the way shown in Figure 3.2-(b). The root of this structure must have a call-edge

to the root of the tree for s′, which must satisfy ϕ. At each leaf of Ts′ colored i, we

must be able to concatenate a summary tree Tr satisfying ψi such that (1) every leaf

in Tr is a leaf of Ts, and (2) each such leaf gets the same set of colors in Ts and Tr.

As for the return modalities, we use them to assert that we return at a node colored

i. Because the binding of these colors to temporal requirements was fixed at a

context that called the current context, the ret-modalities let us relate a path in the
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latter with the continuation of a path in the former. For instance, in Figure 3.2-

(c), where the rectangle abstracts the part of a program unfolding within the body

of a procedure foo, the marking of return points s1 and s2 by colors 1 and 2 is

visible inside foo as well as at the call site of foo. This lets us match paths P1

and P2 inside foo respectively with paths P ′
1 and P ′

2 in the calling procedure. This

lets NT-µ capture the pushdown structure of branching-time runs of a procedural

program.

Let us now describe the semantics of NT-µ formally. A NT-µ formula ϕ is inter-

preted in an environment that interprets variables in Free(ϕ) as sets of summaries in a

nested tree T with node set S. Formally, an environment is a map E : Free(ϕ)→ 2S.

Let us write [[ϕ]]TE to denote the set of summaries in T satisfying ϕ in environment

E (usually T will be understood from the context, and we will simply write [[ϕ]]E).

For a summary s = 〈s, U1, U2, . . . , Uk〉, where s ∈ S and Ui ⊆ ME (s) for all i, s

satisfies ϕ, i.e., s ∈ [[ϕ]]E , if and only if one of the following holds:

• ϕ = p ∈ AP and p ∈ λ(s)

• ϕ = ¬p for some p ∈ AP , and p /∈ λ(s)

• ϕ = X, and s ∈ E(X)

• ϕ = ϕ1 ∨ ϕ2 such that s ∈ [[ϕ1]]E or s ∈ [[ϕ2]]E

• ϕ = ϕ1 ∧ ϕ2 such that s ∈ [[ϕ1]]E and s ∈ [[ϕ2]]E

• ϕ = 〈call〉ϕ′{ψ1, ψ2, ..., ψm}, and there is a t ∈ S such that (1) s
call
−→ t, and (2)

the summary t = 〈t, V1, V2, . . . , Vm〉, where for all 1 ≤ i ≤ m, Vi = ME (t)∩{s′ :

〈s′, U1 ∩ME (s′), . . . , Uk ∩ME (s′)〉 ∈ [[ψi]]E}, is such that t ∈ [[ϕ′]]E

• ϕ = [call ] ϕ′{ψ1, ψ2, ..., ψm}, and for all t ∈ S such that s
call
−→ t, the summary

t = 〈t, V1, V2, . . . , Vm〉, where for all 1 ≤ i ≤ m, Vi = ME (t) ∩ {s′ : 〈s′, U1 ∩

ME (s′), . . . , Uk ∩ME (s′)〉 ∈ [[ψi]]E}, is such that t ∈ [[ϕ′]]E
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• ϕ = 〈loc〉 ϕ′, and there is a t ∈ S such that s
loc
−→ t and the summary

t = 〈t, V1, V2, . . . , Vk〉, where Vi = ME (t) ∩ Ui, is such that t ∈ [[ϕ′]]E

• ϕ = [loc] ϕ′, and for all t ∈ S s.t. s
loc
−→ t, the summary t = 〈t, V1, V2, . . . , Vk〉,

where Vi = ME (t) ∩ Ui, is such that t ∈ [[ϕ′]]E

• ϕ = 〈ret〉 Ri, and there is a t ∈ S such that s
ret
−→ t and t ∈ Ui

• ϕ = [ret ] Ri, and for all t ∈ S such that s
ret
−→ t, we have t ∈ Ui

• ϕ = µX.ϕ′, and s ∈ S for all S ⊆ S satisfying [[ϕ′]]E[X:=S] ⊆ S

• ϕ = νX.ϕ′, and there is some S ⊆ S such that (1) S ⊆ [[ϕ′]]E[X:=S] and (2)

s ∈ S.

Here E [X := S] is the environment E ′ such that: (1) E ′(X) = S, and (2) E ′(Y ) =

E(Y ) for all variables Y 6= X. We say a node s satisfies a formula ϕ if the 0-colored

summary 〈s〉 satisfies ϕ. A nested tree T rooted at s0 is said satisfy ϕ if s0 satisfies

ϕ (we denote this by T |= ϕ). The language of ϕ, denoted by L(ϕ), is the set of

nested trees satisfying ϕ.

A few observations are in order. First, while NT-µ does not allow formulas of form

¬ϕ, it is closed under negation so long as we stick to closed formulas. Given a closed

NT-µ formula ϕ, consider the formula Neg(ϕ), defined inductively in the following

way:

• Neg(p) = ¬p, Neg(¬p) = p, Neg(X) = X

• Neg(ϕ1 ∨ ϕ2) = Neg(ϕ1) ∧ Neg(ϕ2), and Neg(ϕ1 ∧ ϕ2) = Neg(ϕ1) ∨Neg(ϕ2)

• If ϕ = 〈call〉 ϕ′{ψ1, ψ2, ..., ψk}, then

Neg(ϕ) = [call ] Neg(ϕ′){Neg(ψ1),Neg(ψ2), . . . ,Neg(ψk)}

• If ϕ = [call ] ϕ′{ψ1, ψ2, ..., ψk}, then

Neg(ϕ) = 〈call〉 Neg(ϕ′){Neg(ψ1),Neg(ψ2), . . . ,Neg(ψk)}
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• Neg(〈loc〉ϕ′) = [loc]Neg(ϕ′), and Neg([loc]ϕ′) = 〈loc〉Neg(ϕ′)

• Neg(〈ret〉Ri) = [ret ]Ri, and Neg([ret ]Ri) = 〈ret〉Ri

• Neg(µX.ϕ) = νX.Neg(ϕ), and Neg(νX.ϕ) = µX.Neg(ϕ)

Define the unique empty environment as ⊥: ∅ → S. Then we have:

Theorem 1. For all closed NT-µ formulas ϕ, [[ϕ]]⊥ = S \ [[Neg(ϕ)]]⊥.

Proof. For an environment E , let Neg(E) be the environment such that for all vari-

ables X, Neg(E)(X) = S \ E(X). Also, for a summary s = 〈s, U1, . . . , Uk〉, define

Flip(s) to be the summary 〈s,ME (s) \ U1, . . . ,ME (s) \ Uk〉. Thus, a leaf is colored

i in Flip(s) iff it is not colored i in s. We lift the map Flip to sets of summaries in

the natural way.

Now, by induction on the structure of ϕ, we prove a stronger assertion: for an NT-µ

formula ϕ and an environment E , we have [[ϕ]]E = S \ Flip( [[Neg(ϕ)]]Neg(E)). Note

that the theorem follows when we restrict ourselves to variable and marker-closed

formulas.

Cases ϕ = X, ϕ = p and ϕ = ¬p are trivial; the cases ϕ = µX.ϕ′ and ϕ = nuX.ϕ′

are easily shown as well. We handle a few other interesting cases.

Suppose ϕ = 〈ret〉Ri. In this case, Flip( [[Neg(ϕ)]]Neg(E)) contains the set of sum-

maries t = 〈t, U1, . . . , Uk〉 such that for all t′ satisfying t
ret
−→ t′, we have t /∈ Ui. It is

easy to see that the claim holds.

If ϕ = 〈call〉ϕ′{ψ1, . . . , ψk}, then Flip( [[Neg(ϕ)]]Neg(E)) equals the set of summaries

t = 〈t, U1, . . . , Uk〉 such that the following holds: for all t′ satisfying t
call
−→ t′,

the summary t′ = 〈t′, V1, V2, . . . , Vm〉, where for all 1 ≤ i ≤ m, Vi = ME (t′) ∩

{s′ : Flip(〈s′,ME (s′) \ U1, . . . ,ME (s′) \ Uk〉) ∈ [[Neg(ψi)]]Neg(E)}, satisfies t′ ∈

[[Neg(ϕ′)]]Neg(E). Using the induction hypothesis first for the ψi-s and then for ϕ′,

we can now obtain our claim.
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Second, note that the semantics of closed NT-µ formulas is independent of the

environment; customarily, we will evaluate such formulas in the empty environment

⊥. More importantly, the semantics of such a formula ϕ does not depend on current

color assignments; in other words, for all s = 〈s, U1, U2, . . . , Uk〉, s ∈ [[ϕ]]⊥ iff 〈s〉 ∈

[[ϕ]]⊥. Consequently, when ϕ is closed, we can infer that “node s satisfies ϕ” from

“summary s satisfies ϕ.”

Third, every NT-µ formula ϕ(X) with a free variable X can be viewed as a map

ϕ(X) : 2S → 2S defined as follows: for all environments E and all summary sets

S ⊆ S, ϕ(X)(S) = [[ϕ(X)]]E[X:=S]. Then we have:

Proposition 1. The map ϕ : 2S → 2S is monotonic— i.e., if S ⊆ S′ ⊆ S, then we

have ϕ(S) ⊆ ϕ(S′).

It is not hard to verify that this map is monotonic, and that therefore, by the Tarski-

Knaster theorem, its least and greatest fixed points exist. The formulas µX.ϕ(X)

and νX.ϕ(X) respectively evaluate to these two sets. From Tarski-Knaster, we also

know that for a NT-µ formula ϕ with one free variable X, the set [[µX.ϕ]]⊥ lies in

the sequence of summary sets ∅, ϕ(∅), ϕ(ϕ(∅)), . . ., and that [[νX.ϕ]]⊥ is a member

of the sequence S, ϕ(S), ϕ(ϕ(S)), . . ..

Fourth, a NT-µ formula ϕ may also be viewed as a map ϕ : (U1, U2, . . . , Uk) 7→ S ′,

where S ′ is the set of all nodes s such that U1, U2, . . . , Uk ⊆ ME (s) and the summary

〈s, U1, U2, . . . , Uk〉 satisfies ϕ. Naturally, S ′ = ∅ if no such s exists. Now, while a

NT-µ formula can demand that the color of a return from the current context is i,

it cannot assert that the color of a return must not be i (i.e., there is no formula of

the form, say, 〈ret〉¬Ri). It follows that the output of the above map will stay the

same if we grow any of the sets Ui of matching returns provided as input. Formally,

we have:

Proposition 2. Let s = 〈s, U1, . . . , Uk〉 and s′ = 〈s, U ′
1, . . . U

′
k〉 be two summaries

such that Ui ⊆ U ′
i for all i. Then for every environment E and every NT-µ formula

ϕ, s′ ∈ [[ϕ]]E if s ∈ [[ϕ]]E .
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Figure 3.3: Negated return conditions

Such monotonicity over markings has an interesting ramification. Let us suppose

that in the semantics clauses for formulas of the form 〈call〉ϕ′{ψ1, ψ2, . . . , ψk} and

[call ]ϕ′{ψ1, ψ2, . . . , ψk}, we allow t = 〈t, V1, . . . , Vk〉 to be any k-colored summary

such that (1) t ∈ [[ϕ′]]E , and (2) for all i and all s′ ∈ Vi, 〈s
′, U1 ∩ ME (s′), U2 ∩

ME (s′), . . . , Uk ∩ME (s′)〉 ∈ [[ψi]]E . Intuitively, from such a summary, one can grow

the sets Ui to get the “maximal” t that we used in these two clauses. From the above

discussion, NT-µ and this modified logic have equivalent semantics.

Finally, let us see what would happen if we did allow formulas of form 〈ret〉¬Ri,

which holds at a summary 〈s, U1, . . . , Uk〉 if and only if there is an edge s
ret
−→ t

such that t /∈ Ui. In other words, such a formula permits us to state what must

not hold at a colored matching exit in addition to what must. It turns out that

formulas involving the above need not be monotonic, and hence their fixpoints may

not exist. To see why, consider the formula ϕ = 〈call〉(〈ret〉R1 ∧ 〈ret〉(¬R1)){X})

and the nested tree in Figure 3.3. Let S1 = {〈s1〉}, and S2 = {〈s1〉, 〈s2〉}. Viewing

ϕ as a map ϕ : 2S → 2S, we see that: (1) ϕ(S2) = ∅, and (2) ϕ(S1) = 〈s〉.

Thus, even though S1 ⊆ S2, we have ϕ(S1)¬ ⊆ ϕ(S2). In other words, the mono-

tonicity property breaks down.
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3.2.3 Bisimulation closure

Bisimulation is a fundamental relation in the analysis of labeled transition sys-

tems. The equivalence induced by a variety of branching-time logics, including the

µ-calculus, coincides with bisimulation. In this section, we study the equivalence

induced by NT-µ, that is, we want to understand when two nodes satisfy the same

set of NT-µ formulas.

Consider two nested trees T1 and T2 with node sets S1 and S2 (we can assume that

the sets S1 and S2 are disjoint) and node labeling maps λ1 and λ2. Let S = S1 ∪ S2

(we can assume that the sets S1 and S2 are disjoint), and let λ denote the labeling

of S as given by λ1 and λ2. Also, we denote by S the set of all summaries in T1 and

T2.

The bisimulation relation ∼ ⊆ S × S is the greatest relation such that whenever

s ∼ t holds, we have:

1. λ(s) = λ(t),

2. for a ∈ {call , ret , loc} and for every edge s
a
−→ s′, there is an edge t

a
−→ t′

such that s′ ∼ t′, and

3. for a ∈ {call , ret , loc} and for every edge t
a
−→ t′, there is an edge s

a
−→ s′

such that s′ ∼ t′.

Let r1 and r2 be the roots of T1 and T2 respectively. We write T1 ∼ T2 if r1 ∼ r2.

NT-µ is interpreted over summaries, so we need to lift the bisimulation relation to

summaries. A summary 〈s, U1, . . . Uk〉 ∈ S is said to be bisimulation-closed if for

every pair u, v ∈ ME (s) of matching exits of s, if u ∼ v, then for each 1 ≤ i ≤ k,

u ∈ Ui precisely when v ∈ Ui. Thus, in a bisimulation-closed summary, the marking

does not distinguish among bisimilar nodes, and thus, return formulas (formulas

of the form 〈ret〉Ri and [ret ]Ri) do not disntinguish among bisimilar nodes. Two

bisimulation-closed summaries s = 〈s, U1, . . . , Uk〉 and t = 〈t, V1, . . . , Vk〉 in S and
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having the same number of colors are said to be bisimilar , written s ∼ t, iff s ∼ t,

and for each 1 ≤ i ≤ k, for all u ∈ ME (s) and v ∈ ME (t), if u ∼ v, then u ∈ Ui

precisely when v ∈ Vi. Thus, roots of bisimilar summaries are bisimilar and the

corresponding markings are unions of the same equivalence classes of the partitioning

of the matching exits induced by bisimilarity. Note that every 0-ary summary is

bisimulation-closed, and bisimilarity of 0-ary summaries coincides with bisimilarity

of their roots.

p

p

ppp

p

¬p ¬p¬p ¬p ¬p

S Ts1

s2

s3

s4s5

t1

t2

t3

t4

Legend: ret loc/call

Figure 3.4: Bisimilarity.

Consider the nested trees S and T in Figure 3.4. We have named the nodes

s1, s2, t1, t2 etc. and labeled some of them with proposition p. Note that s2 ∼

s4, hence the summary 〈s1, {s2}, {s4}〉 in S is not bisimulation-closed. Now con-

sider the bisimulation-closed summaries 〈s1, {s2, s4}, {s3}〉 and 〈t1, {t2}, {t3}〉. By

our definition they are bisimilar. However, the (bisimulation-closed) summaries

〈s1, {s2, s4}, {s3}〉 and 〈t1, {t3}, {t2}〉 are not.

We now want to prove that bisimilar summaries satisfy the same NT-µ formulas.

For an inductive proof, we need to consider the environment also. We assume that

the environment E maps NT-µ variables to subsets of S (the union of the sets of
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summaries of the disjoint structures). Such an environment is said to be bisimulation-

closed if for every variable X, and for every pair of bisimilar summaries s ∼ t,

s ∈ E(X) precisely when t ∈ E(X).

Lemma 1. If E is a bisimulation-closed environment and ϕ is a NT-µ formula,

[[ϕ]]E is bisimulation-closed.

Proof. The proof is by induction on the structure of the formula ϕ. Consider two

bisimulation-closed bisimilar summaries s = 〈s, U1, . . . Uk〉 and t = 〈t, V1, . . . Vk〉, and

a bisimulation-closed environment E . We want to show that s ∈ [[ϕ]]E precisely when

t ∈ [[ϕ]]E .

If ϕ is a proposition or negated proposition, the claim follows from bisimilarity of

nodes s and t. When ϕ is a variable, the claim follows from bisimulation closure of

E . We consider a few interesting cases.

Suppose ϕ = 〈ret〉Ri. s satisfies ϕ precisely when s has a return-edge to some node

s′ in Ui. Since s and t are bisimilar, this can happen precisely when t has a return

edge to a node t′ bisimilar to s′, and from definition of bisimilar summaries, t′ must

be in Vi, and thus t must satisfy ϕ.

Suppose ϕ = 〈call〉ϕ′{ψ1, . . . ψm}. Suppose s satisfies ϕ. Then there is a call-

successor s′ of s such that 〈s′, U ′
1, . . . U

′
m〉 satisfies ϕ′, where U ′

i = {u ∈ ME (s′) |

〈u, U1 ∩ME (u), . . . Uk ∩ME (u)〉 ∈ [[ψi]]E}. Since s and t are bisimilar, there exists

a call-successor t′ of t such that s′ ∼ t′. For each 1 ≤ i ≤ m, let V ′
i = {v ∈ ME (t′) |

∃u ∈ U ′
i . u ∼ v}. Verify that the summaries 〈s′, U ′

1, . . . U
′
m〉 and 〈t′, V ′

1 , . . . V
′
m〉 are

bisimilar. By induction hypothesis, 〈t′, V ′
1 , . . . V

′
m〉 satisfies ϕ′. Also, for each v ∈

V ′
i , for 1 ≤ i ≤ m, the summary 〈v, V1 ∩ ME (v), . . . Vk ∩ ME (v)〉 is bisimilar to

〈u, U1∩ME (u), . . . Uk∩ME (u)〉, for some u ∈ Ui, and hence, by induction hypothesis,

satisfies ψi. This establishes that t satisfies ϕ.

To handle the case ϕ = µX.ϕ′, let X0 = ∅. For i ≥ 0, let Xi+1 = [[ϕ′]]E[X:=Xi]. Then

[[ϕ]]E = ∪i≥0Xi. Since E is bisimulation closed, and X0 is bisimulation-closed, by

induction, for i ≥ 0, each Xi is bisimulation-closed, and so is [[ϕ]]E .
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As a corollary, we get:

Corollary 1. If T1 ∼ T2, then for every closed NT-µ formula ϕ, T1 |= ϕ precisely

when T2 |= ϕ.

The proof also shows that to decide whether a nested tree satisfies a closed NT-µ for-

mula, during the fixpoint evaluation, one can restrict attention only to bisimulation-

closed summaries. In other words, we can redefine the semantics of NT-µ so that

the set S of summaries contains only bisimulation-closed summaries. It also suggests

that to evaluate a closed NT-µ formula over a nested tree, one can reduce the nested

tree by collapsing bisimilar nodes as in the case of classical model checking.

If the two nested trees T1 and T2 are not bisimilar, then there exists a µ-calculus

formula (in fact, of the much simpler Hennessy-Milner modal logic, which does not

involve any fixpoints) that is satisfied at the roots of only one of the two trees.

This does not immediately yield a NT-µ formula that distinguishes the two trees

because NT-µ formulas cannot assert requirements across return-edges in a direct

way. However, as we show in Chapter 4 via an automata-theoretic proof, every

closed formula of the µ-calculus may be converted into an equivalent formula in NT-

µ. Thus, two nested trees satisfy the same set of closed NT-µ formulas precisely

when they are bisimilar.

Let us now consider two arbitrary nodes s and t (in the same nested tree, or in

two different nested trees). When do these two nodes satisfy the same set of closed

NT-µ formulas? From the arguments so far, bisimilarity is sufficient. However, the

satisfaction of a closed NT-µ formula at a node s in a nested tree T depends solely

on the subtree rooted at s that is truncated at the matching exits of s. In fact, the

full subtree rooted at s may not be fully contained in a nested tree, as it can contain

excess returns. As a result, we define the notion of a nested subtree rooted at s as the

subgraph obtained by taking the tree rooted at s and deleting the nodes in ME (s)

along with the subtrees rooted at them and the return-edges leading to them (the

jump-edge relation is restricted in the natural way).

47



For instance, in Figure 3.4, Ss1 comprises nodes s1 and s5 and the loc-edge connecting

them. It is easy to check that for a node s in a nested tree T and a closed NT-µ

formula ϕ, the summary 〈s〉 satisfies ϕ in the original nested tree precisely when Ts

satsifies ϕ. If s and t are not bisimilar, and the non-bisimilarity can be established

within the nested subtrees Ts and Tt rooted at these nodes, then some closed NT-µ

formula can distinguish them.

Theorem 2. Two nodes s and t satisfy the same set of closed NT-µ formulas pre-

cisely when Ts ∼ Tt.

3.3 Specifying requirements

In this section, we explore how to use NT-µ as a specification language. On one

hand, we will see how NT-µ and classical temporal logics differ fundamentally in

style of expression; on the other, we will express properties not expressible in logics

like the µ-calculus. The example program from Chapter 2 (reproduced, along with

the corresponding nested tree, in Figure 3.5) will be used to illustrate some of our

specifications. Also, because fixpoint formulas are typically hard to read, we will

define some syntactic sugar for NT-µ using CTL-like temporal operators.

Reachability

Let us express in NT-µ the reachability property Reach that says: “a node t satisfy-

ing proposition p can be reached from the current node s before the current context

ends.” As a program starts with an empty stack frame, we may omit the restriction

about the current context if s models the initial program state.

Now consider a nontrivial witness π for Reach that starts with an edge s
call
−→ s′.

There are two possibilities: (1) a node satisfying p is reached in the new context or

a context called transitively from it, and (2) a matching exit s′′ of s′ is reached, and

at s′′, Reach is once again satisfied.
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To deal with case (2), we mark a matching exit that leads to p by color 1. Let X

store the set of summaries of form 〈s′′〉, where s′′ satisfies Reach. Then we want the

summary 〈s,ME (s)〉 to satisfy 〈call〉ϕ′{X}, where ϕ′ states that s′ can reach one of

its matching exits of color 1. In case (1), there is no return requirement (we do not

need the original call to return), and we simply assert 〈call〉X{}.

Before we get to ϕ′, note that the formula 〈loc〉X captures the case when π starts

with a local transition. Combining the two cases and using CTL-style notation (we

write EF c p to denote “p is true before the end of the current context ends”), the

formula we want is

EF c p = µX.(p ∨ 〈loc〉X ∨ 〈call〉X{} ∨ 〈call〉ϕ′{X}).

Now observe that ϕ′ also expresses reachability, except: (1) its target needs to satisfy

〈ret〉R1, and (2) this target needs to lie in the same procedural context as s′. In other

words, we want to express what we call local reachability of 〈ret〉R1. It is easy to

verify that

ϕ′ = µY.(〈ret〉R1 ∨ 〈loc〉Y ∨ 〈call〉Y {Y }).

We cannot merely substitute p for 〈ret〉R1 in ϕ′ to express local reachability of p.

However, a formula EF l
c p for this property is easily obtained by restricting the

formula EF c p:

EF l
c p = µX.(p ∨ 〈loc〉X ∨ 〈call〉ϕ′{X}).

Generalizing, we can allow p to be any NT-µ formula that keeps EF c p and EF l
c p

closed.

For example, consider the nested tree in Figure 3.5 that models the unfolding of the

program in the same figure. The propositional labeling is as in Chapter 2. In that

case, EF l
c rd and EF c wr are true at the control point right before the recursive call

in L2 in the top-level invocation of foo (node s in the figure); however, EF l
cwr is not.

It is now easy to verify that the formula AF c p, which states that “along all paths

from the current node, a node satisfying p is reached before the current context
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terminates,” is given by

AF c p = µX.(p ∨ ([loc]X ∧ [call ]ϕ′′{X})),

where ϕ′′ demands that a matching exit colored 1 be reached along all local paths:

ϕ′′ = µY.(p ∨ ([ret ]R1 ∧ [loc]Y ∧ [call ]Y {Y })).

As in the previous case, we can define a corresponding operator AF l
c that asserts

local reachability along all paths. For instance, in Figure 3.5, AF l
c rd does not hold

at node s (as the program can skip its while-loop altogether).

Note that the highlight of this approach to specification is the way we split a program

unfolding along procedure boundaries, specify these “pieces” modularly, and plug

the summary specifications so obtained into their call sites. This “interprocedural”

reasoning distinguishes it from logics such as the µ-calculus that would reason only

about global runs of the program.

Also, there is a significant difference in the way fixpoints are computed in NT-µ

and the µ-calculus. Consider the fixpoint computation for the µ-calculus formula

µX.(p ∨ 〈〉X) that expresses reachability of a node satisfying p. The semantics of

this formula is given by a set SX of nodes which is computed iteratively. At the end

of the i-th step, SX comprises nodes that have a path with at most (i−1) transitions

to a node satisfying p. Contrast this with the evaluation of the outer fixpoint in the

NT-µ formula EF c p. Assume that ϕ′ (intuitively, the set of “jumps” from calls

to returns”) has already been evaluated, and consider the set SX of summaries for

EF c p. At the end of the i-th phase, this set contains all s = 〈s〉 such that s has a

path consisting of (i − 1) call and loc-transitions to a node satisfying p. However,

because of the subformula 〈call〉ϕ′{X}, it also includes all s where s reaches p via

a path of at most (i − 1) local and “jump” transitions. Note how return edges are

considered only as part of summaries plugged into the computation.
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procedure foo()

input x;

L1:  write(e);
     if(x)
L2:    foo();
     else
L3:    think;
     while (x)
L4:    read(e);
L5:  return;
}

...

...

...

...

{

call

return

local

{en}

{en}

{ex}

{ex}

{ex}

{rd}

{rd}

{rd}

{rd}

{wr}

{wr}

{wr}

{tk}

{tk}

{tk}
∞

{end}

{end}

{end}

{end}

{end}

s

Figure 3.5: An example

Invariance and until

Now consider the invariance property “on some path from the current node, property

p holds everywhere till the end of the current context.” A NT-µ formula EGc p for

this is obtained from the identity EG c p = Neg(AF c Neg(p)). The formula AGc p,

which asserts that p holds on each point on each run from the current node, can be

written similarly.

Other classic branching-time temporal properties like the existential weak until (writ-

ten as E(p1 Wc p2)) and the existential until (E(p1 Uc p2)) are also expressible. The

former holds if there is a path π from the current node such that p1 holds at every

point on π till it reaches the end of the current context or a node satisfying p2 (if π

doesn’t reach either, p1 must hold all along on it). The latter, in addition, requires p2

to hold at some point on π. The for-all-paths analogs of these properties (A(p1 Uc p2)

and A(p1 Wc p2)) aren’t hard to write either.
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Neither is it difficult to express local or same-context versions of these properties.

Consider the maximal subsequence π′ of a program path π from s such that each

node of π′ belongs to the same procedural context as s. A NT-µ formula EGlp

for existential local invariance demands that p holds on some such π′, while AG l
cp

asserts the same for all π′. Similarly, we can define existential and universal local

until properties, and corresponding NT-µ formulas E(p1 U
l
c p2) and A(p1 U

l
c p2). For

instance, in Figure 3.5, E(¬wr U l
c rd) holds at node s (whereas E(¬wr Uc rd) does

not). “Weak” versions of these formulas are also written with ease. For instance, it

is easy to verify that we can write generic existential, local, weak until properties as

E(p1 W
l
c p2) = νX.((p1 ∨ p2) ∧ (p2 ∨ 〈loc〉X ∨ 〈call〉ϕ

′{X})),

where ϕ′ asserts local reachability of 〈ret〉R1 as before.

Interprocedural dataflow analysis

It is well-known that many classic dataflow analysis problems can be reduced to tem-

poral logic model-checking over program abstractions [Ste91, Sch98]. For example,

consider the problem of finding very busy expressions in a program that arises in

compiler optimization. An expression e is said to be very busy at a program point

s if every path from s must evaluate e before any variable in e is redefined. Let

us first assume that all variables are in scope all the time along every path from s.

Now label every node in the program’s unfolding immediately preceding a statement

evaluating e by a proposition use(e), and every node representing a program state

about to redefine a variable in e by mod(e). For example, if e is as in the program

in Figure 3.5, every node labeled wr in the corresponding nested tree is also labeled

mod(e), and every node labeled rd is also labeled use(e).

Because of loops in the flow graph, we would not expect every path from s to

eventually satisfy use(e); however, we can demand that each point in such a loop

will have a path to a loop exit from where a use of e would be reachable. Then a
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NT-µ formula that demands that e is very busy at s is

A((EF c use(e) ∧ ¬mod(e)) Wc use(e)).

Note that this property uses the power of NT-µ to reason about branching time.

However, complications arise if we are considering interprocedural paths and e has

local as well as global variables. Note that if e in Figure 3.5 contains global variables,

then it is not very busy at the point right before the recursive call to foo. This is

because e may be written in the new context. However, if e only contains local

variables, then this modification, which happens in an invoked procedural context,

does not affect the value of e in the original context. While facts involving global

variables and expressions flow through program paths across contexts, data flow

involving local variables follow program paths within the same context.

Local temporal properties are useful in capturing these two different types of data

flow. Let us handle the general case, where the expression e may have global as

well as local variables. define two propositions mod g(e) and mod l(e) that are true at

points where, respectively, a global or a local variable in e is modified. The NT-µ

property we assert at s is

νX.(((EF l
c use(e))∧¬modg(e)∧¬modl(e))∨use(e))∧(use(e)∨([loc]X∧[call ]ψ{X, tt})),

where the formula ψ tracks global variables in new contexts:

ψ = µY.(¬mod g(e) ∧ (([ret ]R1 ∧ 〈ret〉R2) ∨ ([call ]Y {Y, tt} ∧ [loc]Y ))).

Note the use of the formula 〈ret〉R2 to ensure that [ret ]R1 is not vacuously true.

Pushdown specifications

The domain where NT-µ stands out most clearly from previously studied fixpoint

calculi is that of pushdown specifications, i.e., specifications involving the program
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stack. We have already introduced a class of such specifications expressible in NT-

µ: that of local temporal properties. For instance, the formula EF l
cp needs to track

the program stack to know whether a reachable node satisfying p is indeed in the

initial calling context. Some such specifications have previously been discussed in

context of the temporal logic Caret [AEM04]. On the other hand, it is well-known

that the modal µ-calculus is a regular specification language (i.e., it is equivalent in

expressiveness to a class of finite-state tree automata), and cannot reason about the

stack in this way. We have already seen an application of these richer specifications

in program analysis. In the rest of this section, we will see more of them.

Nested formulas and stack inspection

Interestingly, we can express certain properties of the stack just by nesting NT-µ

formulas for (non-local) reachability and invariance. To understand why, recall that

NT-µ formulas for reachability and invariance only reason about nodes appearing

before the end of the context where they were asserted. Now let us try to express a

stack inspection property such as “if procedure foo is called, procedure bar must not

be on the call stack.” Specifications like this have previously been used in research on

software security [JMT99, EKS03], and are enforced at runtime in the Java or .NET

stack inspection framework. However, because a program’s stack can be unbounded,

they are not expressible by regular specifications like the µ-calculus. While the

temporal logic Caret can express such properties, it requires a past-time operator

called caller to do so. To express this property in NT-µ, we define propositions cfoo

and cbar that respectively hold at every call site for foo and bar. Now, assuming

control starts in foo, consider the formula

ϕ = EF c(cbar ∧ 〈call〉(EF c cfoo){}).

This formula demands a program path where, first, bar is called (there is no return

requirement), and then, before that context is popped off the stack, a call site for

foo is reached. It follows that the property we are seeking is Neg(ϕ).
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Other stack inspection properties expressible in NT-µ include “when procedure foo

is called, all procedures on the stack must have the necessary privilege.” Like the

previous requirement, this requirement protects a a privileged callee from a malicious

caller. However, NT-µ also comes in handy to express properties that protect the

caller from the callee. For one such scenario [AF03], consider a malicious method A

which, via side-effects or exceptional return conditions, may compromise the security

of methods that the caller method B calls subsequently. To prevent such a scenario,

we may assert requirements such as “If A has ever been on the stack, do not execute

the sensitive operation X.” Note that stack inspection cannot handle this speci-

fication. This is an example of a dynamic security constraint (mentioned but not

formalized in [JMT99]), which combine reasoning about the program stack with rea-

soning about the global evolution of the program, allowing privileges of procedures

to change dynamically depending on the privileges used so far.

Stack overflow

Stack overflow, caused by unbounded recursion, is a serious security vulnerability

in programs written in C-like languages. NT-µ can specify requirements that safe-

guard against such errors. Once again, nested modalities come handy. Suppose we

assert AGc(〈call〉ff {}) throughout every context reached through k calls in succes-

sion without intervening returns (this can be kept track of using a k-length chain of

〈call〉 modalities). This will disallow further calls, bounding the stack to height k.

Other specifications for stack boundedness include: “every call in every program

execution eventually returns.” This property requires the program stack to be empty

infinitely often. Though this requirement does not say how large the stack may get—

even if a call returns, it may still overflow the stack at some point. Further, in certain

cases, a call may not return because of cycles introduced by abstraction. However,

it does rule out infinite recursive loops in many cases; for instance, the program in

Fig. 3.5 will fail this property because of a real recursive cycle. We capture it by
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asserting AGc Termin at the initial program point, where

Termin = [call ](AF l
c(〈ret〉R1)){tt}.

Preconditions and postconditions

For a program state s, let us consider the set Jmp(s) of nodes to which a call from

s may return. Then the requirement: “property p holds at some node in Jmp(s)” is

captured by the NT-µ formula 〈jump〉p = 〈call〉(EF l
c 〈ret〉R1){p}. The dual formula

[jump]p, which requires p to hold at all such jump targets, is also easily constructed.

An immediate application of this is to encode the partial and total correctness re-

quirements popular in formalisms like Hoare logic and JML [BCC+03]. A partial

correctness requirement for a procedure A asserts that if precondition Pre is satisfied

when A is called, then if A terminates, postcondition Post holds upon return. To-

tal correctness, additionally, requires A to terminate. These requirements cannot be

expressed using regular specifications. In NT-µ, let us say that at every call site to

procedure A, proposition cA holds. Then a formula for partial correctness, asserted

at the initial program state, is

AGc((Pre ∧ cA)⇒ [jump]Post).

Total correctness is expressed as

AGc((Pre ∧ cA)⇒ (Termin ∧ [jump]Post)).

Access control

The ability of NT-µ to handle local and global variables simultaneously is useful in

other domains, e.g., access control. Consider a procedure A that can be called with

a high or low privilege, and suppose we have a rule that A can access a database

(proposition access is true when it does) only if it is called with a high privilege (priv

holds when it is). It is tempting to write a property ϕ = ¬priv ⇒ AGc (¬access)
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to express this requirement. However, a context where A has low privilege may lead

to another where A has high privilege via a recursive invocation, and ϕ will not let

A access the database even in this new context. The formula we are looking for is

really ϕ′ = ¬priv ⇒ AG l
c (¬access), asserted at every call site for A.

Multiple return conditions

As we shall see in Section 3.5, the theoretical expressiveness of NT-µ depends on

the fact that we can pass multiple return conditions as “parameters” to NT-µ call

formulas. We can also use these parameters to remember events that happen within

the scope of a call and take actions accordingly on return.

To see how, we go back to Figure 3.5, and observe that in any particular invocation

of foo, it is possible to exit the routine (1) having read the value of e that was written

in this invocation, and (2) not having read this value. Suppose that we demand that

in case (2), the expression e must be read at least once before the end of the current

context— that is, the value written in the last write must be read by that point. We

do not require this in case (1)— in this case control may skip the loop. In addition,

let us require that every path in an invocation of foo returns and that e is written

at least once in this path.

We express these requirements by asserting the NT-µ formula ϕ at the program

point right before the recursive call to foo:

ϕ = 〈call〉ψ′{tt ,EF c rd},

where ψ′ is a fixed-point property that states that: each path in the new context

must either:

• see a node labeled wr followed, not necessarily immediately, by a node labeled

rd , and then read 〈ret〉R1 without seeing wr again,

• see a node labeled wr and then not see a node labeled rd till a node satisfying

〈ret〉R2 is reached.
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3.4 Model checking

In this section, we introduce the problem of model checking NT-µ over unfoldings of

nested state machines (NSMs). Our primary result is an iterative, symbolic decision

procedure to solve this problem. Appealingly, this algorithm follows directly from the

operational semantics of NT-µ and has the same complexity as the best algorithms

for model checking CTL or the alternation-free µ-calculus over similar abstractions.

We also show a matching lower bound.

For a specification given by a (closed) NT-µ formula ϕ and an NSMM abstracting

a program (recall Section 2.2), the model checking problem is to determine if T (M)

satisfies ϕ. We will now offer an algorithm for this problem.

Let V be the set of vertices ofM, and consider a node s in the execution tree T V (M)

of M (defined in Chapter 2). The set ME (s), as well as the return-formulas that

hold at a summary s rooted at s, depend on states at call nodes on the path from

the root to s. However, we observe that the history of call-nodes up to s is relevant

to a formula only because they may be consulted by return-nodes in the future, and

no formula interpreted at s can probe “beyond” the nodes in ME (s). Thus, so far as

satisfaction of a formula goes, we are only interested in the last “pending” call-node;

in fact, the state of the automaton at this node is all that we need to record about

the past.

Let us now try to formalize this intuition. First we define the unmatched call-ancestor

Anc(s) of a node s in a nested tree T . Consider the tagged tree of T , and recall

the definition of a balanced word over tags (given in Section 2.1). If t = Anc(s),

then we require that t
call
−→ t′ for some node t′ such that in the tagged tree of T ,

there is a path π from t′ to s such that the sequence of edge labels along π forms a

balanced word. Note that every node in a nested tree has at most one unmatched

call-ancestor. If a node s does not have such an ancestor, we set Anc(s) =⊥.

Now let us consider two k-colored summaries s = 〈s, U1, U2, . . . , Uk〉 and s′ =

〈s′, U ′
1, U

′
2, . . . , U

′
k〉 in the execution tree T V (M) = (T, →֒, λ) of the NSM M, and
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let Anc(s) = t and Anc(s′) = t′, where t, t′ can be nodes or the symbol ⊥ (note that

if we have Anc(s) =⊥, then ME (s) = ∅, so that Ui = ∅ for all i).

Now we say s and s′ are M-equivalent (written as s ≡M s′ or simply s ≡ s′ when

M is clear from the context) if:

• λ(s) = λ(s′);

• either t = t′ =⊥, or λ(t) = λ(t′);

• for each 1 ≤ i ≤ k, there is a bijection Ωi : Ui → U ′
i such that for all u ∈ Ui,

we have λ(u) = λ(Ωi(u)).

It is easily seen that the relation ≡ is an equivalence. Let us call a set S of summaries

in T V (M)M-equivalence-closed (written ≡-closed) if for any two summaries s and

s′ such that s ≡ s′, we have s ∈ S iff s′ ∈ S. In other words, such a set is the union

of a certain number of equivalence classes induced by ≡. Let us call an environment

E ≡-closed if for every variable X, the set E(X) is ≡-closed.

Note that the above definitions involve summaries in the execution tree T V (M).

However, each summary in the execution tree may also be viewed as a summary in

the unfolding T (M) ofM, in which case we can interpret NT-µ formulas involving

atomic propositions on them.

Now we prove that:

Lemma 2. For any ≡-closed environment E , NT-µ formula ϕ, and ≡-equivalent

summaries s and s′, we have s ∈ [[ϕ]]
T (M)
E iff s′ ∈ [[ϕ]]

T (M)
E .

Proof. The proof is by structural induction on the formula ϕ. Let s and s′ be M-

equivalent summaries as in the definition ofM-equivalence above, and let us continue

to denote the bijection between the i-colored exits of s and s′ by Ωi : Ui → U ′
i . Let

us denote by λ the labeling of nodes in the execution tree T V (M). We denote

λ(s) = λ(s′) by v0 and λ(t) = λ(t′) by v1. It suffices to show that assuming E is

≡-closed, s ∈ [[ϕ]]E ⇒ s′ ∈ [[ϕ]]E .
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We handle some interesting cases:

• If ϕ = X, then the claim holds as E isM-equivalence-closed.

• Suppose ϕ = µX.ϕ′. Let X0 = ∅, and for i ≥ 0, let Xi+1 = [[ϕ′]]E[X:=Xi]. Then

[[ϕ]]E = ∪i≥0Xi. Since X0 is M-equivalence-closed, and E is M-equivalence-

closed, and [[ϕ′]]E ′ is M-equivalence-closed for all M-equivalence-closed envi-

ronments E ′, by induction on i, [[ϕ]]E isM-equivalence-closed.

• Suppose ϕ = 〈ret〉Ri. That means that there is some s
ret
−→ u such that u ∈ Ui.

Let λ(u) = v2; then λ(Ω(u)) = v2. However, in that case the same transition

(v0, v1)
ret
−→ v2 can be “fired” from s′ to Ω(u)— i.e., s′

ret
−→ Ω(u). In other

words s′ ∈ [[ϕ]]E

• Suppose ϕ = 〈call〉ϕ′{ψ1, . . . , ψk}. This means that there is some call-edge

s
call
−→ u and a summary u = 〈u, V1, . . . , Vk〉 satisfying ϕ′ such that for all i and

all w ∈ Vi, we have w = 〈t, V1 ∩ME (w), . . . , Vk ∩ME (w)〉 satisfying ψi.

Now note that, because λ(s) = λ(s′), there is a call-edge s′
call
−→ u′. We can

show inductively that there is a bijection Ω′ : ME (u)→ ME (u′) such that for

any node w ∈ ME (u), we have λ(w) = λ(Ω′(w)). The reason is that any path

in the tree from s to ME (s) is independent of the labeling λ(w) of any node w

such that w
+
−→ Anc(s) (we can prove this using induction). As λ(s) = λ(s′)

and λ(Anc(s)) = λ(Anc(s′)), every path in from s to a node in ME (s) is

simulated by a unique path from s′ to a node in ME (s′).

By restricting Ω′ to the sets V1, V2, . . . ⊆ ME (u), we get the bijections Ω′
i :

Vi → V ′
i , for 1 ≤ i ≤ k. Let us now construct u′ = 〈u′, V ′

1 , . . . , V
′
k〉. We observe

that u and u′ are M-equivalent. In that case u′ satisfies ϕ′ in environment

E . Likewise, for w ∈ Vi as before, let w′ = Ωi(w), and construct the summary

w′ = 〈w′, V ′
1 ∩ME (w′), . . . , V ′

k ∩ME (w′)〉. Then w and w′ areM-equivalent,

and both satisfy ψi. In that case s′ satisfies ϕ.
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Now note that the number of equivalence classes that ≡ induces on the set of sum-

maries is bounded! Each such equivalence class may be represented by a tuple

〈v, v′, V1, . . . , Vk〉, where v ∈ V , v′ ∈ V ∪ {⊥}, and Vi ⊆ V for all i—for the class of

the summary s above, for instance, we have λ(s) = v and λ(Ui) = Vi; we also have

λ(t) = v′ in case t 6=⊥, and v′ =⊥ otherwise. Let us call such a tuple a bounded

summary. The idea behind the model-checking algorithm of NT-µ is that for any

formula ϕ, we can maintain, symbolically, the set of bounded summaries that sat-

isfy it. Once this set is computed, we can compute the set of bounded summaries

for formulas defined inductively in terms of ϕ. This computation follows directly

from the semantics of the formula; for instance, the set for the formula 〈loc〉ϕ con-

tains all bounded summaries 〈v, v′, V1, . . . , Vk〉 such that for some v′′ ∈ V , we have

v
loc
−→ v′′, and, letting V ′′

i comprise the elements of Vi that are reachable from v′′,

〈v′′, v′, V ′′
1 , . . . , V

′′
k 〉 satisfies ϕ.

Let us now define bounded summaries formally. Consider any state u in an NSMM

with state set V . A state u′ is said to be the unmatched call-ancestor state of state

u if there is a node s labeled u in T V (M) such that u′ is the label of the unmatched

call-ancestor of s (we have a predicate AncV (u′, u) that holds iff this is true). Note

that a state may have multiple unmatched call-ancestor states. If there is a node s

labeled u in T V (M) such that Anc(s) =⊥, we set AncV (⊥, u).

A state v is a matching exit state for a pair (u, u′), where AncV (u′, u), if there are

nodes s, s′, t in T V (M) such that t ∈ ME (s), s′ is the unmatched call-ancestor of s,

and labels of s, s′, and t are u, u′, and v respectively (a pair (u,⊥) has no matching

exit state).

The modeling intuition is that from a program state modeled by NSM state u and

a stack with a single frame modeled by the state u′, control may reach a u′′ in the

same context, and then return at the state v via a transition (u′′, u′)
ret
−→ v. Using

well-known techniques for pushdown models [ABE+05], we can compute, given a
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state u, the set of u′ such that AncV (u′, u), and for every member u′ of the latter,

the set MES (u, u′) of matching exit states for (u, u′), in time polynomial in the size

ofM.

Now, let n be the arity of the formula ϕ in whose model-checking problem we are

interested. A bounded summary is a tuple 〈u, u′, V1, . . . , Vk〉, where 0 ≤ k ≤ n,

AncV (u′, u) and for all i, we have Vi ⊆ MES (u, u′). The set of all bounded summaries

inM is denoted by BS .

Let EBS : Free(ϕ) → 2BS be a bounded environment mapping free variables in ϕ to

sets of bounded summaries, and let ⊥B denote the empty environment. We define a

map Eval(ϕ, EBS) assigning a set of bounded summaries to a NT-µ formula ϕ:

• If ϕ = p, for p ∈ AP , then Eval(ϕ, EBS) consists of all bounded summaries

〈u, u′, V1, . . . , Vk〉 such that p ∈ κ(u) and k ≤ n.

• If ϕ = ¬p, for p ∈ AP , then Eval(ϕ, EBS) consists of all bounded summaries

〈u, u′, V1, V2, . . . , Vk〉 such that p /∈ κ(u) and k ≤ n.

• If ϕ = X, for X ∈ Var , then Eval(ϕ, EBS) = EBS(X).

• If ϕ = ϕ1 ∨ ϕ2 then Eval(ϕ, EBS) = Eval(ϕ1, EBS) ∪ Eval(ϕ2, EBS).

• If ϕ = ϕ1 ∧ ϕ2 then Eval(ϕ, EBS) = Eval(ϕ1, EBS) ∩ Eval(ϕ2, EBS).

• If ϕ = 〈call〉 ϕ′{ψ1, ..., ψm}, then Eval(ϕ, EBS) consists of all bounded sum-

maries 〈u, u′, V1, . . . , Vk〉 such that for some transition u
call
−→ u′′ of M, we

have a bounded summary 〈u′′, u′′, V ′
1 , V

′
2 , ..., V

′
m〉 ∈ Eval(ϕ′, EBS), and for all

v ∈ V ′
i , where i = 1, . . . , m, we have 〈v, u′, V ′′

1 , . . . , V
′′
k 〉 ∈ Eval(ψi, EBS), where

V ′′
j = Vj ∩MES (v, u′) for all j ≤ k.

• If ϕ = [call ] ϕ′{ψ1, ..., ψm}, then Eval(ϕ, EBS) consists of all bounded sum-

maries 〈u, u′, V1, . . . , Vk〉 such that for all u′′ such that there is a transition u
call
−→

u′′ in M, we have a bounded summary 〈u′′, u′′, V ′
1 , V

′
2 , ..., V

′
m〉 ∈ Eval(ϕ′, EBS),
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FixPoint (X,ϕ, EBS)
1 X ′ = Eval(ϕ, EBS)
2 if X ′ = EBS(X)
3 then return X ′

4 else return FixPoint (X,ϕ′, EBS[X := X ′])

Figure 3.6: Fixpoint computation for NT-µ.

and for all v ∈ V ′
i , where i = 1, . . . , m, we have 〈v, u′, V ′′

1 , . . . , V
′′
k 〉 ∈ Eval(ψi, EBS),

where V ′′
j = Vj ∩MES (v, u′) for all j ≤ k.

• If ϕ = 〈loc〉 ϕ′, then Eval(ϕ, EBS) consists of all bounded summaries of the form

〈u, u′, V1 . . . , Vk〉 such that for some v such that there is a transition u
loc
−→ v,

we have 〈v, u′, V1 ∩MES (v, u′), . . . , Vk ∩MES (v, u′)〉 ∈ Eval(ϕ′, EBS).

• If ϕ = [loc] ϕ′, then Eval(ϕ, EBS) consists of all bounded summaries of the form

〈u, u′, V1 . . . , Vk〉 such that for all v such that there is a transition u
loc
−→ v, we

have 〈v, u′, V1 ∩MES (v, u′), . . . , Vk ∩MES (v, u′)〉 ∈ Eval(ϕ′, EBS).

• If ϕ = 〈ret〉Ri, then Eval(ϕ, EBS) consists of all bounded summaries of the form

〈u, u′, V1, . . . , Vk〉 such that for some u′′ ∈ Vi,M has a transition (u, u′)
ret
−→ u′′.

• If ϕ = [ret ] Ri, then Eval(ϕ, EBS) consists of all bounded summaries of the

form 〈u, u′, V1, . . . , Vk〉 such that for all transitions of the form (u, u′)
ret
−→ u′′,

we have u′′ ∈ Vi.

• If ϕ = µX.ϕ′, then Eval(ϕ, EBS) = FixPoint (X,ϕ′, EBS[X := ∅]).

• If ϕ = νX.ϕ′, then Eval(ϕ, EBS) = FixPoint (X,ϕ′, EBS [X := BS ]).

Here FixPoint (X,ϕ, EBS) is a fixpoint computation function that uses the formula

ϕ as a monotone map between subsets of BS , and iterates over variable X. This

computation is as in Figure 3.6.
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Now we show that to model check a formula ϕ on an NSMM, we only have to com-

pute Eval(ϕ,⊥B). Let us first define, for any bounded summary b = 〈v, v′, V1, . . . , Vk〉,

the set Unbound(b) of summaries in T V (M) that it captures. Let λ be denote the

node-labeling map in T V (M). A summary s = 〈s, U1, . . . , Uk〉 is in Unbound(b) iff

λ(s) = v, λ(Anc(s)) = v′, and for all 1 ≤ i ≤ k, we have λ(Ui) = Vi.

The map is lifted to sets of bounded summaries in the natural way. We also lift the

map Unbound to bounded environments. For a bounded environment EBS, the set

Unbound(EBS) is the environment E in T V (M) such that for every variable X, we

have E(X) = Unbound(EBS(X)).

Now observe that:

1. For any bounded summary b, the set Unbound(b) is ≡M-closed.

2. For any bounded environment EBS, the environment Unbound(EBS) is≡-closed.

Next we show inductively that:

Lemma 3. For any NT-µ formula ϕ, bounded environment EBS, and bounded sum-

mary b, and for all s ∈ Unbound(b), we have

b ∈ Eval(ϕ, EBS) iff s ∈ [[ϕ]]Unbound (EBS ).

Now note that if initial state of M is vin and the root of T (M) is sin, then

〈sin〉 ∈ Unbound(〈vin〉). Also note that Unbound(⊥B) =⊥, where ⊥ is the empty

environment for T (M). From Lemma 3, it follows that:

Theorem 3. For an NSM M with initial state vin and a closed NT-µ formula

ϕ, T (M) satisfies ϕ if and only if 〈vin〉 ∈ Eval(ϕ,⊥B). Further, Eval(ϕ,⊥B) is

inductively computable.

To understand this more concretely, let us see how this model-checking algorithm

runs on a simple NSM. Consider the NSM abstraction Mfoo in Sec. 2.2. The states

of this NSM are v1, v2, v3, v4, v5, and v′2; the initial state is v1. The states are labeled
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by the atomic propositions rd , wr , tk , en, and ex using a map defined as: κ(v0) = ∅,

κ(v1) = {wr}, κ(v2) = {en}, κ(v′2) = {ex}, κ(v3) = {tk}, κ(v4) = {rd}, and

κ(v5) = {end}. The transition relations ofMfoo are given by:

1. ∆call = {(v2, v1)},

2. ∆loc = {(v1, v2), (v1, v3), (v
′
2, v4), (v

′
2, v5), (v3, v4), (v3, v5), (v4, v4), (v4, v5)}, and

3. ∆ret = {(v5, v2, v
′
2)}.

Now suppose we want to check if a write action is locally reachable from the initial

state. The NT-µ property specifying this requirement is ϕ = µX.(wr ∨ 〈loc〉X ∨

〈call〉ϕ′{X}), where ϕ′ = µY.(〈ret〉R1 ∨ 〈loc〉Y ∨ 〈call〉Y {Y }).

We show how to compute the set of bounded summaries satisfying ϕ′—the com-

putation for ϕ is very similar. After the first iteration of the fixpoint computa-

tion that builds this set, we obtain the set S1 = {{〈v5, v2, {v
′
2}〉} (the set of sum-

maries satisfying 〈ret〉R1). After the second step, we obtain the set of summaries

S2 = S1 ∪ {〈v
′
2, v2, {v

′
2}〉, 〈v3, v2, {v

′
2}〉, 〈v4, v2, {v

′
2}〉}, and the next set computed is

S3 = S2 ∪ {〈v1, v2, {v
′
2}〉}. Note that in these two steps, we only use local edges in

the NSM. Now, however, we have found a bounded summary starting at the “entry

state” of the procedure foo, which may be plugged into the recursive call to foo. More

precisely, we have (v2, v1) ∈ ∆call , 〈v1, v2, {v
′
2}〉 ∈ S3, and 〈v′2, v2, {v

′
2}〉 ∈ S3, so that

we may now construct S4 = S3 ∪ 〈v2, v2, {v
′
2}〉. This ends the fixpoint computation,

so that S4 is the set of summaries satisfying ϕ′.

Let us now analyze the complexity of this algorithm. Let NV be the number of states

in M, and let n be the arity of the formula in question. Then the total number of

bounded summaries in M that we need to consider is bounded by N = N2
V 2NV n.

Let us now assume that union or intersection of two sets of summaries, as well

as membership queries on such sets, take linear time. It is easy to see that the

time needed to evaluate a non-fixpoint formula ϕ of arity n ≤ |ϕ| is bounded by

O(N2|ϕ|NV ) (the most expensive modality is 〈call〉ϕ′{ψ1, . . . , ψn}, where we have to
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match an “inner” summary satisfying ϕ′ as well as n “outer” summaries satisfying

the ψi-s). For a fixpoint formula ϕ with one fixpoint variable, we may need N such

evaluations, so that the total time required to evaluate Eval(ϕ,⊥B) is O(N3|ϕ|NV ).

For a formula ϕ of alternation depth d, this evaluation takes time O(N3dNd
V |ϕ|),

i.e., exponential in the sizes ofM as well as ϕ.

It is known that model-checking alternating reachability specifications on a push-

down model is EXPTIME-hard [Wal01]. Following constructions similar to those

in Section 3.3, we can generate a NT-µ formula ϕ from a µ-calculus formula f ex-

pressing an alternating reachability property such that: (1) the size of ϕ is linear in

the size of f , and (2)M satisfies ϕ if and only ifM satisfies f . It follows that model-

checking a closed NT-µ formula ϕ on an NSMM is EXPTIME-hard. Combining,

we conclude that:

Theorem 4. Model checking a NT-µ formula ϕ on an NSM M is EXPTIME-

complete.

Better bounds may be obtained if the formula has a certain restricted form. For

instance, it can be shown that for linear time (Büchi or reachability) requirements,

model-checking takes time polynomial in the number of states of M. The reason

is that in this case, it suffices to only consider bounded summaries of the form

〈v, v′, {v′′}〉, which are polynomial in number. The fixpoint computation stays the

same.

Note that our decision procedure is very different from known methods for branching-

time model-checking of pushdown models [Wal01, BS99]. The latter are complex and

seem hard to implement; our algorithm, being symbolic in nature, seems to be a step

in the direction of practicality. An open question here is how to represent sets of

bounded summaries symbolically. Also, note that our algorithm directly implements

the operational semantics of NT-µ formulas over bounded summaries. In this regard

NT-µ resembles the modal µ-calculus, whose formulas encode fixpoint computations

over sets; to model-check µ-calculus formulas, we merely need to perform these
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Figure 3.7: An arity hierarchy

computations. Unsurprisingly, our procedure is very similar to classical symbolic

model-checking for the µ-calculus.

3.5 A hierarchy theorem

We will study the expressiveness of NT-µ in detail in Chapter 4, when we examine

its connections with automata on nested trees and existing temporal logics like the

µ-calculus and Caret. In this section, we show that the expressiveness of NT-µ

formulas increases with their arity.

For two nested trees T1 and T2 respectively rooted at nodes s1 and s2, we say T1 and

T2 are distinguished by a closed, k-ary NT-µ formula ϕ if and only if s1 satisfies ϕ

and s2 does not. Then we have:

Theorem 5. For every k ≥ 1, there is a a closed (k + 1)-ary formula ϕk+1, and

two nested trees T1 and T2, such that ϕk+1 can distinguish between T1 and T2, but no

closed k-ary NT-µ formula can.
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We will sketch the proof for the case k = 1. Before we do so, we need some extra

machinery. More precisely, we will define a preorder called quasi-bisimilarity over

summaries that takes into account their coloring. It turns out that NT-µ respects

this preorder.

Consider a pair of k-colored summaries s = 〈s, U1, . . . , Uk〉 and t = 〈t, V1, . . . , Vk〉

such that each path in the trees rooted at s and t comprises a chain of loc-edges

followed by one ret-edge leading to a leaf. Let S and T respectively be the sets of

non-leaf nodes in these trees. We say that s and t are quasi-bisimilar if there is a

relation �⊆ S × T such that s � t and

1. For all s′ � t′, we have λ(s′) = λ(t′)

2. If s′ � t′, then for every s′′ such that s′
loc
−→ s′′, there is a t′′ such that t′

loc
−→ t′′

and s′′ � t′′. Also, for every t′′ such that t′
loc
−→ t′′, there is an s′′ such that

s′
loc
−→ s′′ and s′′ � t′′.

3. If s′ � t′, then for every s′′ such that s′
ret
−→ s′′, there is a t′′ such that t′

ret
−→ t′′,

and for every t′′ such that t′
ret
−→ t′′, there is an s′′ such that s′

ret
−→ s′′. Further,

if s′′ ∈ Ui then t′′ ∈ Vi, for all i (note that this is not an “iff” condition).

Now, we can show inductively that if s and t are quasi-bisimilar, then for every

variable-free NT-µ formula ϕ, if s satisfies ϕ, then t satisfies ϕ as well (note that

the converse is not true; for instance, t may satisfy [ret ]Ri even when s does not).

We skip the proof.

Let us now come back to Theorem 5. Consider the two non-bisimilar nested trees

S and T in Figure 3.7 with initial nodes s0 and t0 (the jump-edges are not shown,

but can be reconstructed from the edge labeling). It is easy to see that the 2-ary

NT-µ formula ϕ = 〈call〉(〈loc〉(〈ret〉R1 ∧ 〈ret〉R2)){p,¬p} distinguishes s0 and t0.

Let us now see if there is a closed, 1-ary formula ϕ that can distinguish between S

and T . First, if ϕ is a disjunction or conjunction, we can get a smaller witness for

this distinction. Further, because trees S and T are of fixed depth, we need only
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consider fixpoint-free formulas. The interesting case is that of formulas of the form

ϕ = 〈call〉ϕ′{ψ}.

Assume this formula is satisfied by 〈s0〉; then there is a bisimulation-closed summary

of the form s = 〈s1, U〉 that satisfies ϕ′. For each such s, we find a t = 〈t1, V 〉.

Note that s can assume only four values; these are 〈s1, {s9, s4, s5}〉, 〈s1, {s10, s6, s7}〉,

〈s1, {s9, s4, s5, s10, s6, s7}〉, and 〈s1, ∅〉. The corresponding values of t are 〈t1, {t6, t7}〉,

〈t1, {t4, t5}〉, 〈t1, {t4, t5, t6, t7}〉, and 〈t1, ∅〉 respectively. Note that for any value s

takes, the corresponding t is quasi-bisimilar to it, which means that t satisfies ϕ′.

Further, for each v ∈ V there is a bisimilar node u ∈ U . It follows that if all u ∈ U

satisfy ψ, then so do all v ∈ V . Then 〈t0〉 satisfies ϕ.

Similarly one can show that 〈t0〉 satisfies ϕ only if 〈s0〉 satisfies ϕ.

To extend the proof to arbitrary k, we consider a structure S ′ where, like in S,

the root has one call -child s1—except s1 now has a large number N of loc-children

s′. From each s′, we have (k + 1) ret-edges leading to “leaves” s′′, each of which

is labeled with exactly one proposition from the set AP = {p1, p2, . . . , pk+1}. For

(N − 1) values of s′, the leaves of the trees rooted at s′ are labeled such that only k

of them have distinct labels. But there is a particular s′ (call it s′d) for which these

leaves get distinct labels p1, . . . , pk+1.

Now take a structure T ′ that is obtained by removing the subtree rooted at node

s′d from S ′. Following the methods for the case k = 1, we can show that S ′ and T ′

may be distinguished by a (k + 1)-ary formula, but by no k-ary formula. We skip

the details.
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Chapter 4

Automata and monadic

second-order logic on nested trees

In this chapter, we study finite automata and monadic second-order logic on nested

trees. The former can send states down a nested tree along tree edges as well as

jump-edges; the latter can explicitly refer to jump-edges via a special predicate.

In addition to studying the properties of these formalisms independently, we also

identify connections between them and relate them to NT-µ. The main technical

result is that NT-µ and alternating parity automata on nested trees have the same

expressive power. This result is the analog of the equivalence between the modal

µ-calculus and alternating parity automata on trees [EJ91].

The chapter is organized as follows. In Section 4.1, we define nested tree automata in

their nondeterministic and alternating flavors and compare their closure properties

and expressiveness. Section 4.2 proves that NT-µ is expressively equivalent to AP-

NTAs. In Section 4.3, we introduce and study MSO-logic over nested trees.
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4.1 Automata on nested trees

In this section, we study finite-state automata operating on nested trees. Recall

that for tree automata, the state while reading a (non-root) tree node depends on

its state at the node’s parent. The state of a nested tree automaton (NTA) at a

node in a nested tree depends on its states at the node’s parent and the node’s

jump-predecessor (if it exists). We define these automata in nondeterministic and

alternating flavors; the natural semantics of these are respectively over ordered and

unordered nested trees. Regarding acceptance conditions, we focus on the parity

condition for the most part as it is the most powerful among the popular ω-acceptance

conditions; however, we also discuss acceptance by final state.

We start with nondeterministic automata. Formally, a (top-down) nondeterministic

parity nested tree automaton (NP-NTA) over Σ is a structure A = (Q, q0,∆,Ω) where

Q is a finite set of states, q0 ∈ Q is the initial state, ∆ ⊆ Q×Σ× (TT ×TT ), where

TT = Q∪(Q×Q)∪{⊥}, is a transition relation, and Ω : Q→ {0, 1, . . . , n}, for some

n ∈ N, is the parity accepting condition that assigns a priority to each automaton

state.

NP-NTAs accept languages of ordered, binary nested trees. A run ofA on an ordered,

binary nested tree T = ((S, r,→1,→2), →֒, λ) is a labeling ρ : S → Q of nodes of T

by automaton states such that:

1. ρ(r) = q0;

2. for all s, if ρ(s) = q and λ(s) = σ, then

• if s1 and s2 are the left and right children of s, then for some (q, σ, (τ1, τ2)) ∈

∆, we have: (a) if si, for i ∈ {1, 2}, is a call or local node, then τi = ρ(si),

and (b) if si is a return node, then τi = (ρ(t), ρ(si)), where t →֒ si

• if s′ is the left (similarly, right) child of s and s has no right (similarly,

left) child, then for some (q, σ, (τ ′,⊥)) ∈ ∆ (similarly, (q, σ, (⊥, τ ′)) ∈ ∆),
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Figure 4.1: A run of a nondeterministic NTA

we have: (a) if s′ is a call or local node, then τ ′ = ρ(s′), and (b) if s′ is a

return node, then τ ′ = (ρ(t), ρ(s′)), where t →֒ s′

Let πi denote the i-th vertex in a path π in T . A run ρ of A on T is accepting if for

all infinite paths π in T , θ′ = max{θ : Ω(ρ(πi)) = θ for infinitely many i} is even.

An ordered, binary nested tree T is accepted if A has an accepting run on it. The

language L(A) of A is the set of nested trees it accepts.

Figure 4.1 illustrates part of a run of an NP-NTA on a nested tree (assume that the

label of every node is σ and that every node has a left child). Transitions include

(q1, σ, ((q0, q2),⊥)) and (q0, σ, (q1, q2)).

Note that we can define an equivalent semantics of NP-NTAs by letting the automa-

ton manipulate a stack rather than consult a node’s jump-predecessor. In this case,

A pushes the current state while taking a call edge, pops on a return edge, and

leaves the stack unchanged on a local edge. As jump-edges are nested, the top of

the automaton stack at a return node stores the state at the node’s matching call.

As we shall see, unlike their analogs on trees, nondeterministic automata on nested

trees do not have robust closure properties. However, this problem goes away for

alternating nested tree automata, which we will now consider. We will interpret
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these automata on unordered nested trees as these are the structures generated from

our program abstractions—they are more naturally interpreted on unordered nested

trees anyway. Also, their semantics are defined more easily if we let them manipulate

stacks of states.

Formally, for a finite set Q, define the set TT (Q) of transition terms whose members

f are of the form f := tt | ff | f∨f | f∧f | 〈loc〉q | [loc]q | 〈call〉q | [call ]q | 〈ret , q′〉q |

[ret , q′]q, where q, q′ ∈ Q. An alternating parity nested tree automaton (AP-NTA)

over Σ is a structure A = (Q, q0,∆,Ω), where Q is a finite set of states, q0 ∈ Q is the

initial state, ∆ : Q×Σ→ TT (Q) is a transition function, and Ω : Q→ {0, 1, . . . , n}

is the parity accepting condition.

We define the semantics of an AP-NTA A = (Q, q0,∆,Ω) via a parity game. The

acceptance game G(A, T ) of a Σ-labeled nested tree T = (T, →֒, λ) by A is played

by two players A and E. The vertex set of the game graph is V = T ×Q×Q∗×TT ,

and the set of moves ⇒⊆ V × V is the least set such that:

• for all v ∈ V of the form (s, q, α, f1∨f2) or (s, q, α, f1∧f2) for some v′ ∈ V∪{ǫ},

we have v ⇒ (s, q, α, f1) and v ⇒ (s, q, α, f2);

• for all v ∈ V of the form (s, q, α, 〈loc〉q′)) or (s, q, α, [loc]q′)), and for all s′ such

that s
loc
−→ s′, we have v ⇒ (s′, q′, α, f), where f = ∆(q′, λ(s′));

• for all v ∈ V of the form (s, q, α, 〈call〉q′) or (s, q, α, [call ]q′), and for all s′ such

that s
call
−→ s′, we have v ⇒ (s′, q′, q.α, f), where f = ∆(q′, λ(s′));

• for all v ∈ V of the form (s, q, q′′.α, 〈ret , q′′〉q′) or (s, q, q′′.α, [ret , q′′]q′), and for

all s′ such that s
ret
−→ s′, we have v ⇒ (s′, q′, α, f), where f = ∆(q′, λ(s′));

The vertex set V is partitioned into two sets V
E

and V
A

corresponding to the two

players. The set V
A

comprises vertices of the form (s, q, α, f), where s, q and α are

arbitrary and f has the form tt , [call ]q, [loc]q, [ret , q′]q, or (f1 ∧ f2). The remaining
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vertices constitute V
E
. We also lift the priority map Ω to ΩV : V → {0, 1, . . . , n} by

defining ΩV(s, q, α, f) = Ω(q) for all s, q, α, and f .

The two players A and E play on the graph starting from the initial position vin =

(s0, q0, ǫ,∆(q0, λ(s0))) by moving a token along edges of the game graph. Whenever

the token is in a position v, the player who owns the vertex must move the token.

Formally, a play of G is a non-empty, finite or infinite sequence α = v1v2 . . . that is

a path in the game graph, where v1 = vin . A finite play is winning for player A if

the last position is a player E vertex from which there is no move; analogously, we

define winning finite plays for player E. An infinite play α is winning for player E

if θ′ = max{θ : ΩV(vi) = θ for infinitely many i} is even; otherwise A wins the play

(this is the standard max-parity acceptance condition for parity games). A strategy

for player E (or A) is a subset of edges Str ⊆ ⇒ such that all these edges originate

in a vertex in VE (or VA)1. A play is according to a strategy Str if all edges in the

play are in Str . A strategy is winning if all maximal plays according to the strategy

are winning.

An AP-NTA A accepts a nested tree T if E has a winning strategy in G(A, T ). The

language L(A) of A is the set of nested trees accepted by A.

We also consider automata that accept by the weaker final-state condition. For

nondeterministic versions of such automata, a nested tree is accepted if a special

final state qf is seen along every path in some run on it. In alternating versions, all

infinite plays are won by A, and if a play reaches a game vertex (s, qf , α, f) for some

s, α, and f , then the game terminates and E is the winner.

4.1.1 Closure properties

We start off with some positive closure properties of AP-NTAs and NP-NTAs:

1Strategies are often defined in a more general way that refer to the history of the play. This
definition suffices as parity games always admit zero-memory strategies [GTW02].

74



Theorem 6. AP-NTAs are closed under union, intersection, and complement. NP-

NTAs are closed under union and intersection.

Proof. Proofs that AP-NTAs are closed under union and intersection are easy, and

mirror corresponding results for alternating tree automata. We give a proof sketch

of the closure of AP-NTAs under complement.

Consider an AP-NTAA = (Q, q0,∆,Ω). Let us define, for every transition term f ,

the transition term Neg(f) as follows:

Neg(f1 ∨ f2) = Neg(f1) ∧ Neg(f2)

Neg(f1 ∧ f2) = Neg(f1) ∨ Neg(f2)

Neg(tt) = ff

Neg(ff ) = tt

Neg(〈loc〉q) = [loc]q

Neg([loc]q) = 〈loc〉q

Neg(〈call〉q) = [call ]q

Neg(()[call ]q) = 〈call〉q

Neg(〈ret , q′〉q) = [ret , q′]q

Neg([ret , q′]q) = 〈ret , q′〉q

Let ∆¬ be the transition function defined as: if ∆(q, σ) = f for some q, σ, f , then

∆¬(q, σ) = Neg(f). Also, we define a new parity acceptance condition Ω¬ as: for all

q ∈ Q, Ω¬(q) = 1 + Ω(q). Now we construct an AP-NTA A¬ which is the same as

A, except its transition function is ∆¬ and acceptance condition Ω¬.

Now suppose that in the acceptance game G for A and a nested tree T , Player E

has a winning strategy (i.e., T is not accepted by A). It is known, from research on

parity games, that this strategy is memoryless [GTW02]. It can now be shown that

the same strategy, applied to the acceptance game for T and Aneg, is winning for

Player A. As for the other direction, suppose Player E has no winning strategy in G.
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As parity games are determined, this means A has a memoryless winning strategy

in G. We can now show that the same strategy is winning for E in the acceptance

game for A¬ (the arguments are the same as in the proof of closure of alternating

tree automata under complement [GTW02]— as a result, we leave the details out).

It follows that A¬ accepts the complement of L(A).

Regarding NP-NTAs, their closure under union is trivial. As for closure under in-

tersection, consider NP-NTAs A1 = (Q1, q1
0,∆

1,Ω1) and A2 = (Q2, q2
0,∆

2,Ω2), and

construct an NP-NTA A∩ = (Q, q0,∆,Ω). Here, Q = Q1×Q2 and q0 = (q1
0, q

2
0). Let

us now define the “product” Prod(τ1, τ2) of two transition terms τ1 and τ2 as follows:

• if τ1 =⊥ and τ2 =⊥, then Prod(τ1, τ2) =⊥;

• if τ1 = q1 and τ2 = q2, then Prod(τ1, τ2) = (q1, q2);

• if τ1 = (q′1, q1) and τ2 = (q′2, q2), then Prod(τ1, τ2) = ((q′1, q
′
2), (q1, q2)).

Then the transition relation ∆ is the least relation such that for each transition

(q1, a, (τ 1
1 , τ

1
2 )) in ∆1 and (q2, a, (τ 2

1 , τ
2
2 )) in ∆2 such that Prod(τ 1

1 , τ
2
1 ) and Prod(τ 2

2 , τ
2
2 )

are defined, we have a transition ((q1, q2), a, (Prod(τ 1
1 , τ

2
1 ),Prod(τ 2

2 , τ
2
2 ))) in ∆. Fi-

nally, we define Ω such that for all (q1, q2) ∈ Q1 × Q2, we have Ω((q1, q2)) =

max{Ω1(q1),Ω2(q2)}.

It can now be verified that L(A∩) = L(A1) ∩ L(A2).

Observe that by our definition, languages accepted by AP-NTAs are closed under

bisimulation, while those accepted by NP-NTAs are not in general. To compare the

expressiveness of an AP-NTA and an NP-NTA meaningfully, we need to consider the

language obtained by starting with the language L of the NP-NTA, stripping the

order between tree edges off nested trees in L, and closing it under bisimulation.2

2Alternatively, we could define AP-NTAs on ordered nested trees. Under this definition as well,
AP-NTAs are strictly more powerful than NP-NTAs.
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Formally, for a language L of ordered nested trees, we define Unord(L) as the bisim-

ulation closure of the set of nested trees ((S, r,→), →֒, λ) such that →= →1 ∪ →2

for some ((S, r,→1,→2), →֒, λ) ∈ L. Now we show that:

Theorem 7. There is a language L of ordered, binary nested trees such that: (1)

there is no NP-NTA accepting L, and (2) there is an AP-NTA accepting Unord(L).

Proof. Consider ordered nested trees of the form in Figure 4.2-a, where Σ = {0, 1, $},

and ai, bij ∈ Σ for all i, j (while the structure in the figure is not binary, it can be

encoded as such; also, the jump-edges, omitted to keep the figure clean, can be

reconstructed). Let Lgap be the language of such structures where for all i ≤ n,

there is some k ≤ m such that an−i+1 = bki. First, we note that Lgap cannot be

recognized by an NP-NTA AN with N states. To see why, take a structure as above

where n = m > N , and for each 1 ≤ i ≤ n, there is a distinct branch k such that

an−i+1 = bki. In any run, AN must enter two branches in the same state; also, the

sequence of states at calls unmatched till these points are the same. We can replace

one of these branches with the other to get an accepting run on a structure not in

Lgap .

On the other hand, it is easy to build an AP-NTA A that recognizes Unord(Lgap).

The automaton has a state q, q∗0 and q∗1 . While reading the sequence of symbols ai,

the automaton uses alternation to assert a condition at each i (we can view this as

the automaton “forking” a copy). This is done such that the copy of A forked at

the node labeled an−i+1 has state q∗an−i+1
at that node. On reading the next symbol,

this copy changes its state to q; it continues reading the structure in this state till it

reaches the node marked $, at which point it nondeterministically chooses to “check”

branch k. When it reaches the node labeled bki (i.e., the node s such that at the

node t satisfying t →֒ s, the automaton had state q∗j for some j), it can check if

bki = an−i+1 and accept the nested tree. A accepts the structure iff every “copy”

forked this way accepts it.

The above is an example of how automata theory for nested trees differs from the
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theory of tree automata. In the latter setting, allowing alternation does not affect

an automaton’s expressiveness. In fact, this is also a point of difference between

nested tree automata and automata nested words [AM04, AM06], as alternating and

nondeterministic automata on nested words are expressively equivalent.

Further, Theorem 7 implies that:

Theorem 8. NP-NTAs are not closed under complementation.

Proof. We give an NP-NTA AN that accepts the complement of the language Lgap

in the proof for Theorem 7. Consider a nested tree T in this language. We can

assume that T has the same “shape” as the nested tree in Figure 4.2-(a)— i.e., there

is a chain of nodes from the root that ends with a node with multiple children, each

of which leads to a chain of nodes. This is because an NP-NTA can determine if a

nested tree violates this property, and accept it if it does.

While running on nested trees of this form, AN nondeterministically guesses the i

such that ai cannot be “matched” along any of the branches, and lets its state at

the node labeled ai be q∗ai
(at other nodes along the stem of a-s, its state is q). Now

it sends a state to each branch to determine a node s such that the automaton state

at the node t, where t →֒ s, is of the form q∗j . It compares the label bjk of this node

with ai, and rejects the nested tree if bjk = ai. The accepts if all the copies sent

along the different branches accept. It can now be easily verified that AN accepts

the complement of Lgap .

The projection over Σ1 of a language L of (ordered, unordered) nested trees over

Σ1 × Σ2 is the language ProjΣ1
(L) obtained by replacing every label (a, b) in every

nested tree T ∈ L by a. We can show that:

Theorem 9. NP-NTAs are closed under projection, but AP-NTAs are not.

Proof. For NP-NTAs, closure under projection is easy. Consider nested trees over

Σ1 × Σ2 as above, and let there be an NP-NTA A accepting a language of such
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trees. An NP-NTA A′ accepting the language ProjΣ1
(L) is constructed as follows.

While reading a node labeled a ∈ Σ1, A
′ guesses a second component b ∈ Σ2 using

nondeterminism, and mimics a move of A on the label (a, b). It is easy to see that

A′ accepts ProjΣ1
(L).

We postpone the argument for the second part of the theorem to Section 4.3.

4.1.2 Decision problems

The model checking problem for AP-NTAs on nested state machines is the problem

of deciding, given an AP-NTA A and a nested state machine M, whether T (M) ∈

L(A).

Theorem 10. The model-checking problem for AP-NTAs on nested state machines

is EXPTIME-complete.

Proof. We obtain an EXPTIME procedure for this problem via a reduction to

a pushdown parity game. A two-player pushdown parity game is a parity game

played on the configuration graph of a pushdown system. It is known that pushdown

parity games are solvable in EXPTIME [Wal01]. Now, given an AP-NTA A and a

nested state machineM, T (M) ∈ L(A) iff player E wins the acceptance game of A.

Now recall that call-edges (similarly, return-edges) in T (M) encode call transitions

(similarly, return transitions) of M— i.e., these capture pushes (similarly pops) to

the stack implicit in an NSM abstraction. However, these edges are also where the

stack of states in the semantics of A is pushed (popped). Thus, the implicit stack of

M is “synchronized” with the implicit stack ofA, so that the graph of the acceptance

game of T (M) by A happens to be the configuration graph of a pushdown system

that is roughly the “synchronized product” ofM and A.

An EXPTIME-hardness result for this problem follows from the known hardness

of the model-checking problem for alternating tree automata on pushdown sys-

tems [Wal01].
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While model checking for alternating NTAs is decidable, emptiness is not3:

Theorem 11. Universality for nondeterministic NTAs and emptiness for alternating

NTAs are undecidable problems, even for acceptance by final state.

Proof. The proof employs a reduction from the Post’s Correspondence Problem

(PCP) [HU79]. Consider a tuple ((u1, . . . , uk), (v1, . . . , vk)), where the ui’s and vi’s

are finite words over an alphabet A; the PCP is to determine if there is a sequence

i1, . . . , im, where ij ≤ k, such that ui1ui2 . . . uim = vi1vi2 . . . vim = w. Now consider

nested trees of the form in Figure 4.2-(b) (the jump-edges are omitted to keep the

figure simple) such that the initial call-chain is of length m and is labeled by sym-

bols from the alphabet {1, . . . , k}, and the symbols wi on the “stem” of local nodes

succeeding this chain form the string w. Now suppose the sequence of input symbols

on the call chain is cim . . . ci1 . There are two kinds of return chains hanging from

the stem—the ones marked with the symbol ∗ (similarly $) are exactly at the points

where w may be possibly factored into ui1, ui2, . . . , uim (similarly vi1 , . . . , vim). Also,

the i-th return chain (counting from left) of either type is of length i. Then such

a nested tree is a witness for an instance of PCP being positive. We can, however,

show that there is an alternating NTA accepting by final state that accepts the set

of nested trees bisimilar to such witnesses. In fact, we can show that there is a

nondeterministic final-state NTA that accepts any nested tree not of the above form

(under some ordering of edges).

However, we can prove the emptiness problem of NP-NTAs to be solvable in EXP-

TIME by reducing it to that for pushdown tree automata [KPV02].

4.2 Relation between NT-µ and NTAs

We now establish our main theorems, which show that AP-NTAs are exactly as

expressive as NT-µ.

3This result was obtained independently by Löding [L0̈5].
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Theorem 12. Given any closed NT-µ formula ϕ, we can construct an AP-NTA

Aϕ such that for any nested tree T , T ∈ L(ϕ) iff T ∈ L(Aϕ). The size of Aϕ is

polynomial in the size of ϕ.

Proof. The proof is similar in spirit to the known translation from the µ-calculus to

alternating tree automata [EJ91]. The AP-NTA Aϕ is over an input alphabet 2AP .

For every subformula ψ of ϕ, Aϕ has a state qψ. The initial state is qϕ.

For any variable X in ϕ, let Ψ(X) be the subformula of the form µX.ϕ′ or νX.ϕ′ that

binds X (we assume that each variable in ϕ is bound at most once). For instance, if

ϕ = 〈call〉(µX.(p ∨X)){q}, then Ψ(X) = µX.(p ∨X). For each bound variable X

in ϕ, the state qX is identified with the state qΨ(X).

Let p ∈ AP , and σ ∈ 2AP . The transition relation ∆ of Aϕ is defined inductively

over the structure of ϕ:

∆(qp, σ) = tt if p ∈ σ, else ff

∆(qϕ1∧ϕ2 , σ) = ∆(qϕ1 , σ) ∧∆(qϕ2 , σ)

∆(qϕ1∨ϕ2 , σ) = ∆(qϕ1 , σ) ∨∆(qϕ2 , σ)

∆(qµX.ϕ′ , σ) = ∆(qϕ′ , σ)

∆(qνX.ϕ′ , σ) = ∆(qϕ′ , σ)

∆(q〈call〉(ϕ′){ψ1,...,ψk}, σ) = 〈call〉qϕ′

∆(q[call ](ϕ′){ψ1,...,ψk}, σ) = [call ]qϕ′

∆(q〈loc〉ϕ′ , σ) = 〈loc〉qϕ′

∆(q[loc]ϕ′ , σ) = [loc]qϕ′

∆(q〈ret 〉Ri
, σ) = ∨φ′,ψ1≤j≤k

(〈ret , q〈call〉(φ′){ψ1,...,ψk}〉qψi
∨

〈ret , q[call ](φ′){ψ1,...,ψk}〉qψi
)

∆(q[ret ]Ri
, σ) = ∨φ′,ψ1≤j≤k

([ret , q〈call〉φ′{ψ1,...,ψk}]qψi

∨[ret , q[call]φ′{ψ1,...,ψk}]qψi
)
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The priority of states of the form qµX.ϕ and qνX.ϕ are respectively odd and even, and

roughly equal to the alternation depth of ϕ. The priority for all other states is 0. We

do not define the acceptance condition in detail as we do not prove its correctness

in this setting—this is because this part of the proof is exactly the same as in the

translation from the µ-calculus to alternating parity tree automata.

We will, however, discuss in some more detail the transition relation of Aϕ. The

automaton implements the operational semantics of the formula ϕ. If ϕ = p or

ϕ = ¬p, Aϕ checks if the atomic proposition p holds at the node of the nested tree

currently being read. Conjunction and disjunction in ϕ is captured respectively by

conjunction and disjunction in the transition relation of Aϕ. If ϕ = X, then in the

operational semantics of ϕ, the fixpoint formula binding X is executed recursively.

Accordingly, Aϕ loops to the state Ψ(X). At a fixpoint formula of the form µX.ϕ′

or µX.ϕ′, the automaton starts the corresponding fixpoint computations by moving

to the state for ϕ′. All this is exactly the same as for the µ-calculus and alternating

tree automata. The difference from the tree setting is in the treatment of modal

operators.

If ϕ = 〈loc〉ϕ′, the corresponding automaton makes a transition to the state for

ϕ′ along some loc-edge from the current node. The [loc] modality is similar. Now

suppose ϕ = 〈call〉ϕ′{ψ1, . . . , ψk}. In this case Aϕ transitions to the state for the

formula ϕ’ along some call-edge from the current node (the [call ] modality is similar,

except the automaton sends copies along all call -edges). The constraint is that the

automaton must be at the state qψi
at the jump-successors of the current node

marked by color i. The automaton checks this constraint using its 〈ret〉 and [ret ]

modalities. Consider a formula 〈ret〉Ri that asserts that some ret-successor of the

current node has color i. Consider such a successor t and its jump-predecessor s.

The automaton checks, using a disjunction, if the automaton state at node s (in the

current copy of the automaton) corresponds to any subformula of ϕ starting with a

〈call〉 or [call ] modality. If so—i.e., if a formula of the form 〈call〉ϕ′{ψ1, . . . , ψk} or
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[call ]ϕ′{ψ1, . . . , ψk} was asserted at the jump-predecessor s of this ret-successor—

the automaton has to check that the nested tree from node t on satisfies the i-th

return obligation—i.e., ψi—asserted by that formula. Accordingly, it changes state

to qψi
.

Theorem 13. Given any AP-NTA A, one can construct an NT-µ formula ϕA such

that for any nested tree T , T ∈ L(ϕA) iff T ∈ L(A). The size of ϕA is polynomial

in the size of ϕ.

We will first establish the above for alternating nested tree automata A accepting

by a final state qf . The reason is that the proof is simpler and more intuitive in this

case. After this we will present the full proof.

Proof. It will be simpler for us to write the formula ϕA using a set of equations rather

than in the standard form. Translation from this equational form to the standard

form is as for the modal µ-calculus [GTW02].

Let Q = {q1, . . . , qn} and TT respectively be the sets of states and transition condi-

tions of A. For each q ∈ Q, we have a marker Rq; for each pair of states q, q′ ∈ Q,

we have a variable Xq,q′. Intuitively, a summary 〈s, Uq1, . . . , Uqn〉 is collected in Xq,q′

iff A has a way to start at node s at state q, and end up at a return s′ ∈ Uqj in

state qj , having checked that q′ was the state of the automaton in the current play

at the jump-predecessor of s′. Now for each pair of states q, q′ ∈ Q, we define a map

Fq,q′ : TT → Φ, where Φ is the set of NT-µ formulas:

Fq,q′(tt) = tt

Fq,q′(ff ) = ff

Fq,q′(f1 ∧ f2) = Fq,q′(f1) ∧ Fq,q′(f2)

Fq,q′(f1 ∨ f2) = Fq,q′(f1) ∨ Fq,q′(f2)

Fq,q′(〈call〉q
′′) = 〈call〉(Xq′′,q){Xq1,q′, . . . , Xqn,q′}

Fq,q′([call ]q
′′) = [call ](Xq′′,q){Xq1,q′, . . . , Xqn,q′}
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Fq,q′(〈loc〉q
′′) = 〈loc〉Xq′′,q′

Fq,q′([loc]q′′) = [loc]Xq′′,q′

Fq,q′(〈ret , q〉q
′′) = 〈ret〉(Rq′′)

Fq,q′([ret , q]q
′′) = [ret ]Rq′′

Then the formula ϕA is the formula corresponding to Xq0,γ0 when taking the least

fixpoint of the following equations:

Xq,q′ =





tt if q = qf
∨
σ⊆AP ((∧p∈σp) ∧ (∧p/∈σ¬p) ∧ Fq′,q(∆(q, σ) ∨∆r(q, σ))) otherwise.

Now we give the general proof. Our translation from AP-NTAs to NT-µ uses finite-

state alternating parity tree automata, which we will define now. The automata we

use are bisimulation-closed and run on unranked trees—similar definitions may be

found in Kirsten’s survey chapter [GTW02] on alternating tree automata. For a set

I of tags, a set Q of states, and a set AP of atomic propositions, let a (finite-state)

transition term be of the form g = p | ¬p | q | 〈a〉g | [a]g | g ∧ g | g ∨ g, where

a ∈ I, p ∈ AP , and q ∈ Q. Fix a set TT at of such terms. A finite-state alternating

parity tree automaton (TA) over TT at is a structure M = (Q, q0, γ0,∆,Ω), where

Q is a finite set of automaton states, q0 ∈ Q is the initial state, ∆ : Q → TT at is a

transition function, and Ω : Q→ {1, 2, . . . , n} is the parity accepting condition that

assigns a priority to each automaton state.

TAs run on unordered infinite trees whose nodes are labeled by 2AP and edges by I.

We skip a formal definition of the semantics. Intuitively, the term p means that the

proposition p holds at the current node, 〈a〉q means that the automaton propagates

the state q along some a-labeled edge, and the term [a]q means that the state q is

passed along all a-edges. Note that we allow complex terms like [a1]〈a2〉q, which

means that the automaton first takes all edges labeled a1, and then, from each child

of the current node so reached, picks an edge labeled a2 and passes the state q

84



to it. Terms can be combined conjunctively and disjunctively, as is par course for

alternating automata. Our acceptance condition is max-parity, meaning a run is

accepting if along all its infinite paths, the maximum priority seen infinitely often is

even. We write T |=M if a labeled tree T is accepted byM.

Our proof also depends on a translation from TAs to the modal µ-calculus (actually,

we will be interested in a syntactic fragment of the µ-calculus). Recall that formulas

of the µ-calculus over a set of variables Var have syntax

ϕ = p | ¬p | 〈a〉ϕ | [a]ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | X | µX.ϕ | νX.ϕ,

where a ∈ I, X ∈ Var and p ∈ AP .

Such formulas are interpreted over (2AP , I)-labeled trees under environments E :

X 7→ S ′, where S ′ is a set of nodes in the tree in question. Again, we skip a formal

definition of the semantics. We write T, E |= ϕ if a tree T satisfies the formula ϕ

under an environment E (sometimes we write t, E |= ϕ if T in the above is rooted at

the node t). If ϕ is closed, we can omit E .

Now we define a special class of labeled trees obtained by applying a “summarization”

transformation to nested trees. Speaking roughly, these trees have summaries as

their nodes (in addition to some intermediate nodes), and trees rooted at returns

are “plucked” and “lifted” to the matching call-sites. Formally, let NT be the set of

all nested trees and T the set of all node and edge-labeled trees. We define a map

Summarize : NT ×N→ T.

Let k ≥ 0 and I = {call , ret , loc}. We consider the augmented set of atomic

propositions ÂP = AP ∪ {leaf i : 1 ≤ i ≤ k}, and the set of edge labels Î =

I ∪ {choose, in} ∪ {i : 1 ≤ i ≤ k}. Then for a nested tree S = (((S, s0,→), →֒), λ)

whose nodes are labeled by the alphabet 2AP , we define a node and edge-labeled

tree T = Summarize(S, k). Let Summk be the set of k-colored summaries in S.

Then the set of nodes of T is T ⊆ (SummS
k ∪ T

′)+, where T ′ = {(U1, U2, . . . , Uk) :

for all 1 ≤ j ≤ k, Uj ⊆ ME (u) for some u ∈ S} (the node set will be defined more

precisely soon). The root of T is t0 = 〈s0, ∅, . . . , ∅〉. The edges of the tree are labeled
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by the alphabet Î using a map ηT ; the nodes are labeled by the alphabet Σ̂ = 2ÂP

using a map λT .

The set T of nodes and the set ET of edges of T are those obtained when the

computation described below reached a fixpoint. The set Leaves of leaf-nodes where

we chop S is also obtained as part of the same least fixpoint. Initially, T = {t0} and

Leaves = ET = ∅. Now, let us write t
a

֌ t′ if there is an a-labeled edge from node t

to node t′ in T . Then:

1. For each s′ such that s
loc
−→ s′ in S and each node t.s /∈ Leaves in T , where

s = 〈s, U1, U2, . . . , Uk〉 is a summary in S, we add a node t.s.s′ to T , where

s′ = 〈s′, U ′
1, U

′
2, . . . , U

′
k〉 such that U ′

j = Uj ∩MR(s′) for all j. Also, we add an

edge t.s
loc
֌ t.s.s′ to T .

2. For each s′ such that s
call
−→ s′ in S and each node t.s /∈ Leaves , where s =

〈s, U1, U2, . . . , Uk〉 /∈ Leaves is a summary of S:

(a) we add to T the node t1 = t.s.s′. We also add the edge t.s
choose
֌ t1.

(b) For every t1 as above, we add to T every node that is of the form t2 =

t1.(V1, V2, . . . , Vk), where V1, . . . , Vk ⊆ ME (s′). We also add edges t1
choose
֌

t2 for each such t2.

(c) For every t2 as above, we add to T the node t3 = t2.s
′, where s′ =

〈s′, V1, V2, . . . , Vk〉, and for every s′′ ∈ Vj for some j, we add the node

t4 = t2.s
′′, where s′′ = 〈s′′, U ′

1, U
′
2, . . . , U

′
k〉 is a summary such that U ′

i =

Ui ∩ ME (s′′). We also add the edge t2
in
֌ t3, and, for each t4 as above

such that s′′ ∈ Vj, the edge t2
j

֌ t4.

Nodes of the form t.s and t.(V1, . . . , Vk), where s ∈ S, t ∈ {ǫ} ∪ T and

V1, . . . , Vk ⊆ T , will be sometimes referred to as intermediate nodes.

3. For each s′ such that s
ret
−→ s′ in S and each node t.s /∈ Leaves of T such

that s = 〈s, U1, U2, . . . , Uk〉 is a summary, we add the node t.s.s̃′ to T , where
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s̃′ = (s′, U1, U2, . . . , Uk). Note that s̃′ is not a summary. We also add the edge

t.s
ret
֌ t.s.s̃′ to ET , and t.s.s̃′ to Leaves.

Note that the above also defines the edge-labeling function ηT in T . The node-

labeling map λT : T → Σ̂ is defined as: for t ∈ T \ Leaves, λT (t.s) = λ(s) if

t ∈ {ǫ} ∪ T and s = 〈s, U1, . . . , Uk〉 ∈ SummS
k , and λT (t.(V1, . . . , Vk)) = λT (t.s) = ∅

for all t, s, V1, . . . , Vk. For t′ = t.s̃ ∈ Leaves, where s̃ = (s, U1, . . . , Uk), we set

λT (t′) = {leaf j : s ∈ Uj}.

We will now proceed to the lemmas we will use in this proof. First, let AP be defined

as before; now for a set Q of TA states, fix the set of atomic terms TT at(Q,AP),

comprising the terms p, ¬p, 〈loc〉q, [loc]q, 〈ret〉leaf i, [ret ]leaf i, 〈call〉〈choose〉([in]q∧

[1] q1 . . .∧ [k] qk), and [call ]〈choose〉([in] q∧ [1] q1 . . .∧ [k] qk) for all q, q1, . . . , qk ∈ Q,

1 ≤ i ≤ k, and p ∈ AP . Then:

Lemma 4. Given an AP-NTA A, we can effectively construct a TA F(A) over

TT at(Q,AP) such that for any nested tree S, we have S ∈ L(A) iff Summarize(S, k) |=

F(A). The size of F(A) is polynomial in the size of A.

The second lemma is an augmentation of the translation from TAs to the modal µ-

calculus. Consider TAs over the set of atomic terms TT at(Q,AP) defined as above.

Now consider the syntactic fragment of the µ-calculus, parameterized by TT at , whose

formulas ϕ are given by:

ϕ = p | ¬p | X | ϕ ∧ ϕ | ϕ ∨ ϕ | 〈loc〉 ϕ | [loc] ϕ

| 〈call〉〈choose〉([in]ϕ ∧ [1]ϕ ∧ . . . ∧ [k]ϕ)

| [call ]〈choose〉([in]ϕ ∧ [1]ϕ ∧ . . . ∧ [k]ϕ)

| 〈ret〉leaf i | [ret ]leaf i | µX.ϕ | νX.ϕ,

where p ∈ AP and X ∈ Var . Let Φ(TT at) be the set of formulas of the above form.

Then:
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Lemma 5. For any TA M with state set Q and over the set of atomic terms

TT at(Q,AP), we can construct a closed formula Ψ(M) ∈ Φ(TT at) such that for

any (Σ̂, Î)-labeled tree T , we have T |= Ψ(M) iff T |= M. The size of Ψ(M) is

polynomial in the size of M.

The third lemma connects µ-calculus formulas of the above form to NT-µ formulas.

Lemma 6. Let ϕ be a closed µ-calculus formula in Φ(TT at) defined above. Then

from ϕ we can construct a NT-µ formula Nest(ϕ) such that for any (Σ̂, Î)-labeled

tree T satisfying T = Summarize(S, k) for some nested tree S over 2AP , we have

T |= ϕ iff S ∈ L(Nest(ϕ)). The size of Nest(ϕ) is polynomial in the size of ϕ.

Let us first establish that if the above three lemmas hold, then Theorem 13 holds.

This is proved by the following construction. Given A, we construct the NT-µ for-

mula ϕA = Nest(Ψ(F(A))). By the above lemmas, this construction is possible. Now

fix any structured tree S. If S |= A, then by Lemma 4, Summarize(S, k) |= F(A),

and by Lemma 5, Summarize(S, k) |= Ψ(F(A)). But then by Lemma 6, S |= ϕA.

Similarly, if S |= ϕA, it is easily established that S |= A.

Let us now prove Lemmas 4-6.

Proof of Lemma 4. Let A = (Q, q0,∆,Ω : Q → {1, . . . , n}) be an AP-NTA. Let ⊥

be a special state not in Q. Then states of F(A) are of the form r = (q, γ, θ,m),

where q ∈ Q, γ ∈ Q∪{⊥}, and theta,m ∈ {1, . . . , n} are priorities of A. Let us now

consider a map indexmap : Q × {1, . . . , n} → {1, . . . , |Q|n} that assigns a unique

index to every tuple (q, θ). Intuitively, indexmap assigns an index to the fact that

“A can land up at a matching exit of the current node in state q, with θ as the

minimum priority seen in the current context.”

We will present the semantics of some of the interesting transitions of F(A) in

English. Since treatment of alternation is similar in AP-NTAs and TAs, we will focus
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on “atomic” transition terms. Suppose F(A) is in state r = (q, γ, θ, p) while reading

a node t of T . Let us now have, say, ∆(q, λ(t)) = 〈call〉q′ or ∆(q, λ(t)) = [call ]q′,

In these two cases, F(A) forks copies to check that the λ(t) is precisely the set

of propositions satisfied at t; it also forks a copy that respectively reads one or all

of the call -children of t. Each of these children are intermediate nodes, each with

(uncountably) many choose-children. F(A) now reads one of these choose-children;

once this is done, it is at an intermediate node with outgoing transitions labeled

in, 1, . . . , k. At this point F(A) passes:

1. the state (q′, q, 0,Ω(q′)) to the unique child along the edge labeled in;

2. the state (q′′, q,max(θ,m), m) to every child along a transition labeled j, for

every j, iff j = indexmap(q′′, m). Now the move is over.

If ∆(q, λ(t)) = 〈loc〉q′ or [loc]q′, then from state r, respectively along some or all

loc-edges, the TA F(A) passes the state (q′, z,max(θ,Ω(q)),Ω(q)) (also, copies need

to be forked to ensure that λ(t) is satisfied currently).

Let us now assume that ∆(q, λ(t)) = 〈ret , q′′〉q′ or [ret , q′′]q′. Again, it is made

sure that λ(t) holds currently. Now, if r is the current state of F(A), the state

(q′, q′′,max(θ,Ω(q)),Ω(q)) is passed respectively along some or all ret-edges out of

t. By definition of T , the child t′ = t.s̃′ is a leaf. At this point F(A) accepts if

leaf j ∈ λT (t′), where j = indexmap(q′,max(θ,Ω(q))), and rejects otherwise.

The priority function Ω̂ of a state r = (q, γ, θ,m) is defined as: Ω̂(r) = m.

The TA F(A) is clearly over the restricted set of transition terms TT at(Q,AP) that

we fixed. Lemma 4 may now be established using arguments used by Walukiewicz

in the context of pushdown parity games [Wal01]. Finally, note that F(A) is poly-

nomial in the size of A.

Proof of Lemma 5. We follow a translation from TAs to the µ-calculus discussed

in a survey chapter by Alberucci [GTW02]. The proof proceeds by induction on
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the index n of the TA M, defined as the maximum number of distinct priorities in

a strongly connected component in the state transition graph of M. It also uses

a lemma about the existence of simultaneous fixpoints. We will not reproduce the

arguments here in detail, but will present a skeleton.

First, we note that the simultaneous fixpoint theorem holds even for the subset of

the µ-calculus we consider here. More precisely:

Lemma 7. Let T1, . . . , Tk be sets of nodes of T , and let δ1, . . . , δk ∈ Φ(TT at) be

µ-calculus formulas in Φ(TT at) with k free variables each. Now consider the mono-

tone map F : (T1, . . . , Tk) 7→ ( [[δ1(T1, . . . , Tk)]], . . . , [[δk(T1, . . . , Tk)]]). There are

µ-formulas τ1, . . . , τk ∈ Φ(TT at) and ν-formulas ρ1, . . . , ρk ∈ Φ(TT at) such that

(τ1, . . . , τk) and (ρ1, . . . , ρk) are respectively the least and greatest fixpoints of F .

The proof of this follows from the fact that simultaneous fixpoints are obtained by

substitution of variables by formulas, so that the basic structure of the modalities

remains unaltered.

Let us now go through the induction. The idea is to inductively replace states

appearing in infinite cycles by variables. Base case: n = 0, so that the automaton

does not have any cycles in its state transition graph. In this case the formula Ψ(M)

is obtained by “expanding” the transitions; given the structure of TT at , we conclude

that the Ψ(M) is in Φ(TT at).

For the induction step, consider the TAM(Q′, q′) obtained by duplicating the state

q′ ∈ Q′ ⊆ Q and declaring q′ as the new initial state, and then replacing all states

q ∈ Q′ by propositions. Intuitively, this operation identifies the runs of M starting

from state q′, while “chopping off” said runs at states in Q′. Clearly, M(Q′, q′) is

also a TA over TT at ; it turns out that M(Q′, q′) has index less than n and hence

can be translated to an equivalent formula in Φ(TT at). Now we let Q′ be the set of

states of maximum priority inM, set qi to be the i-th state in Q′, and consider the

formula δi ∈ Φ(TT at) equivalent to M(Q′, qi). We do this for all i, then plug these

formulas δi into Lemma 7 and obtain the formulas τ1, . . . , τk corresponding to their
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simultaneous fixpoints (depending on whether the maximum priority is odd or even,

we will need least or greatest fixpoints). We also look at the formula τ0 equivalent

toM(Q′), which is simply M with states in Q′ moved to propositions.

Then Ψ(M) = τ0(τ1, . . . , τk), which, by our arguments, belongs to Φ(TT at). Further,

as the proof in Alberucci’s chapter shows, Ψ(M) is polynomial in the size ofM.

Proof of Lemma 6. For subformulas of a µ-calculus formula ϕ in Φ(TT at), let us

define Nest(ϕ) inductively:

(1) Nest(p) = p

(2) Nest(¬p) = ¬p

(3) Nest(X) = X

(4) Nest(ϕ1 ∧ ϕ2) = Nest(ϕ1) ∧ Nest(ϕ2)

(5) Nest(ϕ1 ∨ ϕ2) = Nest(ϕ1) ∨ Nest(ϕ2)

(6) Nest(〈loc〉ϕ) = 〈loc〉Nest(ϕ)

(7) Nest([loc] ϕ) = [loc] Nest(ϕ)

(8) Nest(〈call〉〈choose〉([in]ϕ ∧ [1]ψ1 ∧ . . . ∧ [k]ψk)) = 〈call〉(Nest(ϕ))

{Nest(ψ1), . . . ,Nest(ψk)}

(9) Nest([call ]〈choose〉([in]ϕ ∧ [1]ϕ ∧ . . . ∧ [k]ϕ)) = [call ](Nest(ϕ))

{Nest(ψ1), . . . ,Nest(ψk)}

(10) Nest(〈ret〉leaf i) = 〈ret〉Ri

(11) Nest([ret ] leaf i) = [ret ]Ri

(12) Nest(µX.ϕ) = µX.Nest(ϕ)

(13) Nest(νX.ϕ) = νX.Nest(ϕ)

Now, let S be any nested tree and T = Summarize(S, k) as before; recall that

SummS
k is the set of summaries in S and T the set of nodes of T . Consider a

µ-calculus environment Ê : Var → T for T ; for any two bisimilar nodes t1, t2 in
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T , we can assume that t1 ∈ Ê iff t2 ∈ Ê . Now note that even if we prevent our

environments from containing nodes not of the form t.s (i.e., if we remove every

“non-summary” node from each of the fixpoint sets as they are computed), the

semantics of ϕ at “summary” nodes of form t.s (and hence at the root of T ) is not

affected. This can be verified by a simple induction. We will assume environments

for T to have this property from now on. Now consider the NT-µ environment E :

Var → SummS
k defined as: for all X ∈ Var , E(X) = {s : s is a summary, and t.s ∈

Ê(X) for some t}.

Our inductive hypothesis is: for any environment Ê in T , any node t.s in T where s

is a summary, and any ϕ ∈ Φ(TT at), s ∈ [[Nest(ϕ)]]E iff t.s, Ê |= ϕ.

Cases (1), (2), (4), (5), (6), (7), (10), and (11) are easy. For the case ϕ = X (case 3),

recall that Ê is bisimulation-closed. For cases (8) and (9) (the call-clauses), note that

the branching of T exactly captures the semantics of the call clauses of NT-µ. For the

case ϕ = µX.ϕ′ (the case νX.ϕ′ is similar), assume that Ti and BS i are the i-th sets in

the fixpoint computation in ϕ and Nest(ϕ) (we can assume that Ti is bisimulation-

closed). We show that BS i = {s : t.s ∈ Ti} by induction. Initially, T0 = ∅ and

BS 0 = ∅. Now, Ti+1 = {t : t, Ê [X := Ti] |= ϕ′}, and BS i+1 = [[Nest(ϕ′)]]E[X:=BS i
.

It is easy to see that BS i+1 = {s : t.s ∈ Ti+1}. It is also easily seen that Nest(ϕ) is

linear in the size of ϕ. This establishes our result.

4.2.1 Expressiveness of NT-µ: other results

Theorems 12 and 13 imply a few results for NT-µ that we have not already derived.

Let us define the satisfiability problem for NT-µ as the problem of determining, given

an NT-µ formula ϕ, if L(ϕ) = ∅. Then we have:

Theorem 14. Given a NT-µ formula, the problem of checking whether there is some

nested tree that satisfies it is undecidable.

Proof. By Theorem 11, determining if L(A) = ∅ is undecidable. However, by Theo-

rem 13, for every AP-NTA A there is an NT-µ formula ϕA such that L(A) = L(ϕA).
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Thus, if we could determine, given an NT-µ formula ϕ, if L(ϕ) =, then we could

solve the emptiness problem for AP-NTAs. This means the satisfiability problem for

NT-µ is undecidable.

The automata-theoretic characterization also makes it easy for us to compare the

expressiveness of NT-µ with that of other temporal logics. As AP-NTAs are more

expressive than alternating parity tree automata, which are polynomially intercon-

vertible with closed µ-calculus formulas, we have:

Theorem 15. Any closed µ-calculus formula ϕ may be converted into an equivalent

NT-µ formula ϕ′. The size of ϕ′ is polynomial in the size of ϕ.

We may now also relate NT-µ to the temporal logic Caret [AEM04], which can

express many linear-time context-sensitive properties of programs. This is because

any Caret formula may be translated to an exponentially larger nondeterministic

finite automaton on nested words. As such automata form a subclass of AP-NTAs,

we have:

Theorem 16. Any Caret formula ϕ may be translated to an equivalent NT-µ

formula ϕ′. The size of ϕ′ is at worst exponential in the size of ϕ.

4.3 Monadic second-order logic on nested trees

We now study monadic second-order (MSO) logic interpreted on ordered nested

trees. Formulas in MSO-logic are built over a set of first-order variables (x, y . . .)

and a set of second-order variables (X, Y, . . .), ranging over nodes and sets of nodes in

a nested tree T . For each σ ∈ Σ, the signature of MSO logic has a unary predicate

Qσ, where Qσ(s) is true at a node s iff s is labeled by σ; we also have a binary

equality predicate x = y. There are also left and right edge predicates x →1 y and

x→2 y, and a jump-edge predicate x →֒ y.
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The syntax of MSO logic is: ϕ := Qσ(x) | ¬ϕ | ϕ ∨ ϕ | x = y | x →1 y | x →2 y |

x →֒ y | ∃x.ϕ | ∃X.ϕ | X(x). The semantics is the natural one on ordered nested

trees. The language L(ϕ) of ϕ is the set of nested trees that satisfy it; ϕ is said to

be bisimulation-closed if L(ϕ) is bisimulation-closed. The model checking problem

is: given ϕ and a nested state machine M, does the unfolding Tord (M)—defined as

an ordered nested tree— satisfy ϕ?

While MSO logic over trees is decidable [GTW02], MSO logic over nested tree struc-

tures is not:

Theorem 17. The model checking problem for (even the bisimulation-closed frag-

ment of) MSO-logic on nested state machines is undecidable.

Proof. We note that the gadget S used to prove Theorem 11 (Figure 4.2-(b)) may

be embedded in the ordered unfolding T of a simple nested state machine. Using

existential set quantification, MSO-logic can select S from T , so that there is an

MSO-logic formula ϕ that holds on T iff the substructure S exists. We note that

the only extra expressive power we need over an AP-NTA is that of existential

quantification, so that ϕ is bisimulation-closed. The theorem follows.

The satisfiability problem for MSO-logic on nested trees is also undecidable.

Now we compare the expressiveness of MSO-logic on nested trees with that of nested

tree automata. We can show that:

Theorem 18. There is a bisimulation-closed MSO-logic formula ϕ such that there

is no AP-NTA A satisfying L(A) = Unord(L(ϕ)).

Proof. Consider the problem of checking if a fixed Turing machine TM halts on an

input word w, for some Turing machine for which this problem is undecidable. It is

possible to build a simple NSM M and a bisimulation-closed MSO-logic formula ϕ

such that T (M) satisfies ϕ iff TM has a halting run on w. Now, if this MSO-logic

formula were expressible by an AP-NTA A, then we could decide whether TM halts
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on w by model checking M against A. This is of course impossible. The theorem

follows as a result.

Note now that the MSO formula ϕ above recognizes a language that is a projection

of an AP-NTA language. This is because aside from the existential quantifier with

which ϕ selects a substructure from the unfolding of an NSM, there is nothing in

ϕ that cannot be captured by an AP-NTA. However, for an MSO formula ψ, the

language L(∃X.ψ), for a second-order variable X, is the projection of the language

L(ψ). Thus, Theorem 18 establishes that AP-NTAs are not closed under projection

(Theorem 9).

We have shown that MSO-logic on nested trees can express languages that AP-

NTAs (and therefore NP-NTAs) cannot. Now we show that MSO-logic is strictly

more expressive than NP-NTA:

Theorem 19. For every NP-NTA A, there is an MSO-logic formula ϕA such that

L(A) = L(ϕ).

Proof. We encode runs of any given NP-NTA A by an MSO-logic formula ϕA. The

latter uses existential quantification over sets to “guess” a global labeling of the

nodes of a nested tree by states of A. The predicates −→ and →֒ are used to check

the consistency of this guess.

However, a “jump-edge” predicate seems too weak to capture the interplay of recur-

sion and Boolean closure in AP-NTAs; higher-order quantification seems necessary.

We conjecture that there is a language L recognized by an AP-NTA such that there

is no MSO formula ϕ that recognizes Lord , where Unord(Lord ) = L, making MSO

neither less nor more expressive than AP-NTAs.
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Chapter 5

The Pal specification language

This chapter presents a specification language—called Pal—and a tool to instrument

C code using it. Monitors in Pal are based on nested word automata and can express

context-sensitive safety requirements. The language extends the Blast specification

language [BCH+04], and while its richer foundations lets it state context-sensitive

properties, it has syntax close to Blast’s and allows easy instrumentation. Once a

program has been instrumented with a Pal monitor, it can be used for testing or

run-time verification as well as static analysis or model checking.

The chapter is organized as follows. In Section 5.1, we introduce context-sensitive

safety properties, and in Section 5.2, we describe the Pal language. Next, in Sec-

tion 5.4, we discuss its implementation and present a few case studies.

5.1 Context-sensitive safety properties

A safety property is a program requirement that asserts that something bad never

happens during any execution of the program. A more formal definition is: a safety

property is a requirement ϕ such that if ϕ is violated, then there is a finite coun-

terexample in which the violation occurs. An example requirement is: “No program

state satisfying a proposition p is ever reached.” If such a state is indeed reached at
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some point, the finite execution up to that point serves as a counterexample to the

property.

The class of temporal safety properties can be captured automata-theoretically. Let

Lc be the language of counterexamples to the requirement—by definition, this is a

language of finite executions. In traditional formal methods, where executions are

modeled by words and requirements are based on regular word or tree languages,

Lc is a regular language of finite words. If L is the language of executions of the

abstraction, then the verification problem involves determining if L ∩ Lc = ∅.

Recall that in classical model checking, programs are abstracted by finite-state ma-

chines. This makes L, and by implication (L ∩ Lc), a regular language (of finite

words). Checking its emptiness then amounts to determining the reachability of a

final state in its automaton representation. This view continues in context-sensitive

model checkers like Blast [HJM+02] and Slam [BR01]. In this case the program-

mer specifies a program using a word automaton, or monitor, that accepts all unsafe

program behaviors. Letting L be the language of program executions, the problem is

once again to check if L∩Lc— the language of the automaton that is the “product”

of the program and the specification— is empty. While this captures only a restricted

set of program requirements, this is an important subclass. In fact, the most suc-

cessful software model checkers so far—Slam and Blast— restrict themselves to

the model checking of safety properties.

However, as we have argued in this thesis, regular word languages are insufficient for

many interesting properties of procedural programs. For example, while a traditional

monitor can state a property about a global path in a program, it cannot express

requirements on local paths. While we can extend the power of specifications by al-

lowing ω-regular requirements, we can also extend them by allowing context-sensitive

specifications. In fact, these two axes are orthogonal: we can, for example, think of

context-sensitive liveness properties, context-sensitive fairness properties, etc. Ac-

cordingly, we have built a specification language that can state context-sensitive
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safety requirements—properties whose counterexamples are given by finite nested

words. Lifting the definition from classical model checking, we define a context-

sensitive safety property to be one whose negation is given by a regular language of

finite nested words [AM04, AM06]. Typical properties include:

• Something bad never happens along a local program path. Recall the property

AG l
cp from Chapter 3. This is an example of a context-sensitive safety property.

• It is impossible to reach a program state where the stack satisfies a certain

regular requirement. For example, consider the stack inspection property in

Chapter 3. This is a context-sensitive safety property as well.

Nested word monitors

Recall the definition of nested words from Chapter 2. A Pal monitor operates on

nested words. Formally, a monitor on nested words labeled by an input alphabet Σ

is defined as a tuple A = 〈Q,Σ, qin , δloc , δcall , δret , F 〉, where Q is a (possibly infinite)

set of states Q, qin is the initial state, and δloc ⊆ Q × Σ × Q, δcall ⊆ Q × Σ × Q,

and δret ⊆ Q × Q × Σ × Q are the local, call and return transition relations. The

acceptance condition F ⊆ Q is a set of final states. If (q, σ, q′) ∈ δloc for some

q, q′ ∈ Q and σ ∈ Σ, then we write q
loc,σ
−→ q′; if (q, σ, q′) ∈ δcall , we write q

call ,σ
−→ q′;

if (q, q′, σ, q′′) ∈ δret , we write (q, q′)
ret ,σ
−→ q′′. We require that the transition relations

are deterministic— e.g., for a fixed state q and input symbol σ, there is only one

transition of the form q
loc,σ
−→ q′.

The monitor A starts in the initial state, and reads a nested word from left to right.

At a call or local position, the current state is determined by the state and the input

symbol at the previous position, while at a return position, the current state can

additionally depend on the state of the run just before processing the symbol at the

jump-predecessor. Formally, the run ρ of the monitor A over a finite nested word

W = (σ1σ2 . . . , →֒) is the finite sequence q0, q1, q2, . . . qk over Q such that q0 = qin ,

and:
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• for all 0 ≤ i < k, if i is a call position of W, then (qi, σi, qi+1) ∈ δcall ;

• for all 0 ≤ i < k, if i is a local position, then (qi, σi, qi+1) ∈ δloc ;

• for 2 ≤ i ≤ k, if i is a return position with jump-predecessor j, then

(qi−1, qj−1, σi, qi) ∈ δret .

Note that due to determinism, the monitor has a single run over a given nested word.

The nested word W is accepted by A if the last state qk in this run belongs to F

(recall, however that if a monitor accepts a nested word modeling an execution iff

the execution violates a safety property).

We note that if A has only finitely many states, then it is a deterministic finite

automaton over finite nested words [AM04, AM06]. In this case it accepts a regular

language of nested words.

5.2 Instrumenting C code

Let us now shift our focus to the problem of analyzing C programs. A popular

approach taken by monitor languages in this setting is to express the monitor in

C syntax. The states of a monitor are encoded by a set of C variables, which can

be modified by C code capturing the transitions. For example, consider the safety

requirement: “No two calls to an action write() happen in an execution without a

call to read() in between.” This requirement is captured by the word automaton in

Figure 5.1, which has three states (one of which is an error state), and has input

symbols read and write corresponding to the observables of the monitored program.

The state of this automaton may be encoded by a C variable state; the action taken

by the automaton on reading an input symbol can be encoded by a block of C code

that tests the current value of this variable and modifies it (note that for this to

be possible, the monitor has to be deterministic). For example, the code for the

automaton’s transition on a write input symbol is given in the same figure.
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int state;

if (state == 0)
        state = 1;
else if (state == 1)
        error();

write write

read

error
write:

q0

q1

Figure 5.1: A safety monitor

Now consider the “product” of this monitor and a C program. An execution of this

product comprises executions of the monitor and the program in lock-step, with the

monitor firing transitions on certain program actions. Now note that a program

behaving in this manner can be obtained by instrumenting the input program with

monitor code. For instance, to instrument a program with the monitor in Figure 5.1,

we add the single global variable state to the program— this variable has value 0

or 1 depending on whether the automaton’s state is q0 or q1. Also, we inject code

for monitor transitions immediately before every read() or write() statement in the

program. Note that the added monitor variable has to be global, as it may be

modified at any point of the execution.

We observe that this instrumented program fails an assertion if and only if the

input program violates the safety specification. Also note that there are many static

and dynamic, formal and informal techniques to detect assertion failures— including

abstraction-based model checking as well as testing or run-time verification. We may

use any one of these techniques to determine if program satisfies its requirement.

Let us now consider a context-sensitive safety requirement: “No call to write() hap-

pens while the routine foo is in the stack.” We note that this property may be

expressed by a nested word monitor with states q0, q1 and error. We assume that

every entry and exit point of the procedure foo is labeled with an input symbol foo.
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global int state = 0;

{

local int stored;

stored = state;

}

foo ();

{

state = stored;

}

Figure 5.2: Instrumenting with nested word automata

Then the transitions are:

q0
call ,foo
−→ q1

(q, q0)
ret ,foo
−→ q0

(q, q1)
ret ,foo
−→ q1

q1
loc,write
−→ error ,

where q ∈ {q0, q1}.

We will now show a way to implement this monitor so that it can be used for easy

instrumentation of C code. Let us now instrument a statement in the input program

by injecting blocks of code before and after it. These two blocks serve as pre and post-

conditions for the statement in the product program. Further, we allow these two

blocks two share local variables. In an execution of the instrumented program, the

monitor’s state, represented as a global variable, is stored in a local variable before

the call to foo (see Figure 5.2). This value can be retrieved at the matching return

of this call— and used in its postcondition. In general under this scheme, a monitor

may update its state along the global program execution via assignments to its global

variables, as well as retrieve its state at the matching call when transitioning to a

return. Thus, a monitor such as this encodes a nested word monitor.
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5.3 The Pal language

We will now present the Pal language using a more involved example. Consider a C

program that opens and closes files via calls to fopen and fclose, and the following

requirement: “a secret file dat is not opened outside the scope of a file-handling

routine foo. If foo, or a procedure called transitively from it, opens a stream for

dat, then: (1) no new stream for dat is opened without closing the current stream,

and (2) any open stream for this file must be closed by the time the top-level call to

foo returns.” Such a discipline follows programmer intuition and prevents security

flaws where the main context, unaware that foo has left open a sensitive stream,

invokes an untrusted program that can now do I/O on the “leaked” stream (for a

real instance of such a bug, see Section 5.4).

A Pal monitor for this requirement is shown in Figure 5.3. The states of the monitor

are encoded by a set of monitor variables, and its transitions by a set of event{...}

blocks. Some monitor variables are global and are declared using the keyword global

— intuitively, global monitor variables may be tested or updated by any event. In

addition, each event includes an optional set of local monitor variables, declared

using the keyword local, whose scope is restricted to the current event.

Events are fired by matching patterns on statements in the analyzed program. A

pattern, specified in a pattern{...} block, is an assignment or procedure call with

possible “pattern variables” ($?, $1, $2, etc.). During matching, the variables $1, $2,

etc. match arbitrary C expressions and the variable $? serves as a wildcard— e.g.,

the pattern in event 1 matches all calls to fopen. For each statement matching the

pattern 1 specified in the i-th event, the monitor sets up a precondition and a post-

condition using the code in the blocks before{...} and after{...} in this event.

The precondition (similarly, postcondition) checks whether an optional guard—a C

1Monitors are deterministic—i.e., if more than one pattern is matched at any point, we break
the tie by picking the one in the event defined first.
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expression over monitor and pattern variables, inside a guard{...} block—is sat-

isfied by the monitor state right before (after) this statement. If the guard is not

satisfied, an assertion violation is reported. Otherwise, the state of the monitor is

updated by executing the C code contained within an optional action{...} block.

This code is allowed to read pattern variables, and read or update monitor variables.

For succinctness, we allow guards and actions to be defined outside before or after

blocks (event 1 or 2)—in this case they are assumed to define preconditions.

During instrumentation, code blocks implementing an event’s precondition and post-

condition are respectively injected before and after statements matching its pattern.

Consider a call x = foo(y) in a procedure bar in a program; on instrumentation

using the monitor in Figure 5.3, this line is replaced by the chunk of code in Fig-

ure 5.4. Declarations of the monitor variables are added as well; stored is declared

locally in bar, and infoo, open, and stream are declared globally.

Note that this syntax closely resembles that of the Blast query language. Blast,

too, allows injection of code before or after a program statement using the keywords

before and after. This similarity is a design feature, as our goal was to extend

Blast minimally to obtain a specification language for context-sensitive require-

ments. The key new features in Pal are local variables and the ability to declare

before and after blocks in the same event. This modification makes a major

semantic difference: the control-flow of a monitor is now given by a nested word

automaton, rather than a word automaton. Consider our example monitor and an

execution of the input program containing a call to foo. In the nested word captur-

ing this execution, there is a jump-edge from the call to foo to its matching return.

Now, as the monitor reads this execution, it can save its state right before control

enters foo using its local variables, and retrieve this state at the matching return.

Thus, it has the power of a nested word monitor that reads the corresponding nested

word, consulting its state at the source of an incoming jump-edge while transitioning

to a return position. On the other hand, our monitor can use its global variables to
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pass states into invoked procedures such as foo, just like a Blast monitor. More

abstractly, this amounts to state updates as it reads the underlying word structure.

We end this section with some hints to check that the monitor in Fig. 5.3 specifies

our original requirement. The variables infoo and open track whether foo is in the

stack and whether dat is open, and stream stores a possible open stream for dat.

The variable stored is used to infer whether control is back to the top-level context

calling foo. The rest is easily verified.

5.4 Implementation and case studies

We have implemented Pal on top of the current implementation of Blast. The

specification and analysis modules in Blast are orthogonal: the former generates

C code instrumented with a monitor, while the latter checks the generated code for

assertion failures. We extend Blast’s specification module to permit Pal monitors,

and analyze the generated code statically as well as dynamically. The source code

of our implementation, along with the examples that we now discuss, is available at

http://www.cis.upenn.edu/~swarat/tools/pal.tar.gz.

File descriptor leak in fcron

We can apply a monitor as in Section 5.2 to prevent a reported bug in Version 2.9.4 of

fcron, a periodic command scheduler for Linux. Here, the main function of a binary

(fcrontab) calls a routine parseopt, which calls a routine is allowed to check if a

user is “allowed”, which calls a procedure that opens, but forgets to close, a stream

for a secret file fcron.allow. After control returns to the main context, the program

starts a process with a name derived from an environment variable. However, an

attacker can change the value of this variable to start a malicious program that reads

fcron.allow via the open file stream.

This error may be prevented by a policy that allows parseopt to open fcron.allow,
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but not to leak its descriptor. Also, we could require that this secret file is not opened

outside the scope of parseopt. This policy makes intuitive sense: as parseopt is a

routine verifying a username, it is reasonable that it, or procedures it calls transi-

tively, opens the file of allowed users. However, by the principle of least privilege,

this file should only be opened when necessary, i.e., when parseopt is on the stack.

A monitor expressing these requirements looks very similar to the one in Fig. 5.3.

On instrumenting fcron with this monitor, we find a policy violation within a few

random tests. However, abstraction-based model checking using Blast is not suit-

able for this example, as Blast cannot currently perform good analysis of library

functions like strcmp.

Stack-sensitive security properties

Consider the security property: “A program must not execute a sensitive operation

write at any point when an untrusted routine foo is on the stack.” Note that this is

the same property we discussed earlier. In the Java and C# languages, such policies

are automatically enforced by the run-time environment, using the mechanism of

stack inspection. In C, they may be enforced dynamically using a monitor—however,

traditional monitors cannot express such properties of the stack, so that a nested

word monitor is needed. Of course, such monitors could also be used in static analysis

or software model checking.

Fig. 5.5 shows a complete monitor for this property. The global variable infoo tracks

if foo is in the stack, and a guard prevents writes within the scope of foo.

We note that Pal may also be used to state some requirements of this nature that

cannot be enforced via stack inspection. Consider the property: “If an untrusted

procedure has ever been on the stack, a certain sensitive operation must not be

executed.” The rationale is that an untrusted routine may cause a side-effect that

proves to be dangerous at a future point, so that if we call one, we must strengthen

the security policy. However, since the culpable routine may no longer be on the
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stack when a violation occurs, stack inspection does not help in this case. On the

other hand, it is easy to state such properties in Pal.

Logging policies

Pal also finds use in stating logging policies enforced in large development efforts such

as Windows. Consider the property: “Whenever a procedure returns an error value,

the error must be logged via a routine log before control leaves the current procedural

context.” Now, different development groups may call log via different wrapper

functions; however, the logging policy is fixed across groups and thus independent

of the wrappers. In order to track if control has returned from a wrapper to the

original context, we need a Pal monitor.

While we do not have access to industrial code bases where such policies are most

natural, we have applied a Pal monitor for this property on a couple of hand-coded

examples. The monitors are quite simple and similar to our previous examples; hence

we omit the details.

107



global int infoo = 0;

global int open = 0;

global FILE * stream;

event { /* event 1 */

pattern {

$1=fopen($2,$?);}

guard { strcmp($2,’’dat’’)

||(open==0 && infoo==1)}

action {

if (!strcmp($2,’’dat’’)){

open = 1;

stream = $1;}}

}

event { /* event 2 */

pattern { fclose ($1); }

action { if ($1 == stream)

open = 0; }}

event { /* event 3 */

pattern { $? = foo ($?); }

local int stored;

before {

action { stored = infoo;

infoo = 1; }}

after {

guard { open == 0 }

action {

infoo = stored; }}

}

Figure 5.3: A Pal specification
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int infoo = 0;

int open = 0;

FILE * stream;

bar() {

int stored;

...

stored = infoo;

infoo = 1;

x = foo(y);

if (open == 0)

infoo = stored;

else ERROR;

...

}

Figure 5.4: Instrumenting using event 3

global int infoo = 0;

event {

pattern { write(); }

guard { infoo == 0 }

}

event {

pattern {$? = foo($?);}

local int stored;

before {

action { stored = infoo;

infoo = 1; }}

after {

action {infoo = stored;}

}

}

Figure 5.5: Stack-sensitive security
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Part II

Algorithms
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Chapter 6

Algorithms for context-sensitive

reachability analysis

In this chapter, we present our results on algorithms for reachability analysis of

context-sensitive program abstractions. We do not view these abstractions as gen-

erators of nested structures any longer— as a result, we redefine them as recursive

state machines (RSMs) rather than nested state machines. The reachability prob-

lem for RSMs is equivalent to a graph problem called CFL-reachability. While it has

been believed to be cubic for a long time, we adapt an algorithmic technique due

to Rytter [Ryt85, Ryt83] to obtain an asymptotically subcubic algorithm for it. We

also offer two subcubic algorithms for the reachability problem for two subclasses of

PDSs—called bounded-stack PDSs and hierarchical state machines.

The chapter is organized as follows. Section 6.1 defines the three classes of RSMs

that interest us, CFL-reachability, and the fast set data structure. Section 6.2 dis-

cusses reachability in general RSMs and CFL-reachability. In Section 6.3, we study

reachability for bounded-stack RSMs, and Section 6.4 briefly examines reachability

in hierarchical state machines.
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6.1 Basics

Recursive state machines (RSMs), introduced by Alur et al. [ABE+05], are finite-

state-machines that can call other finite-state-machines recursively. RSMs are equiv-

alent to pushdown systems, and any solution for RSM-reachability can be translated

to a solution the same complexity for pushdown systems. In this section, we define

three variants of recursive state machines. We also review their connection with the

context-free language reachability problem.

Recursive state machines

A recursive state machine (RSM) M is a tuple 〈M1,M2, . . . ,Mk〉, where each Mi =

〈Li, Bi, Yi,En i,Ex i,→i〉 is a component comprising:

• a finite set Li of internal states;

• a finite set Bi of boxes ;

• a map Yi : Bi → {1, 2, . . . , k} that assigns a component to every box;

• a set En i ⊆ Li of entry states and a set Ex i ⊆ Li of exit states ;

• an edge relation →i⊆ (Li ∪Retns i \ Ex i)× (Li ∪Callsi \ En i), where Calls i =

{(b, en) : b ∈ Bi, en ∈ EnYi(b)} is the set of calls and Retns i = {(b, ex) : b ∈

Bi, ex ∈ ExYi(b)} the set of returns in Mi.

Note that an edge cannot start from a call or an exit state, and cannot end at a

return or an entry state. We assume that for every distinct i and j, Li, Bi, Callsi,

Retns i, Lj , Bj , Callsj , and Retnsj are pairwise disjoint. Arbitrary calls, returns

and internal states in M are referred to as states. The set of all states is given by

V =
⋃
i(Li ∪ Callsi ∪Retns i), and the set of states in Mj is denoted by Vj. We also

write B =
⋃
iBi to denote the collection of all boxes in M . Finally, the extensions
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{

} 

void main ()

L: x = g;
   bar();
   g = 1;

   int x = 1;
   bar();

int g;

{

void bar()

 int y = 0;
}

(a)

       

(b) (c)

(b1

a

a

a

)b1

(b2

)b2

s

s

t

t

main (M1)

bar (M2)

b1 b2

u

u
v

v

(b1, u)

(b2, v)
(b1, u)

(b2, v)

Figure 6.1: (a) A C example (b) RSM for the uninitialized variable problem (c)
CFL-reachability formulation

of the relations →i and functions Yi are denoted respectively by →⊆ V × V and

Y : B → {1, 2, . . . , k}.

For an example of an RSM, see Figure 6.1-(b). This machine has two components:

M1 and M2. The component M1 has an entry state s and an exit state t, boxes

b1 and b2 satisfying Y (b1) = Y (b2) = 2, and edges (s, (b1, u)) and ((b2, v), t). The

component M2 has an entry u and an exit v, and an edge (u, v).

The semantics ofM is given by an infinite configuration graph CM . Let a configuration

of M be a pair c = (v, w) ∈ V ×B∗ satisfying the following condition: if w = b1 . . . bn

for some n ≥ 1 (i.e., if w is non-empty), then:

1. v ∈ VY (bn), and

2. for all i ∈ {1, . . . , n− 1}, bi+1 ∈ BY (bi).
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The nodes of CM are configurations of M . The graph has an edge from c = (v, w) to

c′ = (v′, w′) if and only if one of the following holds:

1. Local move: v ∈ (Li ∪ Retns i) \ Ex i, (v, v′) ∈→i, and w′ = w;

2. Call move: v = (b, en) ∈ Callsi, v
′ = en, and w′ = w.b;

3. Return move: v ∈ Ex i, w = w′.b, and v′ = (b, v).

Intuitively, the string w in a configuration (v, w) is a stack, and paths in CM de-

fine the operational semantics of M . If v is a call (b, en) in the above, then the

RSM pushes b on the stack and moves to the entry state en of the component Y (b).

Likewise, on reaching an exit ex, it pops a frame b off the stack and moves to the

return (b, ex). Unsurprisingly, RSMs have linear translations to and from pushdown

systems [ABE+05].

Size The size of an RSM is the total number of states in it.

Reachability Reachability in the configuration graph is defined as usual. We call

the state v′ reachable from the state v if a configuration (v′, w), for some stack w, is

reachable from (v, ǫ) in the configuration graph. Intuitively, the RSM, in this case,

has an execution that starts at v with an empty stack and ends at v′ with some

stack. The state v′ is same-context reachable from v if (v′, ǫ) is reachable from (v, ǫ).

In this case the RSM can start at v with an empty stack and reach v′ with an empty

stack—note that this can happen only if v and v′ are in the same component.

The all-pairs reachability problem for an RSM is to determine, for each pair of states

v, v′, whether v′ is reachable from v′. The single-source and single-sink variants of the

problem are defined in the natural way. We also define the same-context reachability

problem, where we ask if v′ is same-context reachable from v.

All known algorithms for RSM-reachability and pushdown systems, whether all-pairs

or single-source/single-sink, same-context or not, rely on a dynamic programming
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scheme called summarization [SP81, ABE+05, BEM97, RHS95], which we will ex-

amine in Section 6.2. The worst-case complexity of all these algorithms is cubic.

Tighter bounds are possible if we constrain the number of entry and exit states

and/or edges in the input. For example, if each component of the input RSM has

one entry and one exit state, then single-source, single-sink reachability can be de-

termined in O(m+ n) time, where m is the number of edges in the RSM and n the

number of states (the all-pairs problem has the same complexity as graph transitive

closure) [ABE+05]. In this paper, in addition to general RSM-reachability, we study

reachability algorithms for RSMs constrained in a different way: by restricting or

disallowing recursion.

To see the use of RSM-reachability in solving a program analysis problem, consider

the program in Figure 6.1-(a). Suppose we want to determine if the variable g is

uninitialized at the line labeled L. This may be done by constructing the RSM in

Figure 6.1-(b). The two components correspond to the procedures main and bar;

states in these components correspond to the control points of the program—e.g.,

the state s models the entry point of main, and (b2, v) models the point immediately

before line L. Procedure calls to bar are modeled by the boxes b1 and b2. For

every statement that does not assign to g, an edge is added between the states

modeling the control points immediately before and after this statement. Then g is

uninitialized at L iff (b2, v) is reachable from s. More generally, RSM-reachability

algorithms can be used to check if a context-sensitive program abstraction satisfies

a safety property [ABE+05]. For example, the successful software model checker

Slam [BR01] uses an algorithm for RSM-reachability as a core module.

Bounded-stack RSMs and hierarchical state machines

Now we define two special kinds of RSMs with restricted recursion: bounded-stack

RSMs and hierarchical state machines. We will see later that they have better

reachability algorithms than general RSMs.
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The class of bounded-stack RSMs consists of RSMs M where every call (b, en) is

unreachable from the state en. By the semantics of an RSM, the stack of an RSM

grows along an edge from a call to the corresponding entry state. Thus, intuitively, a

bounded-stack RSM forbids infinite recursive loops, ensuring that in any path in the

configuration graph starting with a configuration (v, ǫ), the height of the stack stays

bounded. To see an application, consider a procedure that accepts a boolean value

as a parameter, flips the bit, and, if the result is 1, calls itself recursively. While this

program does employ recursion, it never runs into an infinite recursive loop. As a

result, it can be modeled by a bounded-stack RSM.

A hierarchical state machine [AY98], on the other hand, forbids recursion altogether.

Formally, such a machine is an RSM M where there is a total order ≺ on the

components M1, . . . ,Mk such that if Mi contains a box b, then MY (b) ≺ Mi. Thus,

calls from a component may only lead to a component lower down in this order. For

example, the RSM in Figure 6.1-(b) is a hierarchical state machine.

Note that every bounded-stack or hierarchical machine can be translated to an equiv-

alent finite-state machine. However, this causes an exponential increase in size in

the worst case, and it is unreasonable to analyze a hierarchical/bounded-stack ma-

chine by “flattening” it into a finite-state machine. The question that interests us

is: can we determine reachability in a bounded-stack or hierarchical machine in time

polynomial in the input? The only known way to do this is to use the summariza-

tion technique that also works for general RSMs, leading to an algorithm of cubic

worst-case complexity.

Context-free language reachability

RSM-reachability is equivalent to a graph problem called context-free language (CFL)

reachability [Yan90, Rep98] that has numerous applications in program analysis. Let

S be a directed graph whose edges are labeled by an alphabet Σ, and let L be a

context-free language over Σ. We say a node t is L-reachable from a node s if there is
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a path from s to t in S that is labeled by a word in L. The all-pairs CFL-reachability

problem for S and L is to determine, for all pairs of nodes s and t, if t is L-reachable

from s. The single-source or single-sink variants of the problem are defined in the

obvious way. Customarily, the size of the instance is given by the number n of nodes

in S, while L is assumed to be given by a fixed-sized grammar G.

Let us now see how, given an instance of RSM-reachability, we can obtain an equiva-

lent CFL-reachability instance. We build a graph whose nodes are states of the input

RSM M ; for every edge (u, v) in M , S has an edge from u to v labeled by a symbol

a. For every call (b, en) in the RSM, S has an edge labeled (b from (b, en) to en; for

every exit ex and return (b, ex) in M , we add a )b-labeled edge in S from ex to (b, ex)

(for example, the graph S constructed from the RSM in Figure 6.1-(b) is shown in

Figure 6.1-(c)). Now, the state v is reachable from the state u in M if and only if v is

L-reachable from u in S, where L is given by the grammar S → SS | (bS)b | (bS | a.

The translation in the other direction is also easy—we refer the reader to the original

paper on RSMs [ABE+05].

Note that context-free recognition is the special case of CFL-reachability where S

is a chain. A cubic algorithm for all-pairs CFL-reachability can be obtained by

generalizing the Cocke-Younger-Kasami algorithm [HU79] for CFL-recognition—this

algorithm again relies on summarization. The problem is known to be equivalent

to the problem of evaluating Datalog chain queries on a graph representation of a

database [Yan90]. Such queries have the form p(X, Y ) ← q0(X,Z1) ∧ q1(Z1, Z2) ∧

. . . ∧ qk(Zk, Y ), where the qi’s are binary predicates and X, Y and the Zi’s are

distinct variables, and have wide applications. It has also come up often in pro-

gram analysis—for example, in the context of interprocedural dataflow analysis and

slicing, field-sensitive alias analysis, and type-based flow analysis [HRB88, RHS95,

HRS95, Rep95, Rep98, RF01]. The “cubic bottleneck” of these analysis problems

has sometimes been attributed to the believed cubic hardness of CFL-reachability.

A special case is the problem of Dyck-CFL-reachability. The constraint here is that
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the CFL L is now a language of balanced parentheses. Many program analysis

applications of CFL-reachability—e.g., field-sensitive alias analysis of Java programs

[SGSB05]—turn out actually to be applications of Dyck-CFL-reachability, though

so far as asymptotic bounds go, it is no simpler than the general problem. This

problem is equivalent to the problem of same-context reachability in RSMs.

Fast sets

Our algorithms for RSMs use a set data structure that exploits sharing between sets

to offer certain set operations at low amortized cost. This data structure—called

fast sets from now on—is standard technology in the algorithms literature [Cha07,

ADKz70] and was used, in particular, in the papers by Rytter [Ryt83, Ryt85] on

two-way pushdown recognition. Its essence is that it splits an operation on a pair of

sets into a series of unit-cost operations on small sets. We will now review it.

Let U be a universe of n elements of which all our sets will be subsets. The fast set

data structure supports the following operations:

• Set difference: Given sets X and Y , return a list Diff (X, Y ) consisting of the

elements of the set (X \ Y ).

• Insertion: Insert a value into a set.

• Assign-union: Given sets X and Y , perform the assignment X ← X ∪ Y .

Let us assume an architecture with word size p = θ(logn). A fast set representation

of a set is the bit vector (of length n) for the set, broken into ⌈n/p⌉ words. Then:

• To compute Diff (X, Y ), where X and Y are fast sets, we compute the bit

vector for Z = X \Y via bitwise operations on the words comprising X and Y .

This takes O(n/p) time assuming constant-time logical operations on words.

To list the elements of Z, we repeatedly locate the most significant bit in Z,

add its position in X to the output list, and turn it off. Assuming that it
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is possible in constant time to check if a word equals 0 and find the most

significant bit in a word, this can be done in O(|Z| + n/p) time. Note that

the bound is given in terms of the size of the output. This is exploited while

bounding the amortized cost of a sequence of set differences.

• Insertion of 0 ≤ x ≤ n − 1 involves setting a bit in the ⌊x/p⌋-th word, which

can be done in O(1) time.

• The assign-union operation can be implemented by word-by-word logical op-

erations on the components of X and Y , and takes O(n/p) time.

In case the unit-cost operations we need are not available, they can be implemented

using table lookup. Let a fast set now be a collection of words of length p = ⌈log n/2⌉.

In a preprocessing phase, we build tables implementing each of the binary or unary

word operations we need by simply storing the result for each of the O(2p.2p) = O(n)

possible inputs. The time required to build each such table is O(p.n) (assuming

linear-time operations on words), and the space requirement is O(n). The costs of

our fast set operations are now as before.

6.2 All-pairs reachability in recursive state ma-

chines

Let us now study the reachability problem for recursive state machines. We remind

the reader that all known algorithms for this problem are cubic and based on a

high-level algorithm called summarization. In this section we show that a speedup

technique developed by Rytter [Ryt85, Ryt83] can be directly applied to this algo-

rithm, leading to an O(n3/ logn)-time solution. The modified algorithm computes

reachability via a sequence of operations on sets of states, each represented as a fast

set. In this sense it is a symbolic implementation of summarization, rather than an

iterative one like the popular algorithm due to Reps, Horwitz and Sagiv [RHS95].
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We also show that the standard cubic algorithm for CFL-reachability, referenced for

example by Melski and Reps [MR00], can be speeded up similarly using Rytter’s

technique.

6.2.1 Reachability in RSMs

Let us start by reviewing summarization. We have as input an RSMM = 〈M1, . . . ,Mk〉

as in Section 6.1, with state set V , box set B, edge relation →⊆ V × V , and a map

Y : B → {1, . . . , k} assigning components to boxes. The algorithm first determines

same-context reachability by building a relation Hs ⊆ V × V , defined as the least

relation satisfying:

1. if u = v or u→ v, then (u, v) ∈ Hs;

2. if (u, v′) ∈ Hs and (v′, v) ∈ Hs, then (u, v) ∈ Hs;

3. if (u, v) ∈ Hs and u is an entry and v is an exit in some component, then for

all boxes b such that (b, u), (b, v) ∈ V , we have ((b, u), (b, v)) ∈ Hs.

For example, the relation Hs for the RSM in Figure 6.1-(a) is drawn in Figure 6.2

(the transitive edges are omitted). While the definition of Hs is recursive, it may

be constructed using a least-fixpoint computation. Once it is built, we construct a

relation H ⊆ V × V defined as:

H = → ∪ {((b, en), (b, ex)) ∈ Hs : b ∈ B, and en is an

entry and ex an exit of Y (b)}

∪ {((b, en), en) : en is an entry in Y (b)},

and compute the (reflexive) transitive closure H∗ of the resultant relation (see Fig-

ure 6.2). It is known that:

Lemma 8 ([ABE+05, BEM97]). For states v and v′ of M , v′ is reachable from v iff

(v, v′) ∈ H∗. Also, v′ is same-context reachable from v iff (v, v′) ∈ Hs.
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Figure 6.2: The relation H . Hs is the transitive closure of non-dashed edges, and
H∗ is the transitive closure of all edges

Within the scheme of summarization, there are choices as to how the fixpoint com-

putations for Hs and H∗ are carried out. For example, the popular algorithm due

to Reps, Horwitz and Sagiv [RHS95] employs graph search to construct these re-

lations enumeratively. In contrast, the algorithm we now present, obtained by a

slight modification of an algorithm by Rytter [Ryt85] for two-way pushdown recog-

nition, phrases the computation as a sequence of operations on sets of states. Unlike

previous implementations of summarization, our algorithm has a slightly subcubic

worst-case complexity.

The algorithm is a modification of the procedure Baseline-Reachability in Fig-

ure 6.3, which uses a worklist W to compute Hs and H∗ in a fairly straightforward

way. Line 1 of the baseline routine inserts intra-component edges and trivial reacha-

bility facts into Hs and W . The rest of the pairs in Hs are derived by the while-loop

from line 2–10, which removes pairs fromW one by one and “processes” them. While

processing a pair (u, v), we derive all the pairs that it “implies” by rules (2) and (3)

in the definition of Hs and that have not been derived already, and insert them into

Hs and W . At the end of any iteration of the loop, W contains the pairs that have

been derived but not yet processed. The loop continues till W is empty. It is easy

to see that on its termination, Hs is correctly computed. Lines 11-14 now compute

H∗.

Note that a pair is inserted into W only when it is also inserted into Hs, so that the

loop has one iteration per insertion into Hs. At the same time, a pair is never taken
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out of Hs once it is inserted, and no pair is inserted into it twice. Let n be the size

of the RSM, and let α ≤ n2 be an upper bound on the number of pairs (u, v) such

that v is reachable from u. Then the loop has O(α) iterations.

Let us now determine the cost of each iteration. Assuming we can insert an element

in Hs and W in constant time, lines 4–6 cost constant time per insertion of an

element into Hs. Thus, the total cost for lines 4–6 during a run of Baseline-

Reachability is O(α). The for-loops at line 7 and line 9 need to identify all states

u′ and v′ satisfying their conditions for insertion. Done enumeratively, this costs

O(n) time per iteration, causing the total cost of the loop to be O(αn). As for the

rest of the algorithm, line 14 may be viewed as computing the (reflexive) transitive

closure of a graph with n states and O(α) edges. This may clearly be done in O(αn)

time. Then:

Lemma 9. Baseline-Reachability terminates on any RSM M in time O(α.n),

where α ≤ n2 is the number of pairs (u, v) ∈ V × V such that v is reachable from u.

On termination, for every pair of states u and v, v is reachable from u iff (u, v) ∈ H∗,

and v is same-context reachable from u iff (u, v) ∈ Hs.

To convert the baseline procedure into a set-based algorithm, interpret the relation

Hs as an n × n table, and denote the u-th row and column as sets (respectively

denoted by Row(u) and Col(u)). Then we have Row(u) = {v : (u, v) ∈ Hs} and

Col(u) = {v : (v, u) ∈ Hs}. Now observe that the for-loops at lines 7 and 9 can be

captured by set difference operations. The for-loop in line 7–8 may be rewritten as:

for u′ ∈ (Col(u) \ Col(v)) do insert (u′, v) into Hs and W,

and the for-loop in line 9–10 may be rewritten as:

for v′ ∈ (Row(v) \ Row(u)) do insert (u, v′) into Hs and W.

Our set-based algorithm for RSM-reachability —called Reachability from now

on— is obtained by applying these rewrites to Baseline-Reachability. Clearly,
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Baseline-Reachability()
1 W ← Hs ← {(u, u) : u ∈ V }∪ →
2 while W 6= ∅
3 do (u, v)← remove from W
4 if u is an entry state and v an exit state in a component Mi

5 then for b such that Y (b) = i
6 do insert ((b, u), (b, v)) into Hs, W
7 for (u′, u) ∈ Hs such that (u′, v) /∈ Hs

8 do insert (u′, v) into Hs and W
9 for (v, v′) ∈ Hs such that (u, v′) /∈ Hs

10 do insert (u, v′) into Hs and W
11 H∗ ← Hs

12 for calls (b, en) ∈ V
13 do insert ((b, en), en) into H∗

14 H∗ ← transitive closure of H∗

Figure 6.3: Baseline procedure for RSM-reachability

Reachability terminates after performing O(α) set difference and insertion opera-

tions, and when it does, the tables H∗ and Hs respectively capture reachability and

same-context reachability.

We may, of course, use any set data structure offering efficient difference and insertion

in our algorithm. If the cost of set difference is linear, then the algorithm is cubic in

the worst-case. The complexity, however, becomes O(nα/ logn) = O(n3/ logn) if we

use the fast set data structure of Section 6.1. To see why, assume that the rows and

columns of Hs are represented as fast sets and that set difference and insertion are

performed using the operations Diff and Ins described earlier. In each iteration of the

main loop, the inner loops first compute the difference of two sets of size n, then, for

every element in the answer, inserts a pair into Hs (this involves inserting an element

into a row and a column) andW . If the i-th iteration of the main loop inserts σi pairs

into Hs, the time spent on the operation Diff in this iteration is O(n/ logn + σi).

Since the result is returned as a list, the cost of iteratively inserting pairs in it into

H∗ and W is also O(σi). The cost of these operations summed over the entire run

of Reachability is O(α.n/ logn +
∑α

i σi) = O(αn/ logn + α) = O(αn/ logn).
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The only remaining bottleneck is the transitive closure in line 14 of the baseline

procedure. This may be computed in O(α.n/ logn) time using the procedure we

give in Section 6.3.1. The total time complexity then becomes O(αn/ logn)— i.e.,

O(n3/ logn).

As for the space requirement of the algorithm, Θ(n2) space is needed just to store

the tables Hs and H∗. The space required by tables implementing word operations,

if unit-cost word operations are not available, is subsumed by this factor. Thus we

have:

Theorem 20. The algorithm Reachability solves the all-pairs reachability and

same-context-reachability problems for an RSM with n states in O(n3/ logn) time

and O(n2) space.

Readers familiar with Rytter’s O(n3/ logn)-time algorithm [Ryt85] for recognition of

two-way pushdown languages will note that our subcubic algorithm is very similar to

it. Recall that a two-way pushdown automaton (2-PDA) is a pushdown automaton

which, on reading a symbol, can move its “reading head” one step forward and

back on the input word, while changing its control state and pushing/popping a

symbol on/off its stack. The language recognition problem for 2-PDAs is: “given a

word w of length n and a 2-PDA A of constant size, is w accepted by A?” This

problem may be linearly reduced to the reachability problem for RSMs. Notably,

there is also a reduction in the other direction. Given an RSM M where we are to

determine reachability, write out the states and transitions of M as an input word.

Now construct a 2-PDA A that, in every one of an arbitrary number of rounds,

moves its head to an arbitrary transition of M and tries to simulate the execution.

Using nondeterminism, A can guess any run of M , and accept the input if and only

if M has an execution from a state u to a state v. This may suggest that a subcubic

algorithm for RSM-reachability already exists. The catch, however, is that an RSM

of size n may have Ω(n2) transitions, so that this reduction outputs an instance

of quadratic size. Clearly, it cannot be combined with Rytter’s algorithm to solve
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reachability in RSMs in cubic (let alone subcubic) time.

On the other hand, what Rytter’s algorithm actually does is to speed up a slightly

restricted form of summarization. Recall the routine Baseline-Reachability, and

let u, v, . . . be positions in a word rather than states of an RSM. Just like us, Rytter

derives pairs (u, v) such that the automaton has an empty-stack to empty-stack

execution from u to v. One of the rules he uses is:

Suppose (u, v) is already derived. If A can go from u′ to u by pushing γ,

and from v to v′ by popping γ, then derive (u′, v′).

This rule is analogous to Rule (3) in our definition of summarization:

Suppose (u, v) is already derived. If u is an entry and v is an exit in

some component and b is a box such that (b, u), (b, v) ∈ V , then derive

((b, u), (b, v)).

The two rules differ in the number of new pairs they derive. Because the size of A

is fixed, Rytter’s rule can generate at most a constant number of new pairs for a

fixed pair (u, v). On the contrary, our rule can derive a linear number of new pairs

for given (u, v). Other than the fact that Rytter deals with pairs of positions and

we deal with RSM states, this is the only point of difference between the baseline

algorithms used in the two cases. At first glance, this difference may seem to make

the algorithm cubic, as the above derivation happens inside a loop with a quadratic

number of iterations. Our observation is that a tighter analysis is possible: our rule

above only does a constant amount of work per insertion of a pair into Hs. Thus,

over a complete run of the algorithm, its cost is quadratic and subsumed by the cost

of the other lines, even after the speedup is applied. For the rest of the algorithm,

Rytter’s complexity arguments carry over.
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Baseline-CFL-Reachability()
1 W ← Hs ← {(u,A, v) : u

a
−→ v in S, and A→ a in G }

2 ∪{(u,A, u) : A→ ǫ in G }
3 while W 6= ∅
4 do (u,B, v)← remove from W
5 for each production A→ B
6 do insert (u,B, v) into Hs, W
7 for each production A→ CB
8 do for each edge (u′, C, u) such that (u′, A, v) /∈ Hs

9 do insert (u′, A, v) into Hs and W
10 for each production A→ BC
11 do for each edge (v, C, v′) such that (v, A, v′) /∈ Hs

12 do insert (v, A, v′) into Hs and W

Figure 6.4: Baseline algorithm for CFL-reachability

6.2.2 CFL-reachability

As RSM-reachability and CFL-reachability are equivalent problems, the algorithm

Reachability can be translated into a set-based, subcubic algorithm for CFL-

reachability. However, Rytter’s technique can also be directly applied to the standard

algorithm for CFL-reachability, described for example by Melski and Reps [MR00].

Now we show how. Let us have an instance (S,G) of CFL-reachability, where S is

an edge-labeled graph with n nodes and G is a constant-sized context-free grammar.

Without loss of generality, it is assumed that the right-hand side of each rule in G has

at most two symbols. The algorithm in Melski and Reps’ paper—called Baseline-

CFL-Reachability and shown in Figure 6.4—computes tuples (u,A, v), where u, v

are nodes of S and A is a terminal or non-terminal, such that there is a path from u

to v labeled by a word w that G can derive from A. A worklist W is used to process

the tuples one by one; derived tuples are stored in a table Hs. It is easily shown,

by arguments similar to those for RSM-reachability, that the algorithm is cubic and

requires quadratic space. On termination, a tuple (u, I, v), where u, v are nodes and

I the initial symbol of G, is in Hs iff v is CFL-reachable from u.

As in case of RSM-reachability, now we store the rows and columns of Hs as fast sets
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of O(n) size. For a node u and a nonterminal A, the row Row(u,A) (similarly the

column Col(u,A)), stores the set of nodes u′ such that (u,A, u′) (similarly (u′, A, u))

is in Hs. Now, the bottlenecks of the algorithm are the two nested loops (lines

7–9 and 10–12). We speed them up by implementing them using set difference

operations— for example, the loop from line 7–9 is replaced by:

for each production A→ CB

do for u′ ∈ (Col(u, C) \ Col(v, A))

do insert (u′, A, v) into Hs and W.

Assuming a fast set implementation, the cost for this loop is in a given iteration of

the main loop is O(n/ logn+ σ), where σ is the number of new tuples inserted into

Hs. Since the number of insertions into Hs is O(n2), its total cost during a complete

run of the algorithm is O(n3/ logn). The same argument holds for the other loop.

Let us call the modified algorithm CFL-Reachability. By the discussion above:

Theorem 21. The algorithm CFL-Reachability solves the all-pairs CFL-reachability

problem for a fixed-sized grammar and a graph with n nodes in O(n3/ logn) time and

O(n2) space.

Theorem 21 improves the previous cubic bound for all-pairs— or, for that matter,

single-source, single-sink— CFL-reachability. By our discussion in Section 6.1, this

implies subcubic, set-based algorithms for Datalog chain query evaluation as well as

the many program analysis applications of CFL-reachability.

6.3 All-pairs reachability in bounded-stack RSMs

Is a better algorithm for RSM-reachability possible if the input RSM is bounded-

stack? In this section, we show that this is indeed the case. As we mentioned earlier,

the only previously known way to solve reachability in bounded-stack machines is to

use summarization, which gives a cubic algorithm; speeding it up using the technique
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we presented earlier leads to a factor-logn speedup. Now we show that the bounded-

stack property gives us a second logarithmic speedup. Our algorithm combines

graph search with a speedup technique used by Rytter [Ryt83, Ryt85] to recognize

languages of loop-free 2-way PDAs1. Unlike the algorithm for general RSMs, it is not

just an application of existing techniques, and we consider it the main new algorithm

of this paper.

We start by reviewing search-based algorithms for reachability in (general) RSMs.

Let M be an RSM as in Section 6.1, and recall the relationH defined in Section 6.2—

henceforth, we view it as a graph and call it the summary graph of M . The edges of

H are classified as follows:

• Edges ((b, en), en), where b is a box and en is an entry state in Y (b), are known

as call edges;

• Edges ((b, en), (b, ex)), where b is a box, and en is an entry and ex an exit in

Y (b), are called summary edges;

• Edges that are also edges of M are called local edges.

Note that a state v is same-context reachable from a state u iff there is a path in

H from u to v made only of local and summary edges. Let the set of states same-

context reachable from u be denoted by Hs(u). While the call and local edges of

H are specified directly by M , we need to determine reachability between entries

and exits in order to identify the summary edges. The search-based formulation of

summarization [RHS95, HRS95] views reachability computation for M (or, in other

words, computation of the transitive closure H∗ of H) as a restricted form of incre-

mental transitive closure. A search algorithm is employed to compute reachability

in H ; when an exit ex is found to be same-context-reachable from en, the summary

1A loop-free 2-PDA is one that has no infinite execution on any word. The recognition problem
for loop-free 2-PDAs reduces to reachability in acyclic RSMs—i.e., RSMs whose configuration
graphs are cycle-free. Obviously, these are less general than bounded-stack RSMs.
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en

ex

(b, en)

(b, ex)

Figure 6.5: All-pairs reachability in bounded-stack RSMs

edge ((b, en), (b, ex)) is added to the graph. The algorithm must now explore these

added edges along with the edges in the original graph.

Let us now assume that M is bounded-stack. Consider any call (b, en) in the sum-

mary graph H . Because M is bounded-stack, this state is unreachable from the

state en. Hence, (b, en) and en are not in the same strongly connected component

(SCC) in H , and a call edge is always between two SCCs. The situation is sketched

in Figure 6.5. The nodes are states of M (en is an entry and ex is an exit in the

same component, while b is a box), and the large circles denote SCCs. We do not

draw edges within the same SCC—the dotted line from en to ex indicates that ex

is same-context reachable from en.

We will argue that all summary edges in H may be discovered using a variant of

depth-first graph search (DFS). To start with, let us assume that the summary graph

H is acyclic, and consider a call (b, en) in it. First we handle the case when no path in

H from en contains a call. As a summary-edge always starts from a call, this means

that no such path contains a summary-edge either, and the part of H reachable from

en is not modified due to summary edge discovery. Thus, the set Hs(en) of states v

same-context reachable (i.e., reachable via summary and local edges) from en can be
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computed by exploring H depth-first from en. Further, because the graph is acyclic,

the same search can label each such v with the set Hs(v). This is done as follows:

• if v has no children, then Hs(v) = {v};

• if v has children u1, u2, . . . , um, then

Hs(v) =
⋃

i

Hs(ui).

Once we have computed the set Hs(en) of such v-s that are same-context reachable

from en, we can, consulting the transition relation of M , determine all summary

edges ((b, en), (b, ex)). Note that these are the only summary edges from (b, en) that

can ever be added to H . However, these summary edges may now be explored via

the same depth-first traversal—we may view them simply as edges explored after

the call-edge to en due to the DFS order. The same search can compute the set

Hs(u) for each new state u found to be reachable from the return (b, ex). Note that

descendants of (b, ex) may also be descendants of en—for example, a descendant

x of en may be reachable from a different entry point en′ of Y (b), which may be

“called” by a call reachable from (b, ex). In other words, the search from (b, ex)

may encounter some cross-edges, thus needing to use some of the Hs-sets computed

during the search from en. Once the Hs-sets for en and all summary-children (b, ex)

are computed, we can compute the set Hs((b, en)). Since we are only interested in

reachability via summary and local edges and a call has no local out-edges, this set

is the union of the Hs-sets for the summary children.

Now suppose there are at most p ≥ 1 call states in a path in H from en. Let the

state (b′, en′) be the first call reached from en in a depth-first exploration— because

of the bounded-stack property, no descendant of en′ can reach en in H . Now, there

can be at most (p − 1) calls in a path from en′, so that can inductively determine

the summary edges from (b′, en′), explore these edges, and label every state v in the

resultant tree by the set Hs(v). It is easy to see that this DFS can be “weaved” into

the DFS from en.
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The above algorithm, however, will not work when H has cycles. This is because

in a graph with cycles, a simple DFS cannot construct the sets Hs(v) for all states

v. This difficulty, however, may be resolved if we use, instead of a plain DFS, a

transitive closure algorithm based on Tarjan’s algorithm to compute the SCCs of a

graph [AHU74]. Many such algorithms are known in the literature [Pur70, EKS77,

Sch83]. Let Reach(v) denote the set of nodes reachable from a node v in a graph.

The first observation that these algorithms use is that for any two nodes v1 and v2 in

the same SCC of a graph, we have Reach(v1) = Reach(v2). Thus, it is sufficient to

compute the set Reach for a single representative node per SCC. The second main

idea is based on a property of Tarjan’s algorithm. To understand it, we will have to

define the condensation graph Ĝ of a graph G:

• the nodes of Ĝ are the SCCs of G;

• the edge set is the least set constructed by: “if, for nodes S1 and S2 of Ĝ, G

has nodes u ∈ S1, v ∈ S2 such that there is an edge from u to v, then Ĝ has

an edge from S1 to S2.”

Now, Tarjan’s algorithm, when running on a graph G, “piggybacks” a depth-first

search of the graph and outputs the nodes of Ĝ in a bottom-up topological order.

This is possible because the condensation graph of any graph is acyclic. For example,

running on the graph in Figure 6.5 (let us assume that all the edges are known), the

algorithm will first output the SCC containing en, then the one containing (b, ex),

then the one containing (b, en), etc. We can, in fact, view the algorithm as performing

a DFS on the condensation graph of G. In the same way as when our input graph

was acyclic, we can now compute, for every node S in the condensation graph, the

set of nodes Reach(S) reachable from that SCC, defined as:

Reach(S) =
⋃

u∈S

Reach(u).

For each S, this set is known by the time the algorithm returns from the first node

in S to have been visited in the depth-first search.
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Assuming that we have a transitive closure algorithm of the above form, let us focus

on bounded-stack RSMs again. Let us also suppose that we are only interested in

same-context reachability. We apply the transitive closure algorithm to the graph H

after modifying it in the two following ways. First, we ensure that the sets Reach(u),

for a state u, only contain descendants of u reachable via local and summary edges—

this requires a trivial modification of the algorithm. To understand the second

modification, consider once again a call (b, en) in a summary graph H ; note that

the call edge ((b, en), en) is an edge in the condensation graph Ĥ . Thus, the set

Reach(Sen), where Sen is the SCC of en, is known by the time the transitive closure

algorithm is done exploring this edge. Now we can construct all summary edges from

(b, en) and add them as outgoing edges from (b, en), viewing them, as in the acyclic

case, as normal edges appearing after the call-edge in the order of exploration. The

set Reach(S(b,en)) can now be computed.

By the time the above algorithm terminates, Reach(Su) = Hs(u) for each state

u— i.e., we have determined all-pairs same-context reachability in the RSM. To

determine all-pairs reachability, we simply insert the call edges into the summary

graph, and compute its transitive closure. In fact, we can do better: with some extra

book-keeping, it is possible to compute reachability in the same depth-first search

used to compute same-context reachability (i.e., summary edges).

Next we present an algorithm for graph transitive closure that, in addition to being

based on Tarjan’s algorithm, also uses fast sets to achieve a subcubic complexity.

Using the technique outlined above, we modify it into an algorithm for bounded-stack

RSM-reachability of O(n3/ log2 n) complexity.

6.3.1 Speeding up search-based transitive closure

The algorithm that we now present combines a Tarjan’s-algorithm-based transitive

closure algorithm (studied, for example, by Schmitz [Sch83] or Purdom [Pur70])

with a fast-set-based speedup technique used by Rytter [Ryt83, Ryt85] to solve the
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recognition problem for a subclass of 2-PDAs. While subcubic algorithms for graph

transitive closure have been known for a long time, this is, so far as we know, the first

algorithm that is based on graph traversal and yet runs in O(n3/ log2 n) time. Both

these features are necessary for an O(n3/ log2 n)-time algorithm on bounded-stack

RSMs.

As in our previous algorithms, we start with a baseline cubic-time algorithm and

speed it up using fast sets. This algorithm, called Baseline-Closure and shown

in Figure 6.6, is simply a DFS-based transitive closure algorithm. Let us first see

how it detects strongly connected components in a graph G. The main idea is that

in any DFS tree of G, the nodes belonging to a particular SCC form a subtree. The

node u0 in an SCC S that is discovered first in a run of the algorithm is marked as

the representative of S; for each node v in S, rep(v) denotes the representative of S

(in this case u0). A global stack L supporting the usual push and pop operations is

maintained; height(L) gives the height of the stack at any given time. As soon as we

discover a node, we push it on this stack—note that for any SCC, the representative

is the first node to be on this stack. For every node u, dfsnum(u) is the height of

the stack when it was discovered, and low(u) equals, once the search from u has

returned, the minimum dfsnum-value of a node that a descendant of u in the DFS

tree has an edge to. Now observe that if low(u) = dfsnum(u) at the point when the

search is about to return from a node u, then u is the representative of some SCC.

We maintain the invariant that all the elements above and inclusive of u in the stack

belong to the SCC of u. Before returning from u, we pop all these nodes and output

them as an SCC. Nodes in SCCs already generated are stored in a set Done.

Now we shall see how to generate the set of nodes reachable from a node of G.

Let S be an SCC of G; we want to compute the set Reach(S) of nodes reachable

from S. Consider the condensation graph Ĝ of G, where S is a node. If S has

no children in the graph, then Reach(S) = S; if it has children S1, S2, . . . , Sk, then

Reach(S) =
⋃
iReach(Si). Once this set is computed, we store it in a table T
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Visit(u)
1 add u to Visited
2 push(u, L)
3 low(u)← dfsnum(u)← height(L)
4 T (u)← ∅; rep(u)←⊥
5 Out(u)← ∅; Next(u) = { children of u }
6 for v ∈ Next(u)
7 do if v /∈ Visited then Visit (v)
8 if v ∈ Done
9 then add v to Out(u)

10 else low(u)← min(low(u), low(v))
11 if low(u) = dfsnum(u)
12 then repeat

13 v ← pop(L)
14 add v to Done
15 add v to T (u)
16 Out(u)← Out(u) ∪Out(v)
17 rep(v)← u
18 until v = u
19 T (u)← T (u) ∪

⋃
v∈Out(u) T (rep(v))

Baseline-Closure()
1 Visited ← ∅; Done ← ∅
2 for each node u
3 do if u /∈ Visited then Visit (u)

Figure 6.6: Transitive closure of a directed graph

indexed by the representatives of the SCCs of G.

Of course, we compute this set as well as generate the SCCs in one depth-first pass

of G. Recall that the SCCs of G are generated in a bottom-up topological order

(the outputting of SCCs is done by lines 12–19 of Visit, the recursive depth-first

traversal routine of our algorithm). By the time S is generated, the SCCs reachable

from it in Ĝ have all been generated, and the entries of T corresponding to the

representatives of these reachable SCCs have been precisely computed. Then all we

need to fill out T (u0), where u0 is the representative of S, is to track the edges out

of S and take the union of S and the entries of T corresponding to the children of S
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in Ĝ. Note that these outgoing edges could either be edges in the DFS tree or DFS

“cross edges.” They are tracked using a table Out indexed by nodes of G—for any

u in S, Out(u) contains the nodes outside of S to which an edge from u may lead.

At the end of the repeat-loop from line 13–18, Out(u0) contains all nodes outside S

with an edge from inside S. Now line 19 computes the set of nodes reachable from

u0.

As for the time complexity of this algorithm, note that for each u, Visit(u) is called

at most once. Every line other than 16 and 19 costs time O(m + n) during a run

of Baseline-Closure, and since line 16 tries to add a node to Out(u) once for

every edge out of the SCC of u in Ĝ, its total cost is O(m). Line 19 does a union of

two sets of nodes for each edge in Ĝ, so that its total cost is O(mn). As for space

complexity, the sets Reach(u) can be stored using O(n2) space, a cost that subsumes

the space requirements of the other data structures. Then we have:

Lemma 10. Baseline-Closure terminates on any graph G with n nodes and m

edges in time O(mn). On termination, for every node u of G, T (rep(u)) is the set

of nodes reachable from u. The algorithm requires O(n2) space.

We will now show a way to speed up the procedure Baseline-Closure using a

slight modification of Rytter’s (1983, 1985) speedup for loop-free 2-PDAs. Let V be

the set of all nodes of G (we have |V | = n), p = ⌈log n/2⌉, and r = ⌈n/p⌉. We use

fast set representations of sets of nodes X ⊆ V—each such set is represented as a

sequence r words, each of length p. We will need to convert a list representation of

X into a fast set representation as above. It is easy to see that this can be done

using a sort in O(n logn) time.

Now recall that the bottleneck of the baseline algorithm is line 19 of the routine

Visit, which costs O(mn) over an entire run of the algorithm. Now we show how

to speed up this line. First, let us implement Baseline-Closure such that entries

of the table T are stored as fast sets, and the sets Out(u) are represented as lists.

135



/* speeds up the operation
T (u)←

⋃
v∈Out(u) T (rep(v)) */

let x1, . . . , xr be the words in the fast set for Out(u) in
Speedup()
1 compute 〈x1, . . . , xr〉
2 for 1 ≤ i ≤ r
3 do if xi = 0 continue

4 if Cache(i, xi) =⊥
5 then Cache(i, xi)← ∪v∈Set(i,xi)T (rep(v))
6 T (u)← T (u) ∪ Cache(i, xi)

Figure 6.7: The speedup routine

Now consider the procedure Speedup in Fig. 6.7, which is a way to speed up com-

putation of the recurrence T (u)←
⋃
v∈Out(u) T (rep(v)). The idea is cache the value

(∪v∈XT (rep(v))) exhaustively for all non-empty sets X that are sufficiently small,

and use this cache to compute the value for larger sets Out(u). This is done using

a table Cache (of global scope) such that for each 1 ≤ i ≤ r and for each word

w 6= 0 of length p, we have a table entry Cache(i, w) containing either a subset of

V , represented as a fast set, or a special “null” value ⊥ (note that the pair (i, w)

uniquely identifies a subset of V of size at most p—this set is denoted by Set(i, w)).

Initially, every entry of Cache equals ⊥.

Let us now use the Assign-Union operation for fast sets (see Section 6.1) to implement

line 6 of Speedup, and replace line 19 of Visit by a call to Speedup. To see that this

leads to a speedup, note that Cache has at most r.2p = O(n3/2/ logn) entries. Now,

line 5 in Speedup gets executed at most once for each cell in Cache during a complete

run of Closure—i.e., O(r.2p) = O(n3/2/ logn) times. Each time it is executed, it

costs O(n) time (as Set(i, xi) is of size O(logn) and as union of two entries of T costs

O(n/ logn) time), so that its total cost is O(n5/2/ logn). Thus, the bottleneck is line

6. Let us compute the total number of times this line is executed during a run of

closure. Since the total size of all the Out(u)’s during a run of Baseline-Closure

is bounded by m, the emptiness test in line 3 ensures that line 6 is executed O(m)
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times in total during a run of the closure algorithm (this is the tighter bound when

the graph is sparse). The other obvious bound on the number of executions of this

line is O(r.n) (this captures the dense case). Each time it is executed, it costs time

O(r). Thus, the total complexity of the modified algorithm (let us call this algorithm

Closure) is O(min{m.r, r.n.r})—i.e., O(min{mn/ log n, n3/ log2 n}).

As for the space requirement of the algorithm, each fast set stored in a cell of the

table Cache costs space O(n). As Cache has O(n3/2/ logn) cells, the total cost of

maintaining this table is O(n5/2/ logn). The space costs of the other data structures,

including the table needed for fast sets operations if unit-cost word operations are

not available, is subsumed by this cost. Hence we have:

Theorem 22. Closure computes the transitive closure of a directed graph with n

nodes and m edges in

O(min{mn/ logn, n3/ log2 n})

time and O(n5/2/ logn) space.

6.3.2 Bounded-stack RSMs

Using the ideas discussed earlier in this section, the algorithm Closure can now be

massaged into a reachability algorithm for bounded-stack RSMs. Figure 6.8 shows

pseudocode for a baseline algorithm for same-context reachability in bounded-stack

RSMs obtained by modifying Baseline-Closure. The sets Hs(u) in the new

algorithm correspond to the sets Reach(u) in the transitive closure algorithm. The

main difference lies in lines 14–17, which insert the summary edges into the graph.

Also, as it is same-context reachability that we are computing, a child is added to the

set Out(u) only if it is reached along a local or summary edge (the “else” condition

in line 17). A correctness argument may be given following the discussion earlier in

this section.

Adding an extra transitive closure step at the end of this algorithm gives us an

algorithm for reachability. With some extra book-keeping, it is possible to evade
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this last step and compute reachability and same-context reachability in the same

search—we omit the details. The speedups discussed earlier in this section may now

be applied. Let us call the resultant algorithm Stack-Bounded-Reachability.

It is easy to see that its complexity is the same as that of Closure. The only extra

overhead is that of inserting the summary edges, and it is subsumed by the costs of

the rest of the algorithm. Thus, the algorithm Stack-Bounded-Reachability

has time complexity O(min{mn/ log n, n3/ log2 n}), where m and n are the number

of edges and nodes in the summary graph of the RSM. The space complexity is as

for Closure. In general, m is O(n2), so that:

Theorem 23. The algorithm Stack-Bounded-Reachability computes all-pairs

reachability in a bounded-stack RSM of size n in O(n3/ log2 n) time and O(n5/2/ logn)

space.

We note that an algorithm as above cannot be obtained from any of the existing sub-

cubic algorithms for graph transitive closure. All previously known O(n3/ log2 n)-

time algorithms for graph transitive closure use reductions to boolean matrix multi-

plication and do not permit online edge addition even if, as is the case for bounded-

stack RSMs, these edges arise in a special way. While Chan [Cha05] has observed

that DFS-based transitive closure may be computed in time O(mn/ logn) using fast

sets, this complexity does not suffice for our purposes.

6.4 Reachability in hierarchical state machines

As we saw, the reason why reachability in bounded-stack RSMs is easier than gen-

eral RSM-reachability is that summary edges in the former case have a “depth-first”

structure. For hierarchical state machines, the structure of summary edges is re-

stricted enough to permit an algorithm with the same complexity as boolean matrix

multiplication.
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Let us have as input a hierarchical state machine M with components M1, . . . ,Mk,

such that a call from the component Mi can only lead to a component Mj for j > i.

The summary graph H of M may be partitioned into k subgraphs H1, . . . , Hk such

that call-edges only run from partitions Hi to partitions Hj, where j > i. As the

component Mk does not call any other component, there are no summary edges in

Hk.

To compute reachability in M , first compute the transitive closure of Hk. Next, for

all entries en and exits ex of Mk and all boxes b with Y (b) = k, add summary edges

((b, en), (b, ex)). Now remove the call edges from Hk−1 and compute its transitive

closure and, once this is done, use the newly discovered reachability relations to

create new summary edges in subgraphs Hj , where j < k − 1. Note that we do not

need to process the graph Hk again. We proceed inductively, processing every Hi

only once. Once the transitive closure of H1 is computed, we add all the call edges

from the different H1’s and compute the transitive closure of the entire graph. By

Lemma 8, there is an edge from v to v′ in the final closure iff v′ is reachable from v.

As for complexity, let n be the total number of states in A, and let ni be the

number of states in the subgraph Hi. Let BM (n) = O(n2.376) be the time taken

to multiply two n× n boolean matrices. Since transitive closure of a finite relation

may be reduced to boolean matrix multiplication, the total cost due to transitive

closure computation in the successive phases, as well as the final transitive closure,

is ΣiBM (ni) + BM (n) = O(BM (n)). The total cost involved in identifying and

inserting the summary and call edges is O(n2). Assuming BM (n) = ω(n2), we have:

Theorem 24. All-pairs reachability in hierarchical state machines can be solved in

time O(BM (n)), where BM (n) = O(n2.376) is the time taken to multiply two n × n

boolean matrices.

Of course, the above procedure is far from compelling—the cubic, summarization-

based reachability algorithm published in the original reference on the analysis of
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these machines [AY98] is going to outperform it in any reasonable application. How-

ever, taken together with our other results, it highlights a gradation in the structure

of the summary graph and the complexity of RSM-reachability as recursion in the

input RSM is constrained.
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Visit(u)
1 add u to Visited
2 push(u, L)
3 low(u)← dfsnum(u)← height(L)
4 Hs(u)← ∅; rep(u)←⊥
5 Out(u)← ∅
6 if u is an internal state
7 then Next(u)← {v : u→ v}
8 else if u is a call (b, en)
9 then Next(u)← {en}

10 else Next(u)← ∅
11 for v ∈ Next(u)
12 do if v /∈ Visited then Visit (v)
13 if v ∈ Done
14 then if u = (b, en) is a call and v = en
15 then for exit states ex ∈ Hs(en)
16 do add (b, ex) to Next(u)
17 else add v to Out(u)
18 else low(u)← min(low(u), low(v))
19 if low(u) = dfsnum(u)
20 then repeat

21 v ← pop(L)
22 add v to Done
23 add v to Hs(u)
24 Out(u)← Out(u) ∪Out(v)
25 rep(v)← u
26 until v = u
27 Hs(u)← Hs(u) ∪

⋃
v∈Out(u)H

s(rep(v))

Baseline-Same-Context-Stack-Bounded-Reachability()
1 Visited ← ∅; Done ← ∅
2 for each state u
3 do if u /∈ Visited then Visit (u)

Figure 6.8: Same-context reachability in bounded-stack RSMs

141



Chapter 7

Conclusion

In this thesis, we have covered two aspects of software model checking: requirement

specification and algorithmic analysis. It is accepted wisdom in software model

checking and program analysis that any reasonably precise analysis of procedural

programs needs to take into account their context-sensitive control flow; insofar,

context-sensitive abstractions have received a lot of attention in recent times. In

this thesis, we have argued that:

1. Temporal specification logics like the µ-calculus, while mainstays of traditional

model checking, cannot specify context-sensitive program requirements such

as: “A file is read before control leaves the current procedural context.” The

difficulty is that the mu-calculus is based on regular tree languages, which are

not expressive enough to capture nesting of contexts. We have shown that a

way to overcome this issue is to define temporal specifications based on regular

languages of nested trees, which are a new class of graphs that we introduce.

2. While context-sensitive reachability analysis was for long believed to be intrin-

sically cubic, an asymptotically subcubic algorithm is possible.
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In the former direction, we have re-phrased the branching time model checking ques-

tion for context-sensitive abstractions. Such an abstraction is now viewed as gen-

erating a nested tree on which specifications are interpreted. The model checking

question becomes: does this nested tree satisfy an NT-µ property? As for concrete

specification notations, we have offered a fixpoint logic —called NT-µ— for nested

trees. While this logic can express context-sensitive program requirements such as

pre/post-conditions, combinations of local and global temporal properties, and stack-

sensitive security requirements, it admits tractable, symbolic model checking. The

logic unifies and generalizes many existing logics and fixpoint computations, iden-

tifying a new class of decidable properties of programs, and also allows modular,

composable specifications. We have also introduced automata on nested trees defin-

ing regular languages of nested trees. We have shown that these languages have many

of the attractive properties of tree automata— for example, they are closed under

logical operations and allow model checking— while being far more expressive— for

example, they can capture context-sensitive requirements and have an undecidable

language emptiness problem. In a result that “lifts” the equivalence between the µ-

calculus and alternating parity tree automata and suggests that NT-µ is a canonical

calculus for these structures, we have shown NT-µ and alternating parity automata

on nested trees are interconvertible. We have also explored monadic second-order

logic in this setting, even if we have not found it to be too robust.

We believe that this theory of context-sensitive specifications will be a basis for

future software model checking tools. As a first step in this more applied direction,

we have designed a software specification language—called Pal— that can express

context-sensitive safety requirements, but can yet be easily integrated into existing

software analysis frameworks. To demonstrate this, we have implemented Pal on

top of the software model checker Blast [HJM+02].
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In the second direction, we have given a method to perform reachability analysis of

context-sensitive program abstractions or pushdown systems using efficient set op-

erations. The algorithms reformulate a scheme called summarization that identifies

“summary edges” capturing computations within the same context. However, while

previous algorithms following this scheme were cubic, our algorithms achieve sub-

cubic complexity, improving a long-known upper bound. We have also identified a

gradation in the difficulty of reachability computation as recursion in the abstraction

is restricted. We have observed that in reachability analysis of general recursive state

machines, summary edges can arise in arbitrary orders, and all-pairs reachability can

be determined in time O(n3/ logn). For bounded-stack RSMs, summary edges have

a “depth-first” structure, and the problem can be solved in O(n3/ log2 n) time using

a modification of a DFS-based transitive closure algorithm. For hierarchical state

machines, where there is no recursion, the states can be partitioned such that one

needs to compute the closure of each partition only once.

7.0.1 Future work

Regarding future directions and open questions, there are many. So far as context-

sensitive specifications are concerned, we note that our decision procedure for model

checking NT-µ is very different from known methods for branching-time model-

checking of context-sensitive abstractions [Wal01, BS99]. The latter seem too com-

plex to work in practice; our algorithm, being symbolic in nature, appears more

implementable. Also, note that our algorithm directly implements the operational

semantics of NT-µ formulas over bounded summaries. In fact, in this regard NT-µ

resembles the modal µ-calculus in the setting of finite-state systems whose formu-

las encode fixpoint computations over sets; to model-check µ-calculus formulas, we

merely need to perform these computations. Unsurprisingly, our procedure is very

similar to classical symbolic model-checking for the µ-calculus. There is one key

difference, however: in the latter setting, efficient data structures such as binary
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decision diagrams (BDDs) are used to represent sets of system states. On the other

hand, we do not yet know of an efficient data structure to store sets of bounded

summaries. Note that the problem is more complex than that of representing sets of

states; in our case, we need to store sets of tuples of the form 〈v, U1, . . . , Uk〉, where

v is a state and the Vi-s are sets of states. We leave this as an open question.

There are a number of other questions of a more theoretical flavor. Note that we

have left open the problem of establishing that MSO-logic on nested trees cannot

capture the third-order fixpoints of NT-µ. Also note that our MSO-logic is undecid-

able and not very robust. Does it, however, have more attractive fragments? There

are questions about NT-µ: what would, for instance, be the right axiomatization of

this logic? Also, note that NT-µ expresses properties using forward modalities. As

argued in [Sch98], several dataflow analysis problems also require backward modali-

ties; extending NT-µ to backward modalities will result in expressing several other

dataflow problems. How would this affect expressiveness and decidability? In gen-

eral, we believe that nested trees are conceptually fundamental and merit further

study. It would be interesting to examine languages of nested trees in other ways:

do they, for example, have algebraic characterizations?

As for applications, there is the challenge of convincing the designers of popular

program analysis and software model checking environments to use a language like

Pal for expressing context-sensitive program requirements. We have been exploring

possibilities of integrating the Pal specification language into an official release of

the Blast model checker. Also, we believe that applications of nested trees beyond

program verification are possible. Nested word structures are already known to

have connections with XML query languages, since XML documents have a natural

matching tag structure that can be modeled by jump-edges. Do nested trees have

similar applications?

In the second direction, given that RSM-reachability is a central algorithmic prob-

lem in program analysis, the natural next step is to evaluate the practical benefits
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of these contributions. Such an effort should remember that real implementations of

RSM-reachability-based program analyses apply heuristics such as cycle elimination

and node clustering, and are often fine-tuned to the specific problem at hand. Thus,

instead of implementing our algorithms literally, the goal should be to explore com-

binations of techniques known to work in practice with the high-level ideas used in

this paper.

As for algorithmic directions, a natural question is whether this is the best we can do.

A hard open question is whether all-pairs CFL-reachability can be reduced to boolean

matrix multiplication. This would be especially satisfactory as the former can be

trivially seen to be as hard as the latter. Yannakakis [Yan90] has noted that Valiant’s

reduction of context-free recognition to boolean matrix multiplication [Val75] can

be applied directly to reduce CFL-reachability in acyclic graphs to boolean matrix

multiplication. However, there seem to be basic difficulties in extending this method

to general graphs.

Another set of questions involves stack-bounded RSMs and our transitive closure.

Given a program without infinite recursion, can we automatically generate a stack-

bounded abstraction that can be analyzed faster than a general RSM abstraction?

Can our transitive closure algorithm have applications in other areas—for example,

databases? Recall that, being a search-based algorithm, it does not require the input

graph to be explicitly represented, and is suitable for computing partial closure—

i.e., computing the sets of nodes reachable from some, rather than all, nodes. Al-

gorithms with such features have been studied with theoretical as well as practical

motivations— a new engineering question would be to see how well the techniques

of this paper combine with them.
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