

ABSTRACT

Corpus-Driven Systems for Program Synthesis and Refactoring

by

Yanxin Lu

Software development is a di�cult task. Programmers need to work with many

small components in large software projects which typically contain more than thou-

sands of lines of code. To make software development manageable, developers and

researchers have deployed various programming systems and tools. These include the

ones that can facilitate refactoring existing source code and even generate programs

automatically. One problem with traditional program synthesis tools is that they

cannot generate practical results when given large specifications due to its high com-

plexity of the underlying problem. Furthermore, existing refactoring systems can only

refactor individual components separately and fail to instantiate complete programs.

To overcome these problems, we can learn useful patterns and idioms from large code

corpora using machine learning techniques. Researchers have used “big code” and

developed novel and practical programming tools such as Bayou [1] and JSNice [2].

In this thesis, we present two data-driven programming systems for software reuse

and refactoring.

We first introduce program splicing, a programming methodology that aims to au-

tomate the workflow of copying, pasting, and modifying code available online. Here,

the programmer starts by writing a “draft” that mixes unfinished code, natural lan-

guage comments, and correctness requirements. A program synthesizer that interacts

with a large, searchable database of program snippets is used to automatically com-

plete the draft into a program that meets the requirements. Our evaluation uses the

system in a suite of everyday programming tasks and includes a comparison with a

state-of-the-art competing approach as well as a user study. The results point to the

broad scope and scalability of program splicing and indicate that the approach can

significantly boost programmer productivity.

Next, we propose an algorithm that automates the process of API refactoring,

where the goal is to rewrite an API call sequence into another sequence that only uses

the API calls defined in the target library without modifying the functionality. We

solve the problem of API refactoring by combining the techniques of API translation

and API sequence synthesis. Specifically, we first translate original API calls into a

set of new API calls defined in the target library. Then we use an API synthesizer to

generate a complete program that uses the translated API calls. We evaluated our

algorithm on a diverse set of benchmark problems, and our algorithm can refactor

API sequences with high accuracy.

Although the evaluations of the techniques presented in this thesis are quite op-

timistic, we believe that there is room for improvement by using more sophisticated

language model and advanced search algorithm for program splicing. To improve

our API refactoring method, one can train statistical models by using existing API

call sequence pairs. Besides these potential improvements, many problems related

to “big code” still remain, and the potential of using a data-driven method to help

programming is enormous.

Contents

Abstract ii

List of Illustrations vi

List of Tables viii

1 Introduction 1

1.1 Program reuse via splicing . 6

1.2 API refactoring using natural language and API synthesizer 8

1.3 Summary . 11

2 Program Splicing 12

2.1 Introduction . 12

2.2 Motivating Examples . 14

2.2.1 Reading a Matrix from a CSV File 14

2.2.2 Face Detection using OpenCV 19

2.3 Problem formulation . 21

2.4 Method . 24

2.4.1 Searching for programs . 24

2.4.2 Program completion . 26

2.5 Evaluation . 31

2.5.1 Benchmarks . 32

2.5.2 Experiments . 35

2.6 Summary . 45

3 API Refactoring 46

v

3.1 Introduction . 46

3.2 Motivating Examples . 49

3.3 Problem Definition . 54

3.4 Method . 55

3.4.1 API Translation . 56

3.4.2 API Call Sequence Synthesis 58

3.5 Evaluation . 62

3.5.1 Benchmarks . 62

3.5.2 Experiments . 63

3.5.3 Limitations . 69

3.6 Summary . 69

4 Related Work 71

4.1 Program Synthesis and Reuse . 71

4.2 Data-driven Program Synthesis . 74

4.3 Code Search . 77

4.4 API Refactoring and Translation . 81

5 Conclusion and Future Work 85

Bibliography 89

Illustrations

2.1 Reading from CSV files . 15

2.2 Reading CSV: draft for matrix multiplication 17

2.3 Reading CSV: Complete Program . 18

2.4 API call sequence constraint for face detection 20

2.5 Face Detection: Draft Program . 20

2.6 Face Detection: Complete Program 21

2.7 Matching for expression codelet . 29

2.8 Setting up an HTTP server that serves the content of a text file . . . 34

2.9 Sieve of Eratosthenes Skeleton with Tests 38

2.10 Time spent on each programming problem, with and without splicing. 43

2.11 p-value at which the null hypothesis is rejected, and the average

number of program splicing invocations for each programming problem. 44

3.1 HTTP server refactoring example . 50

3.2 List files in an FTP server . 52

3.3 Read from a PDF document . 53

3.4 API translation example . 58

3.5 API translation example . 59

3.6 Argument matching . 61

3.7 FTP upload benchmark problem . 62

3.8 PDF read benchmark problem . 63

3.9 Evaluation results of our overall algorithm and each individual

component . 64

vii

3.10 Reading from a Word document . 65

Tables

2.1 Benchmarks. “C” in the “Test” column indicates an API call

sequence constraint is used to check the correctness 36

3.1 Similar words generated by FastText 67

1

Chapter 1

Introduction

Computer programming is di�cult, especially when programmers need to develop

components for some large software projects which typically contain more than thou-

sands of lines of code. Hundreds or even thousands of programmers are required to

collaborate and carefully work with these large software projects. In addition, these

software projects tend to be extremely brittle. It is quite easy for developers to cause

system-wide failure.

To make software engineering easier and manageable, some software engineers and

researchers have proposed and developed programming systems and tools that facil-

itate software development. The most popular kind of tools is software engineering

tools that help practice software engineering methodologies such as unit testing [3],

project management and bug tracking [4] and source code management [5]. These

software engineering tools are quite flexible and easy to use. However, if developers

do not follow the underlying software engineering practices strictly, these software en-

gineering tools would not be helpful as expected. Besides some software engineering

tools, developers can also use program analysis tools [6] to discover potential bugs

rigorously before deployment. These analysis tools can also monitor software execu-

tions. It allows developers to optimize software projects for better performance and

sometimes to eliminate performance issues.

One type of tools that needs emphasis is synthesis tools. The goal of program

synthesis is to automatically generate programs such that the generated program sat-

2

isfies a specification. If the given specification is comprehensive, developers can then

guarantee the correctness of the generated program. One well-known synthesis tool

is SKETCH [7]. SKETCH is able to generate correct programs when given compre-

hensive test harness. The idea of a computer being able to write programs sounds

attractive, but the industry has not yet adopted these tools. One main problem is

that these tools can only generate small programs; these small programs tend to serve

limited purposes in the context of large software projects. Although we can feed a

practical specification to some synthesis tools, these practical specifications tend to

be large and it is very likely that the tool will not produce meaningful results within

a reasonable amount of time. Moreover, this scaling problem is not easy to overcome.

The underlying search space grows exponentially as the input size increases. Some

problems are even unsolvable in theory. As a result, it is very likely that synthesis

tools will not terminate in time to produce any useful results. Even though people

have been trying to alleviate this problem by introducing additional hints [8] or by

restricting the problem domain [9, 10, 11], those large search spaces still remain.

Another relevant type of tools is refactoring tools. Refactoring tools aim to re-

construct an existing software component without changing the functionality. Soft-

ware developers need to exercise refactoring frequently to ensure that the existing

software projects will not deteriorate by keeping them clean and up-to-date. Refac-

toring becomes even more crucial especially with the rapid evolving of the underlying

software systems [12]. Researchers have deployed some tools that facilitate refactor-

ing [13, 14, 15, 16, 17, 18, 19]. These tools can refactor software components individ-

ually, but they do not consider generating end-to-end results by combining refactored

components to instantiate complete programs. One important reason is that refac-

toring large software projects and producing end-to-end and useful results for large

3

codebase is di�cult. Finding a correct way to combine many small components to

generate a complete and correct program requires searching in a large combinatorial

space. As we have discussed previously, this cannot produce useful results within a

reasonable amount of time. Similar to the problem of traditional synthesis tools, the

existing software refactoring cannot scale well to handle large codebases either.

A large codebase can indeed cause many problems for traditional synthesis and

refactoring tools. However, we can also treat these large corpora as data and learn use-

ful idioms and patterns which can help mitigate the original scaling problem and solve

other di�cult problems related to program synthesis and refactoring. Researchers

have already borrowed the technique from “big data” and have used machine learn-

ing algorithms to learn useful patterns from large code corpora. Moreover, “big code”

has become popular in programming language and software engineering communities

recently, since more and more open source repositories such as Google Code, Github,

and SourceForge have made thousands of software projects and their source code

available. With the help of “big code”, many corpus-driven programming tools have

been proposed which helped program property prediction [20, 2], API sequence pre-

diction [21, 1, 22] and program generations [23]. Researchers have shown that using

“big code” can indeed bring more capabilities to synthesis tools [23]. Practical tools

such as Bayou [1] and JSNice [2] that can generate promising results have also started

to appear and programmers have started to use them in practice.

Although many programming systems have been proposed, these programming

tools can be categorized into two major types. The first type is based on combina-

torial search. Combinatorial search plays an important role in model checking and

traditional program synthesis problems [24, 25, 7, 26, 27, 28, 29, 30, 11]. The main

idea is to first define a goal and the steps for reaching the goal. Programmers can

4

then let the computer search for a solution. Typically heuristics are defined to reduce

the search space and to reduce the search time. Search-based methods have three

advantages: (1) they are relatively easy to implement and they can be used to solve

problems where no e�cient solutions exist, (2) sometimes the algorithms can discover

unexpected solutions because computers can easily discover solutions in a large search

space quickly compared to humans, and (3) search-based methods can solve problems

that need precision which is typically required for analyzing computer programs.

The biggest drawback of search-based methods, however, is its high algorithmic

complexity. The search space grows indefinitely as the input size increases. This

is the main reason most traditional model checking methods and program synthesis

algorithms cannot deal with large programs [11]. Another drawback worth mentioning

is that search-based methods tend to be quite fragile; they typically require precise

inputs at every step, or the algorithm would not perform as expected and debugging

tends to be di�cult for search-based methods.

The second type is based on learning. The idea of learning is to let an algo-

rithm improve its performance using data of past experience which helps to solving a

task [31]. In our context, these data correspond to the large code corpora available on

well-known repositories such as Github and SourceForge. After we feed these data to

learning-based methods, they are able to capture idioms that are essential in solving

the problem. Researchers started to apply learning-based methods to programming

systems [20, 2, 21, 1, 22, 23], and they have shown that using “big code” can help

solving the problems that were considered di�cult originally and also can enable syn-

thesis tools to produce meaningful and practical results. This is the key advantage of

“big code”. Examples idioms or patterns include relationships among variable names

and their semantics information and API call sequence idioms. These idioms were

5

hard to derive without analyzing a large amount of source code. Another advantage

of “big code” compared to a search-based method is its robustness; machine learning

algorithms tend to use a large amount of data in which small noises are suppressed,

whereas a small mistake in a search-based method can propagate along the search

process and lead to big errors.

Even though data-driven programming systems are quite impactful, learning-

based methods are not as accessible as search-based methods. In order to make

learning-based algorithms perform well in practice, a large amount of data along with

strong computing power is typically required. This also leads to a large consumption

of time and computation resources which might not be available for everyone.

The programming systems we present in this thesis can also be categorized into

one of those two types mentioned above. Our first programming system which au-

tomates software reuse utilizes a search-based method. Our second programming

system that automates software refactoring uses a learning-based technique. Here,

we assume that software reuse denotes a process of reusing existing source code by

copying and pasting. For software refactoring, we consider it as a process of software

rewrite without modifying the functionality. Researchers have started considering

the problems of software reuse [32, 33, 34] and refactoring [13], but no systems can

fully automate software reuse and refactoring. Some state-of-the-art tools [32, 13]

still require humans to provide additional hints. By using a large code corpus, we

claim that our works can fully automate the process of software reuse and refactoring

without human intervention, and our systems can accomplish the tasks e�ciently and

help human developers boost their productivity during the process of software reuse.

6

1.1 Program reuse via splicing

We first introduce program splicing, a programming system that helps human de-

velopers by automating the process of software reuse. Copying and pasting from

existing code is a coding practice that refuses to die out in spite of much expert dis-

approval [35, 36]. The approach is vilified for good reason: it is easy to write buggy

programs using blind copy-and-paste. At the same time, the widespread nature of

the practice indicates that programmers often have to write code that substantially

overlaps with existing code and that they find it tedious to write this code from

scratch.

In spite of its popularity, copying and pasting code is not always easy. To copy

and paste e↵ectively, the programmer has to identify a piece of code that is relevant to

their work. After pasting this code, they have to modify it to fit the requirements of

their task and the code that they have already written. Many of the bugs introduced

during copying and pasting come from the low-level, manual nature of the task. In

addition, programmers sometimes do not even try to fully understand the code they

bring in from the internet so long as it appears to work under their specific software

environment. This might pose a threat to their future software development progress,

such as applying the external code to the problems which it was not targeted at

initially.

Existing techniques that inspire our splicing algorithm can be divided into two

areas, search-based program synthesis techniques and data-driven methods. The

problem of program synthesis has been studied for decades and researchers have been

applying search-based methods to tackle the problem [28, 7, 8, 29, 30, 37]. It has been

well known that search-based methods can produce precise results. This is crucial

when we aim to generate code snippets that need to interact with pre-written software

7

pieces. Examples might include matching variables that are semantically similar or

equivalent.

However, search-based methods do not scale well to handle large inputs, which

was typically caused by large search spaces and the complexity of the problem. This is

the main reason why one of the competing system, µScalpel, is not as e�cient as our

splicing method. To alleviate the scalability problem, people have proved that using

“big data” can be quite e↵ective [2, 21, 38, 23, 39]. The scalability problem was greatly

alleviated by using the idioms derived “big data” analyses which reduce search spaces

significantly. Even though our splicing method does not use any statistical method,

we still reduce our search space significantly and achieve high e�ciency by relying on

using natural language to search a big code corpus [40].

The primary distinction between our synthesis algorithm and existing approaches

to synthesis is that we combine the ideas from search-based methods and data-driven

methods by using pre-existing code. A key benefit of our approach is that it helps

with the problem of underspecification. Because synthesis involves the discovery of

programs, the requirements for a synthesis problem may be incomplete. This means

that even if a synthesizer finds a solution that meets the requirements, this solution

may, in fact, be nonsensical. This problem is especially common in traditional syn-

thesis tools, which explore a space of candidate programs without significant human

guidance. In contrast, the codelets in our approach are sourced from pre-existing code

that humans wrote when solving related programming tasks. This means that our

search for programs is biased towards programs that are human-readable and likely

to follow common-sense constraints that humans assume.

The use of pre-existing code also has a positive e↵ect on scalability. Without

codelets, the synthesizer would have to instantiate holes in the draft with expressions

8

built entirely from scratch. In contrast, in program splicing, the synthesizer searches

the more limited space of ways in which codelets can be “merged” with a programmer-

written draft.

We present an implementation of this system, called Splicer, for the Java pro-

gramming language. Splicer uses a corpus of over 3.5 million procedures from an

open-source software repository. Our evaluation discussed in chapter 2 uses the sys-

tem in a suite of everyday programming tasks and includes a comparison with a

state-of-the-art competing approach [32] as well as a user study. The results point to

the broad scope and scalability of program splicing and indicate that the approach

can significantly boost programmer productivity.

While software reuse has been a common and important practice in software devel-

opment, programmers still need to maintain their software projects after development.

Otherwise, the software projects will deteriorate and be abandoned eventually, which

results in a significant waste of e↵ort and time. Therefore, we cannot neglect the

importance of software maintenance. In the next section, we will begin to introduce

software refactoring which plays a key role in software maintenance. We will then

discuss the problem of software refactoring followed by our algorithm to automate

software refactoring.

1.2 API refactoring using natural language and API synthe-

sizer

Software refactoring typically involves reconstructing existing source code without

modifying the functionality. It is important and almost a daily routine that a pro-

grammer would perform to keep their software projects clean and organized. It in-

9

cludes constructing better abstractions, deleting duplicate codes, and breaking down

a big functionality into small pieces that are universally applicable. Maintenance is

crucial because a software system can easily deteriorate and become obsolete and

useless if not maintained properly and regularly. This is especially important with

the rapid evolving of the underlying libraries and software systems [12]. After sev-

eral decades of software development, most professional programmers have realized

the importance of refactoring, and it has been used heavily and regularly in the in-

dustry. Similar to software reuse, software refactoring also inherits the drawbacks

from programming. It again requires precision from programmers, and programmers

tend to make mistakes when they deal with large and complex software systems. This

typically involves keeping tracking of tens or even hundreds of variables and functions.

We begin to address the di�culties in software refactoring described above in this

chapter. We focus on refactoring Application Programming Interface (API) call se-

quences. An API consists of all the definitions and usages of the resources available

for external use from a software system; almost all software systems are built using

APIs from other software systems. The process of API refactoring mainly consists of

changing the API call sequence defined in one library into another sequence defined

in another library. The benefit of performing API refactoring is identical to general

software refactoring, but API refactoring has two additional benefits. First, it allows

programmers to adopt obsolete source codes into the existing programming environ-

ment. Second, it can enhance the performance of existing programs by refactoring

the existing program into another that uses advanced libraries and platforms which

typically have better performance.

The benefit of API refactoring does not come without a few challenges. The main

di�culty of API refactoring comes from discovering semantically equivalent API calls

10

between two libraries. It is also di�cult to instantiate the new API calls using the

environment’s variables so that the resulting API call sequence does not alter the

functionality of the original API call sequence. One of the earliest works [13] that

aims to help API refactoring requires human interventions. The user of the system

needs to formally specify the mapping between the API calls in two libraries, and

the system only focuses on refactoring individual API calls instead of refactoring

sequences.

Subsequent research in the area of API refactoring has been limited to the prob-

lem of API mapping or API translation. Two types of methods were developed to

solve the problem of API translation. The first one involves aligning two API call

sequences using a statistical model; the translations can be extracted from the align-

ment results [17]. This alignment method allows people to find not only one-to-one

API translations but also one-to-many API translations; the downside is that it re-

quires a large amount of API call sequences to train the underlying statistical method.

The second method relies on natural language features such as Javadoc to find se-

mantically equivalent API calls [14, 15, 41]. Since Javadoc contains descriptions on

the nature of API calls, correct translations can be derived by pairing two API calls

with similar Javadoc texts. Similarities can easily be derived by using a standard

Word2Vec model [42]. The only drawback of using natural language features as the

main glue is that it is di�cult to discover one-to-many API translations.

To improve on the technique for API refactoring, we propose a learning-based

algorithm that automates the process of API refactoring by combining the natural

language technique [14] and a state-of-the-art API call sequence synthesizer called

Bayou [1]. The input to our algorithm includes a complete program that contains an

API call sequence and the name of the destination library; our algorithm can produce

11

another semantically equivalent program containing a new API call sequence that uses

only the API calls defined in the destination library. We solve the problem in two

steps. First, we translate the input API call sequences into a set of stand-alone

API calls defined in the destination library using natural language features as the

main driver [14, 15]. Next, we feed the stand-alone API calls into an API sequence

synthesizer called Bayou [1] which in turn synthesizes a complete type-safe program

that contains a sequence of API calls defined in the target library.

We have designed a series of benchmark problems to evaluate the accuracy of

our API refactoring algorithm, and here the accuracy is defined as the percentage of

corrected generated API calls. Results show that our algorithm is able to refactor API

call sequences accurately, given that the two involved libraries have similar coding

practices and the input sequence is not rare in the training data.

1.3 Summary

Programming is di�cult, especially when hundreds of programmers are developing

software projects that contain millions of lines of code. Researchers have developed

synthesis tools to help software development. However, those synthesis tools cannot

produce useful results in practice due to their high algorithmic complexity. With the

advent of “big data” or “big code”, researchers have applied “big code” to synthesis

tools and developed some novel and practical tools such as Bayou [1] and JSNice [2].

In addition to these programming tools, we propose two novel programming systems

for software reuse and refactoring in this thesis. We will present our data-driven

methods to automate the process of software reuse and refactoring, and we begin

to discuss the details of program splicing technique for reuse in chapter 2 and our

algorithm for API refactoring in chapter 3.

12

Chapter 2

Program Splicing

2.1 Introduction

The most popular workflow nowadays consists of copying, pasting, and modifying code

available online. The reason for its domination is that it is relatively easy to execute

with the help of internet search. However, this process inherits the drawbacks from

programming: it requires extreme precision and care from programmers similar to

normal programming. When a software reuse task happens in a large and complicated

software system, the cost of making mistakes and spending time on repair might

exceed the benefit.

In this chapter, we present a programming methodology, called program splicing,

that aims to o↵er the benefits of copy-and-paste without some of its pitfalls. Here, the

programmer writes code with the assistance of a program synthesizer [29, 7] that is

able to query a large, searchable database of program snippets extracted from online

open-source repositories. Operationally, the inputs to synthesis include a “draft”

program that is a mix of unfinished code and natural language comments, as well a

correctness requirement, for example a set of test cases or a constraint on the API

calls the programmer wants to invoke. The synthesizer completes the “holes” in

the draft by instantiating them with code extracted from the database, such that

the resulting program meets its correctness requirement. The synthesizer is invoked

interactively as part of a larger program development process; initially, the draft fed

13

to the synthesizer may be close to empty, and the programmer is free to generate new

drafts by adding code and holes to the result of a round of synthesis.

In more detail, our synthesis algorithm operates as follows. First, it identifies and

retrieves from the database a small number of program snippets that are relevant

to the code in the draft. These search results are viewed as pieces of knowledge

relevant to the synthesis task at hand, and are used to guide the synthesis algorithm.

Specifically, from each result, the algorithm extracts a set of codelets: expressions and

statements that are conceivably related to the synthesis task. Next, it systematically

enumerates over possible instantiations of holes in the draft with codelets, using

heuristics to prune the space of instantiations.

We present an implementation of program splicing, called Splicer, that uses a

corpus of approximately 3.5 million methods, extracted from the Sourcerer [43, 44,

45] source code repository, to perform synthesis of Java programs. Splicer uses a

known method for code search to find programs relevant to a draft. The method for

merging codelets with a draft is also based on existing (non-data-driven) approaches

to enumerative synthesis. The key novelty of the system lies in combining these two

components into an e↵ective software engineering tool.

We evaluate our approach on a suite of Java programming tasks, including the im-

plementation of scripts useful in everyday computing, modifications of well-known al-

gorithms, and initial prototypes of software components such as GUIs, HTML parsers,

and HTTP servers. Our evaluation includes a comparison with µScalpel [32], a state-

of-the-art programming system that can “transplant” code across programs, as well

as a user study with 18 participants. The evaluation shows our system to outperform

µScalpel and indicates that it can significantly boost overall programmer productivity.

Now we summarize the contributions of this work:

14

• We propose program splicing, a methodology where programmers use a program

synthesizer that can query a large database of existing code, as a more robust

proxy for copying and pasting code.

• We present an implementation, called Splicer, that repurposes existing ap-

proaches to code search and synthesis and is driven by a corpus of 3.5 million

Java methods.

• We present an extensive empirical evaluation of our system on a range of every-

day programming tasks. The evaluation, which includes a user study, shows that

our method outperforms a state-of-the-art competing approach and increases

overall programmer productivity.

The rest of this chapter is organized as follows. In Section 2.2, we give an overview

of our method. Section 2.3 states our synthesis problem; Section 2.4 describes the

approach of program splicing; Section 2.5 presents our evaluation. Finally, we sum-

marize this chapter with some discussion in Section 2.6.

2.2 Motivating Examples

In this section, we describe program splicing, as embodied by Splicer, using a few

motivating examples.

2.2.1 Reading a Matrix from a CSV File

Consider a programmer who would like to read a matrix from a comma-separated

values (CSV) file into a 2-dimensional array and then to square the matrix. However,

the user does not recall in detail what API to use and how matrix multiplication is

implemented exactly.

15

1 int [][] csvmat(String filename) {

2 int [][] mat = new int[N][N];

3 /* COMMENT:

4 * Read a matrix from a csv file

5 * REQ: String filename = ‘‘matrix.csv ’’;

6 * int [][] m = new int[N][N];

7 * __solution__

8 * return test_matrix(m); */

9 ??

10 }

11

(a) Draft program

1 int [][] csvmat(String filename) {

2 int [][] mat = new int[N][N];

3 File f = new File(filename);

4 Scanner scanner = new Scanner(f);

5 for(int i = 0; i < r; ++i) {

6 String line = scanner.nextLine ();

7 String [] fields = line.split(",");

8 for(int j = 0; j < c; ++j)

9 mat[i][j]= parseInt(fields[j]);

10 }

11 }

12

(b) Completed draft

1 int [][] read_csv(int [][] m,int r,int c,String

filename) {

2 File f = new File(filename);

3 Scanner scanner = new Scanner(f);

4 for(int i = 0; i < r; ++i) {

5 String line = scanner.nextLine ();

6 String [] fields = line.split(",");

7 for(int j = 0; j < c; ++j)

8 m[i][j] = parseInt(fields[j]);

9 }

10 return m;

11 }

12

(c) A database program

Figure 2.1 : Reading from CSV files

16

In current practice, the programmer would search the web for a program that

reads from a CSV file and another one that does matrix multiplication, copy code

from the search results, and modify the programs manually. In contrast, while using

Splicer, he or she writes a draft program in a notation inspired by the Sketch system

for program synthesis [7, 46] (Figure 2.1a). This draft program declares the 2d-array

matrix; however, in place of the code to fill this array, it has a hole represented by

a special symbol “??”. A hole in a program serves as a placeholder that Splicer

automatically substitutes with code, using an external snippet. In this example, the

external snippet is a piece of code that reads a matrix from a CSV file.

The user is required to provide information about relevant external snippets using

Javadoc style comments containing “COMMENT” section and “REQ” section above the

hole or above the function. If this information is provided above the hole as showed

in Figure 2.1a, then the hole itself will be replaced with the external code snippet.

The user describes the forms of external code that are relevant to the task using

natural language comments. In this example, the comments contain words such as

“read”, “matrix” and “csv” in the “COMMENT” section above the hole suggesting a

program that reads from CSV files. The system will use these words as a hint to

search the code database. This is similar to a web search using text, but in this case

it is done in a programming scenario. Finally, to ensure that the synthesized code

is compatible with the code that he has already written, the programmer needs to

provide some correctness requirements.

The requirements for our example are shown in the “REQ” section above the hole. A

requirement is simply a piece of code that executes and returns true or false indicating

if the solution is correct. To test the correctness of a synthesized code snippet solution,

“__solution__” will be replaced with a candidate solution and everything under

17

1 int [][] csvmat(String filename) {

2 int [][] mat = new int[N][N];

3 ...

4 int [][] mat2 = new int[N][N];

5

6 /**

7 * COMMENT:

8 * square a matrix using matrix multiplication

9 *

10 * REQ:

11 * int [][] m = {{1, 2, 3}, ...};

12 * int [][] result = {{14, 20, 26}, ...};

13 * __solution__

14 * return test_equality(m, result);

15 */

16 ??

17

18 return mat2;

19 }

20

Figure 2.2 : Reading CSV: draft for matrix multiplication

“REQ” is run in an independent environment which has no access to the variables and

names in the draft program. For example, in Figure 2.1a, “m” is defined for storing

the matrix and “filename” is defined for storing the filename so that the solution

will have access to the filename and be able to check whether the matrix is read into

“m”. “test_matrix” (we omit a detailed definition of this function) is used to test

the content of the matrix. The advantage of separating the testing environment from

the draft program is that users can write tests in all possible ways without polluting

the draft program and that is also how typical unit tests are written.

Given the draft, Splicer issues a query to a searchable database of code snippets.

The code database then returns a set of functions relevant to the current programming

task, including at least one program that reads from CSV files (such an implementa-

18

1 int [][] csvmat(String filename) {

2 int [][] mat = new int[N][N];

3 File f = new File(filename);

4 Scanner scanner = new Scanner(f);

5

6 for(int i = 0; i < N; ++i) {

7 String line = scanner.nextLine ();

8 String [] fields = line.split(",");

9 for(int j = 0; j < N; ++j)

10 mat[i][j] = Integer.parseInt(fields[j]);

11 }

12

13 int [][] mat2 = new int[N][N];

14 for(int i = 0; i < N; ++i) {

15 for(int j = 0, s = 0; j < N; ++j) {

16 for(int k = 0; k < N; ++k) {

17 s += mat[i][k]*mat[k][j];

18 }

19 mat2[i][j] = s;

20 }

21 }

22 return mat2;

23 }

24

Figure 2.3 : Reading CSV: Complete Program

tion is shown in Figure 2.1c). The system now extracts a set of codelets — expressions

and statements — from these functions, and uses a composition of these codelets to

fill in the hole in the draft. The completed draft is showed in Figure 2.1b.

After getting the code that reads a matrix from a csv file, the user now focuses

on the second part of the task, which is matrix squaring using matrix multiplication.

The previous code is now extended into a new draft, which has a hole for the ma-

trix multiplication code, some comments and requirements. This draft is shown in

Figure 2.2. Splicer now searches the code database for snippets that perform ma-

19

trix squaring using normal matrix multiplication and merges these snippets into the

existing code, while ensuring that all requirements are met. The complete program

resulting from this process is shown in Figure 2.3.

As shown in the example, Splicer can be used in an iterative and interactive

manner. A programmer can start writing code as usual, and then bring in external

resources from the web into the existing codebase as needed. In this respect our

approach is similar to copying and pasting code. The di↵erence is that Splicer au-

tomates the process of finding and modifying relevant code, and guarantees a certain

level of reliability by ensuring that the output program meets all its requirements.

2.2.2 Face Detection using OpenCV

In previous examples, we relied on input-output tests to verify the correctness of a

solution. Now we consider the use of program splicing in the implementation of face

detection, a computer vision task in which input-output tests are hard to specify,

requiring the use of an alternative form for correctness requirement. Specifically, the

requirements that we use are constraints on sequences of API calls that a program

makes, given in the form of a finite automaton.

Figure 2.5 shows a draft program for this task. In this example, a user wants

to use a CascadeClassifier object from OpenCV to detect faces from an input

image called lena.jpg. The output image named faceDetection.png should have

the same picture with a rectangle drawn above the faces.

The API call constraint for the task is shown in Figure 2.4. This requirement

describes a sequence of object creation and API invocation actions performed during

face detection. To check the API call requirement, Splicer runs the candidate

solutions under an environment where necessary functions and variables are defined to

20

Figure 2.4 : API call sequence constraint for face detection

keep track of the program state which is checked against the requirement. For example

in Figure 2.5, Splicer loads the requirement (line 3), runs a candidate solution and

checks internally (line 5) if the solution has created a face detector (_has_detector_),

has loaded an image (_has_image_) and etc., and it ensures things are completed in

order. Predicates like “_has_detector_” are defined along with the API constraints.

In Figure 5 for example, they are defined inside FaceDetectionTest.java.

1 /**

2 * COMMENT:

3 * Doing face detection using OpenCV

4 *

5 * REQ:

6 * API_cons (" FaceDetectionTest.java");

7 * __solution__

8 * run_and_test(_has_detector_ && _has_image_ &&

9 * _has_detection_ && _image_written_);

10 */

11 public void run() {

12 String input_img = "lena.jpg";

13 String output_img = "faceDetection.png";

14 CascadeClassifier detector = new CascadeClassifier (??);

15 ??

16 }

17

Figure 2.5 : Face Detection: Draft Program

21

1 public void run() {

2 String input_image = "lena.png";

3 String filename = "faceDetection.png";

4 CascadeClassifier detector =

5 new CascadeClassifier(getClass ().getResource("lbpcascade_frontalface.xml").getPath ());

6 Mat image = Highgui.imread(getClass ().getResource(input_image).getPath ());

7 MatOfRect faceDetections = new MatOfRect ();

8 detector.detectMultiScale(image , faceDetections);

9 for(Rect rect : faceDetections.toArray ()) {

10 Core.rectangle(image , new Point(rect.x, rect.y), new Point(rect.x + rect.width , rect.y + rect

.height), new Scalar(0, 255, 0));

11 }

12 Highgui.imwrite(filename , image);

13 }

14

Figure 2.6 : Face Detection: Complete Program

While the requirement is more low-level than unit tests, we note that it frees users

from specifying small details such as what configuration file to be used, the color for

drawing rectangles on faces and the order of specifying the four corners of rectangles.

Splicer uses this requirement to filter out many of the candidate programs that it

considers during synthesis. Only a few solutions satisfy the requirement, and the user

could easily pick the correct one shown in Figure 2.6.

Note that the external code information in this example is provided above the

function, as shown in Figure 2.5. In this case, Splicer will replace all the holes

inside this function with possibly di↵erent external code snippets in a single run

using a single set of relevant programs.

2.3 Problem formulation

In this section, we define the problem of program splicing.

22

Language Definition As mentioned earlier, a draft program in our setting consists

of incomplete code and a set of natural language comments. We start by specifying

the language of code permitted in our drafts.

Our approach accepts code in a subset L of Java, abstractly represented by the

following grammar. In summary, the grammar permits standard imperative expres-

sions and statements over base and array types, as well as a symbol ?? representing

holes.

hexpri ::= id | c | hexpri binop hexpri | unaryop hexpri

| f(hexpri, . . . , hexpri) | id := hexpri | ??

hstmti ::= let id = hexpri | if hexpri hstmti hstmti

| while hexpri hstmti | hstmti ; hstmti | ??

hprogrami ::= id (hexpri, . . . , hexpri) hstmti

In this grammar, c represents a constant, id represents an identifier, f represents

external functions (API calls), and binop and unaryop respectively represent binary

and unary operators. We assume that a standard type system is used to assign types

to expressions and statements in this grammar. The actual language handled by our

implementation goes somewhat beyond this grammar, permitting arrays, objects,

data structure definitions, a limited form of recursion, and syntactic sugar such as

for-loops.

The special symbol ?? in the grammar represents two kinds of holes. Expression

holes is a placeholder for a missing expression. A statement hole is a placeholder for

a missing statement.

The semantics of a program with holes can be defined as a set of complete (hole-

free) programs obtained by instantiating the holes with expressions and statements.

23

The semantics of a complete program is defined in the standard way. We skip the

formal definitions of these semantics for brevity.

Requirement Aside from a draft, an input to a program splicing problem includes

a requirement. This requirement is not expected to be a full correctness specification.

Specifically, our implementation permits two classes of requirements: input-output

tests, and finite automata that constrain the sequences of API calls that a program

can make. We assume a procedure to conservatively check whether a given complete

program satisfies a given set of requirements. For requirements that are input-output

tests, this procedure simply evaluates the program on the tests. The procedure for

automaton constraints is based on a standard, sound program analysis.

Program Splicing Let Ps 2 L be a draft program with one or more holes. Let

DB ✓ L be a database containing programs with no holes. Our objective is to use

the programs from DB to complete holes in Ps. Specifically, we use the expressions

(similarly, statements) fromDB to complete the expression holes (similarly, statement

holes) in Ps. Naturally, such an instantiation of the holes can be performed in many

ways. Our goal is to do this instantiation such that the resulting program passes the

requirement.

More precisely, consider the set C of all codelets — subexpressions and statements

— that appear in programs fromDB. Let P be the set of complete programs obtained

by instantiating the holes of Ps by appropriately typed codelets in C. Let U : L !

{True,False} be a function that maps a complete program in L to a boolean value

indicating whether the input program passes the requirement accompanying Ps. The

splicing problem is to find a program P
⇤
c 2 P such that U(P ⇤

c) = True.

24

2.4 Method

In this section, we present a specific solution to the splicing problem, implemented in

the Splicer system. Our synthesis problem has two key subproblems: code search

and hole substitution.

Code Search Given a program Ps 2 L, search a large corpus containing thou-

sands of programs for a set of relevant programs such that the retrieved programs

contain the codelets that are needed to fill holes. The desired property of the code

search technique should be that the retrieved programs should contain the exact

codelet we need within a short period of time.

Hole Substitution Given multiple database programs Sd, we would like to search

for the correct codelets to fill the hole. Multiple programs combined consist of a large

number of codelets. The key challenge here is to prune the search space such that we

can e�ciently get the exact codelet we need and ensure the necessary codelets will

not be dropped.

2.4.1 Searching for programs

In this section, we describe the code search techniques from Kashyap et al. [40] with

a modification employed to query a large database of programs e↵ectively. This is the

first step in our workflow: to find candidate functionality from the program database

to complete the draft program. Given the word hints below “COMMENT” in the Javadoc

and also the variable names in the draft program, Splicer does a code search and

returns a set of relevant programs.

An important goal of the code search component is to have a quick response when

searching large amounts of code. To accomplish this, various code features are ex-

tracted from a large corpus of open source code. These code features—along with the

25

corresponding source code—are stored in a program database. The program database

is a scalable object-store database that allows for fast similarity-based queries.

A query issued to the program database includes code features extracted from

the draft program, along with associated weights indicating the relative importance

of the code features. The program database computes the k nearest neighboring

corpus elements to the query, using the code features stored, associated weights, and

similarity metrics defined on each code feature. The result of the query is presented

as a ranked list of source code corresponding to the k-nearest neighbors.

Below we describe the features extracted and the associated similarity metrics.

Natural language terms. For this feature, we extract the function name, com-

ments, local variable names, and parameter names of a function. Such extracted nat-

ural language (NL) terms are then subjected to a series of standard NL pre-processing

steps, such as splitting words with underscores or camel-case, removing stop words

(including typical English stop words, and those specialized for Java code), stem-

ming, lemmatization, and removing single character strings. Additionally, we use a

greedy algorithm [47] for splitting terms into multiple words, based on dictionary

lookup. This is to handle the case where programmers combine multiple words, with-

out separating the words with underscores or camel-case, when naming functions and

variables.

After NL pre-processing, we compute a tf-idf (term frequency-inverse document

frequency) score for each NL term. Each function is considered as a document, and

the tf-idf is computed per project. We give the function name term an inflated score

(5⇥ more than other terms) because it often provides significant information about

a function’s purpose. The similarity between two functions is measured by taking

the cosine-similarity of their NL terms, together with their tf-idf values. Below is an

26

example of NL terms features for the draft showed in figure 2.1a.

"read":0.10976425998969035, "matrix":0.658585559938142,

"csv":0.10976425998969035, ...

Names. Here, we extract all the variable names, the name of the function, and

perform some basic normalization such as splitting camel case and underscores. The

similarity metric used is the Jaccard index on sets of names.

The code search method is described extensively in [40] and the main di↵erence is

that our similarity search is primarily driven by the natural language term features,

with variable names and function names providing additional context around the hole

in the query code. We give more weights to natural language term features and less

weights to variable names and function names. The reason is that the most important

hint in the draft code is the comment, because users are required to describe the code

they want to synthesize. However, variable names and function names must not be

treated as equally important, because sometimes variable names and function names

might be totally irrelevant to the code they want to synthesize. For example, users

might leave comments saying that they want the code that reads a matrix from a

csv file, but it is totally possible that the surrounding context is all about matrix

calculation.

2.4.2 Program completion

After we have retrieved a set of programs from the program database, our next step is

to complete the draft by synthesizing codelets. A codelet here is a sequence of program

statements or a set of expressions from the programs retrieved from the database

during code search. Note that unlike other traditional synthesis techniques [28, 29,

27

37, 48, 49, 50, 51, 30], our synthesis method does not generate code from scratch, but

instead it uses codelets from a large code corpus. For each database program paired

with the given partial program, we spawn a thread to do the code completion task,

parallelizing the process. A code completion task consists of the following steps:

Hole substitution

The first step is to use the codelets from the retrieved program to substitute the holes

in the draft. Procedure 1 shows the algorithm. We start by checking whether there

is any hole in the draft at line 1. If not, we move on to the merging step. Otherwise,

we start injecting codelets into the draft. For each hole, we iterate all the codelets

starting from the smallest one and check whether the injection is valid using our

heuristics at line 3. If so, we then substitute the hole with the codelet at line 4 and

then continue injecting more codelets by recursively calling itself at line 5 until we

finish filling all the holes. When no more holes exist in the draft program, we then

merge the codelets into the existing codebase, which is explained in detail in later

section. If at some point injecting a codelet is not successful, we backtrack and try

another codelet. Next, we discuss our heuristics used in the step of hole substitution.

Synthesizing expressions If we are searching for a substitution n for an ex-

pression hole h, we ensure n and h are of the same type. In addition, we can also

consider the roles of h and n. The intuition is that we only consider the codelet that

serves as the same role by looking at the parent of n and the parent of h in the parse

tree. If the parents of n and h are not of the same kind, then we discard n and look

for another codelet. Figure 2.7 illustrates the idea. If we are looking for a codelet

to replace a hole representing the rval inside an assignment statement, our target

codelets are more likely to be the rval of other assignment statements. We can then

28

Procedure 1 fill
Require: A draft program, Ps 2 L and a database program Pd 2 L

Ensure: A complete program Pc

1: if not has hole(Ps) then return merge(Ps) end if

2: for h next hole(Ps), n next codelet(Pd) do

3: if valid(Ps, h, n) then

4: P
0
s substitute(Ps, h, n)

5: Pc fill(P 0
s, Pd)

6: if Pc 6= null then return Pc end if

7: end if

8: end for

9: return null

just consider those codelets as substitutions and ignore other codelets. The same can

be applied if we want to synthesize the code for the guard of a condition, for example.

Synthesizing statements When we are searching for substitutions for a state-

ment hole h, we need to consider a sequence of statements from the database program.

We define a sliding window of various lengths and use that to scan the database pro-

gram to identify the statement sequence we would like to use to substitute for h. We

also scan the sequences under loops and conditions. We then use each codelet to fill

the hole.

Code merging

One problem with using the codelets from the database programs is that the naming

schemes are di↵erent from the ones in the original draft program. Therefore, after

29

Figure 2.7 : Matching for expression codelet

we have completed the draft program, we search for reference substitution such that

the resulting program refers back to the data defined in the draft program, which is

quite similar to code transplantation [32].

The algorithm is shown in Procedure 2. The task here is essentially searching for a

mapping between the references across two programs. We first check whether we have

undefined references in the program at line 1. If not, we check the program correctness

against the requirement at line 2. If it is correct, then we have a solution. If there

is still undefined reference in the program, we then try to rename each undefined

reference u to another defined reference r at line 7. We repeat by recursively calling

itself until no more undefined names exist in the program. We guide the search by

using types. When we are considering renaming u to r, we rename u only if their

types are the same. If at any point the algorithm cannot rename a reference due to the

lack of available target references in another program, the algorithm will backtrack

and try another renaming for a previous reference. This reference substitution step is

performed every time we complete a draft and thus the whole algorithm su↵ers from

exponential blowup. To ensure the algorithm terminates, we set a time limit on the

entire search process.

30

Procedure 2 merge

Require: A completed draft program, Ps 2 L and a database program Pd 2 L

Ensure: A correct completion Pc

1: if no undefined refs(Ps) then

2: if is correct(Ps) then return Ps end if

3: return null

4: end if

5: for u next undefined ref(U), r next ref(Pd) do

6: if same type(Ps, u, r) then

7: P
0
s substitute(Ps, u, r)

8: Pc merge(P 0
s, Pd)

9: if Pc 6= null then return Pc end if

10: end if

11: end for

12: return null

31

Testing

After we have finished renaming all references in a completed program, we validate

the solution against the requirement either in form of a predefined input-output test

suite or a predefined API call sequence constraint given as a finite automaton. If

users provide IO tests, we run the solution on the provided test suite to validate

its correctness. If an API call sequence constraint is given instead, we encode the

constraint into Java source code in which API calls are captured and new variables are

defined to keep track of the current state in the finite automaton. When the complete

program is run, the constraint will be automatically checked and thus the correctness

is determined. We also set a time limit for program execution to ensure termination.

Notice that we could let the synthesis algorithm produce multiple solutions by letting

it continue the search after a correct completion is found. If there are multiple correct

completions, we will rank them in the order they appear and return as many solutions

as required. On the other hand, we can also easily add a selection function to choose

the best solution.

2.5 Evaluation

Our goal is to evaluate the performance of Splicer and its ability to complete a

draft program. The experiment consists of completing a set of draft programs given a

code database where a set of relevant statistics for each run is recorded. In addition,

we show the results of a user study where we test whether our synthesis tool could

increase programming productivity.

32

2.5.1 Benchmarks

In this section, we briefly describe our benchmark problems followed by the exper-

iments and the results. We evaluate the performance of Splicer and select a set

of benchmark problems with corresponding draft programs to automate the process

where users try to bring external resources from the web and merge them into the

existing codebase.

It is desirable to compare Splicer with existing synthesis methods including

Sketch [7], syntax-guided synthesis [52], code reuse tools [53, 54, 55, 56] or other

statistical methods [34, 57]. However, none of these methods are comparable, because

(1) traditional synthesis methods do not search for or use existing source code, (2)

code reuse methods do not consider programs at the granularity of statements and

expressions and (3) some methods such as SWIM [34] and anyCode [57] only aim to

synthesize API-specific code snippets. Specifically, we fed a standard binary search

draft program with a few expression holes to Sketch and it was not able to complete

the draft within 30 minutes. In contrast, our splicing system could generate the

correct expressions within 5 seconds after the code search is complete. Moreover, our

splicing system could generate code snippets while Sketch cannot handle statement

synthesis problems.

Code transplantation or µScalpel [32] is the most similar system to our work

and we will use µScalpel for comparison with the correct donor programs provided

to µScalpel. Notice that we cannot apply µScalpel to some of our system-related

benchmark problems, because µScalpel targets at C programs instead of Java. Since

systems programs in C and in Java tend to be very di↵erent in terms of number

of variables, types and system calls which makes the comparison unfair. Therefore,

we only compare our tool with µScalpel on some benchmark problems where the

33

di↵erences in the solutions are not significant.

Our benchmark problems consist of synthesizing components from online reposito-

ries and we include 15 benchmark problems. These benchmark problems were chosen

were chosen to reflect a diverse set of everyday programming tasks. Accordingly, they

comprise textbook programming tasks, Stackoverflow questions, and tutorials of tools

like OpenCV. The tasks also meet three criteria: (a) the problems should come from a

diversity of domains, (b) the tasks should represent common programming problems,

and (c) there should be adequate number of programs relevant to the problems in

the code corpus. The draft program for most benchmark problem contains one or

two statement and expression holes. Each draft program has its own comments and

correctness requirements. Most benchmark problems use typical input-output tests

except for “Echo Server”, “Face Detection” and “Hello World GUI” where API call

sequence constraints are used to check the correctness. Here, we highlight two draft

programs from the benchmark problems.

LCS Table Building A user calculates the longest common subsequence of two

integer arrays, and she has written a draft program with the code snippets to extract

the subsequence from the table and display the result. A hole is left for the code that

builds the table for running dynamic programming algorithm.

HTTP Server A user would like to set up an HTTP server that serves the content

of a text file. She wrote a draft program which has a HTTP request handler, but she

does not remember how to read from a text file and how to set up an HTTP server.

Two holes are left for the code that reads from a text file and the code that sets up

an HTTP server. In addition, she also leaves a hole for the response status code in

the request handler. Figure 2.8 shows the draft program.

34

1 /*

2 * COMMENT: Setting up an HTTP server that serves the

3 * content of a local file

4 * REQ:

5 * import com.sun.net.httpserver .*,

6 * import java.io.OutputStream;

7 * __solution__

8 * HttpServer server = http(" http_test.txt", 23456);

9 * test_server(new URL("http :// localhost :23456/"));

10 * server.stop (0);

11 */

12 public HttpServer http(String filename , int port) {

13 String content;

14 // read the content of the file

15 ??

16 HttpServer server;

17 HttpHandler handler = new HttpHandler () {

18 public void handle(HttpExchange he) {

19 he.sendResponseHeaders (??, content.length ());

20 OutputStream os = he.getResponseBody ();

21 os.write(content.getBytes ()); os.close ();

22 }};

23 // set up an http server

24 ??

25 return server;

26 }

27

Figure 2.8 : Setting up an HTTP server that serves the content of a text file

35

2.5.2 Experiments

We implemented program splicing in Scala 2.12.1 based on 64-bit OpenJDK 8 and

we used BeanShell [58] and Nailgun [59] to test all the completed draft programs.

For each benchmark problem, we ran Splicer on the draft program we derived.

These experiments were conducted on a 2.2GHz Intel Xeon CPU with 12 cores and

64GB RAM. For each program, we record the runtime for synthesis and we stop the

synthesis once the time exceeds five minutes. To roughly have a sense of the search

space size, we list the number of variables and holes in each draft program, the line

number and the number of database programs we use for synthesis. Finally, we list

the LOC of the draft program and its completed version. Our corpus comes from

the Maven 2012 dataset from Sorcerer [43, 44, 45]. We extracted over 3.5 million

methods with features from this corpus.

Synthesis Algorithm Evaluation

Table 2.1 shows the results for each benchmark problem with k = 5 where k is the

number of database programs we retrieve. We set k = 5 because empirically five

programs are usually su�cient to ensure that the retrieved programs contain the

target codelet we want to synthesize. In addition, we put more weight on features

that consider comments and variable names in the k-nearest-neighbor search. The

choice on weight selection is explained in section ??.

According the results showed in Table 2.1, data-driven synthesis works for all

benchmark problems. The time required for most code searches which is based on

k-nearest-neighbor search is approximately 15 seconds, meaning that the code search

is very e�cient, given that we have millions of functions in the database. For most

of the benchmark problems, our method was able to complete the draft program in

36

Benchmarks Synthesis

Time

No

Roles

No

Types

LOC Var Holes

(expr-

stmt)

Test µScalpel

Echo Server 3.0 4.0 17.1 9-17 1 1-1 C N/A

Sieve Prime 4.6 33.0 8.8 12-17 2 2-1 3 162.1

Collision Detection 4.2 6.3 5.3 10-15 2 2-1 4 N/A

Collecting Files 3.0 6.0 27.0 13-25 2 1-1 2 timeout

Face Detection 8.1 12.2 43.1 21-28 2 1-1 C N/A

Binary Search 15.4 16.0 47.9 12-20 5 1-1 3 timeout

Hello World GUI 16.0 timeout timeout 24-33 4 1-2 C N/A

HTTP Server 41.1 87.4 timeout 24-45 6 1-2 2 N/A

Prim’s Distance Update 61.1 66.4 timeout 53-58 11 1-1 4 timeout

Quick Sort 77.2 191.5 217.6 11-18 6 1-1 1 timeout

CSV 88.4 timeout timeout 13-23 4 1-2 2 timeout

Matrix Multiplication 108.9 151.9 timeout 13-15 8 1-1 1 timeout

Floyd Warshall 110.4 timeout timeout 9-12 7 1-1 7 timeout

HTML Parsing 140.4 timeout timeout 20-34 5 1-2 2 N/A

LCS 161.5 168.8 timeout 29-36 10 0-1 1 timeout

Table 2.1 : Benchmarks. “C” in the “Test” column indicates an API call sequence

constraint is used to check the correctness

37

under two minutes and the number of tests required is no more than five, indicating

that users of Splicer do not have the burden of writing too many tests. In general,

a set of tests is considered su�cient if a complete code coverage is achieved in the

desired target program. Notice that for “Echo Server”, “Face Detection” and “Hello

World GUI”, a letter “C” is used to signal an API call sequence constraint being used

to test the correctness. We can also see that synthesis takes more time as the number

of holes and the number of variables increase. Having more holes, more variables and

sometimes more lines leads to larger combinatorial search space for hole substitutions

with codelets, and more variables increase the search space for code merging and

renaming.

Impact of type matching and role matching Types ensure the solution will

type check. In addition, role matching eliminates the expression substitutions where

the role of a candidate expression is di↵erent from the role of a hole. To understand

their impact, we record the synthesis time without using types, which is showed in

the “No Types” column of Table 2.1. The “No Roles” column shows the runtime

without role matching. We can see that using types and roles can reduce a large

amount of search space, although types seem to be more e↵ective. These heuristics

become more and more important for larger draft programs as the number of variables

increases. Without types and role matching, our synthesis algorithm timed out for

some harder benchmark problems. Notice that role matching is applied when we

synthesize expressions, as we cannot apply role matching when synthesizing statement

sequences, and thus we do not see any di↵erence in the “LCS” benchmark problem.

µScalpel Comparison Code transplantation [32] is very similar to our work,

except that it does not consider using a large code corpus. However, it is still worth-

while to conduct a series of performance comparisons, since µScalpel also extracts

38

1 /**

2 * TODO 1: Use Sieve of Eratosthenes to test primality

3 * of the given integer.

4 */

5 static boolean sieve(int n) {

6 boolean [] primes = new boolean [100];

7 return primes[n];

8 }

9

10 /**

11 * TODO 2: Test the sieve of Eratosthenes you’ve just

12 * written. Make sure to test the program with the

13 * following inputs: n = {1, 2, 3, ..., 73}

14 * Return true if the program is correct.

15 */

16 static public boolean test() {

17 return false;

18 }

19

Figure 2.9 : Sieve of Eratosthenes Skeleton with Tests

code snippets from external programs, or donor programs. We ran µScalpel on some

of our benchmark problems with correct donors specified. Notice that µScalpel has

an advantage over Splicer under this setting, because µScalpel does not need to

search for relevant programs from a code corpus. Nevertheless, even with such an

advantage, most of the runs could not finish within five minutes except for “Sieve

Prime” which is relatively easy. Even though we did not run µScalpel on all bench-

mark problems, it is reasonable to believe that the performance of µScalpel (based on

genetic programming) is not as e�cient as Splicer, which is based on enumerative

search.

39

User Study

We performed a user study to evaluate the extent to which Splicer can help human

developers. Now we describe this study.

Study setup. We recruited 12 graduate students and six professional programmers

and developed four programming problems (described later in this section). Each

participant was asked to complete all four programming problems using a web-based

programming environment. Per person, two problems were completed using program

splicing (we subsequently call this a “with” task), and two without (a “without”

task). “With” and “without” tasks were assigned to participants randomly.

To simulate an industrial programming setting where an engineer is asked to

develop a code meeting a provided specification, for each task, participants were given

a description of the program they need to implement, and a description of the test

cases they need to write to verify the correctness of the program. Figure 2.9 shows

an example skeleton program for the “without” task on the Sieve of Eratosthenes

programming problem. For the “with” task, the draft program is almost identical to

the sieve function in Figure 2.9 except that there is a hole after the array declaration

and participants need to put in comments and requirements.

When completing both “with” and “without” tasks, participants were encouraged

to use relevant code snippets from the Internet. For the “with” tasks, participants

were asked to use Splicer to provide at least one candidate solution to the pro-

gramming problem, but then they could choose to use that candidate, or not use

it. Before using the web-based programming environment and Splicer, they were

asked to finish a warm-up problem to be familiar to the programming environment

and Splicer to eliminate learning e↵ects.

40

To evaluate whether Splicer could boost programming productivity, we recorded

the durations the participants used to correctly complete each problem. To determine

if there is a statistically significant di↵erence in completion time for “with” versus

“without” tasks for the same programming problem, we define the following null

hypothesis:

H
P
0 = “For programming problem P , the expected ‘without’ task completion time is

no greater than the expected ‘with’ task completion time.”

If this hypothesis is rejected at a su�ciently small p-value for a specific program-

ming problem, it means that it is likely that the average completion time is smaller

for the “with” task than the “without” task, and hence program splicing likely has

some benefit on the problem. Given the times recorded over each problem and each

task, we use bootstrap[60] to calculate the p-value for each problem. The bootstrap

works by simulating a large number of data sets from the original data by re-sampling

with replacement, and the p-value is approximated by the fraction of the time when

the null hypothesis holds in the simulated data sets. In addition to measuring time,

we also recorded the number of times that “with” task participants for each problem

asked the program splicing system for help. Typically the participants would stop

using our system after they have received a useful codelet, and so many requests may

indicate an inability of the system to produce a useful result.

Programming Problems. Now we describe the four programming problems used

in the study.

Sieve of Eratosthenes: Implement the Sieve of Eratosthenes to test the pri-

mality of an integer. This is an interesting problem because it is purely algorithmic,

and further, codes to solve this problem are ubiquitous on the Internet. We expected

41

Splicer to be of little use, because an Internet search should result in many di↵erent

Sieve programs which should be trivial to tailor to the problem. Given this and the

fact that test codes are so easy to write, we expected participants will use the least

amount of time to finish this problem, regardless of whether they are given a “with”

or “without” task.

File Name Collection: Collect all file names under a directory tree recursively

and return the list of file names. We chose this problem because it represents an

easy systems programming problem. Further, there is no standard solution to this

problem, while it is still quite easy to write tests. Therefore we expected Internet

search to be less useful, whereas program splicing might be quite helpful.

CSV Matrix Multiplication: Read a matrix from a CSV file, square the matrix

and return it as a 2d-array. This problem includes a combination of system program-

ming and algorithmic programming. We chose this problem expecting that “with”

task programmers would need to use Splicer multiple times in an interactive manner

to generate two independent code snippets. Given this, we expected that the time

gap between the “with” task and “without” task participants to be smaller.

HTML Parsing: Read and parse an HTML document from a text file, store all

links that contain a given word into a result list and return the result list. This is the

most di�cult problem among the four. Not only would those “with” task participants

need to use Splicer multiple times, but they are required to write tests for HTML

manipulation since program splicing necessitates that participants manually provide

HTML to build test cases that are used to validate the correctness of the code for

extracting links from the parsed HTML document. At the same time, the JSoup [61]

HTML parsing library that we asked participants to use has rather comprehensive and

straight-forward documentation. Hence, we expected that time gap between “with”

42

and “without” task participants would be the smallest among the four problems.

Results. Figure 2.11 shows the p-values for each programming problem, as well as the

number of times code splicing was invoked for each problem’s “with” task. Figure 2.10

shows time spent on each submission with and without splicing, including the average

time, as box plots. We can see that for most programming problems except for HTML,

the average time used to finish the “with” task is is significantly lower than the

time required to finish the “without” task. The p-values in Figure 2.11 are also

small enough for us to reject the null hypotheses (stating that there is no utility to

program splicing) with over 99% confidence. Note that the average number of program

splicing invocations for most problems (except HTML Parsing) is very close to one,

meaning that program splicing could return codelets that the participants could use

to complete the problem with only one try. We argue that this also indicates that

Splicer is rather easy to use, and is indeed able to boost programming productivity

in many cases. As the level of di�culty of the problem increases, so does the benefit

of using Splicer.

It is, however, useful to consider the HTML Parsing programming problem, which

is the one case where program splicing was not useful. Why is this? After careful

investigation, we believe that there are two reasons program splicing did not help.

First, the documentation of the HTML parsing library used, JSoup [61], is very

comprehensive and well-done. Hence the problem was easy. Second, it is very easy

to make mistakes when writing tests, which require developing correct HTML code

and inserting it in a test. We found that participants typically forgot to escape quote

characters within a string when loading a variable containing even very simple HTML.

The di�culty in writing tests meant that program splicing was less helpful. That said,

writing tests has independent value, and if the di�culty in writing tests was the key

43

Figure 2.10 : Time spent on each programming problem, with and without splicing.

impediment to using splicing, it may not be a strong argument against the tool.

We close this subsection by asking: When is program splicing likely most useful

for programmers? One surprising case seems to be programming problems that are

deceptively simple, containing intricate algorithmics (loops and recursion) that pro-

grammers tend to have a di�cult time with. Sieve of Eratosthenes falls in this

category. The Sieve appears to be very simple, and so we initially expected splicing

to be of little use. However, due to the perceived simplicity, we found that “with-

out” participants tended to write their own solutions without consulting the Internet

(even though we encouraged Internet use)—and this over-confidence resulted in buggy

programs and longer development times. Use of program splicing protected “with”

participants from such di�culties.

We also found splicing to be useful when documentation is lacking and there is not

a standard way of doing things. Consider CSV and Collecting File Names where

the o�cial Java documentation does not provide any code snippets showing how to

44

Problem p-value Avg. Number of Invocations

Sieve 0.00008 1.2

CSV 0.0002 1.2

Files 0 1

HTML 0.5 2.45

Figure 2.11 : p-value at which the null hypothesis is rejected, and the average number

of program splicing invocations for each programming problem.

parse a CSV files or how to collect file names under a directory subtree. “Without”

participants had to rely on combing through solutions from StackOverflow [62], where

multiple solutions exist, using di↵erent libraries, each with various pros and cons.

Program splicing cuts out the need for manual searching and understanding many

di↵erent possible solutions—if the splicing succeeds and passes the provided test cases,

the user can be relatively confident that the provided solution is correct.

Limitations

Finally, we summarize the limitations of our evaluation:

1. Our corpus contains over 3.5 million methods with features which ensured that

we always found relevant programs during our experiments. However, for more

obscure programming problems, it may not always be possible to find helpful

code in such a database.

2. Like most synthesis algorithms, the time complexity of our algorithm is expo-

nential, and so it is limited in its ability to handle very large draft programs.

45

3. It is unclear how to ensure that a user-provided test suite is comprehensive

enough to ensure the correctness of the synthesized program.

2.6 Summary

In this chapter, we introduce program splicing, a synthesis-based approach to pro-

gramming that can serve as a principled and automated substitute for copying and

pasting code from the Internet. The main technology is a program synthesizer that

can query a database containing a large number of code snippets mined from open-

source repositories. Our experiments show that it is possible to synthesize missing

code by combining such database queries with a combinatorial exploration of a space

of expressions and statements. We also conducted a user study and the results show

that our method could indeed boost programming productivity.

46

Chapter 3

API Refactoring

3.1 Introduction

Software refactoring involves reconstructing existing source code without modifying

the functionality. Refactoring is almost a daily routine to keep software projects clean

and organized. It includes modifications such as constructing better abstractions,

deleting duplicate codes, and breaking down a big functionality into small pieces that

are universally applicable. Keeping source code clean and organized is crucial because

software projects deteriorate. This deterioration increases the cost of maintaining

the code and even prevents programmers from implementing new functionalities or

debugging, especially with the rapid evolving of the underlying libraries and software

systems [12].

In this chapter, we focus on refactoring Application Programming Interface (API)

call sequences. An API consists of all the definitions and usages of the resources

available for external use from a software system. Almost all software systems are

built using various APIs from other software systems. The goal of performing API

refactoring is similar to software refactoring: rewrite an API call sequence into another

sequence without modifying the functionality. The di↵erence is that the new API call

sequence will use a new library or will be targeting a new platform. Moreover, the

benefit of performing API refactoring is identical to software refactoring, but API

refactoring has its additional benefits:

47

Obsolete Programs Reuse Obsolete programs typically use platforms or libraries

that are no longer maintained, and sometimes they tend to be unusable in the

current hardware or software environment. Using these dated source codes is

typically impossible unless an obsolete environment is constructed, and con-

structing such out-dated environment tends to be cumbersome and sometimes

even impossible. In this case, API refactoring can enable programmers to reuse

the obsolete source codes by refactoring the obsolete source code into a program

that uses recently developed and accessible platforms or libraries.

Better Performance and Maintainability API refactoring can improve program

execution performance if the underlying target library or platform has better

performance. This is another important reason to perform API refactoring, es-

pecially when a better library or platform is available. In addition, performing

API refactoring can improve code maintainability. This is especially true for

the target libraries or platforms that provide some degree of domain specific

language (DSL). The libraries that enhance graphical user interface (GUI) pro-

gramming, for example, tend to include a DSL which makes GUI programming

much easier.

There are two main di�culties of API refactoring: discovering semantically equiv-

alent API calls between two libraries, and how to instantiate the new API calls using

the environment’s variables without changing the functionality. One of the earliest

works [13] that aims to help API refactoring by using type constraints requires human

interventions. It only focuses on refactoring individual API calls instead of refactoring

sequences. Subsequent works have been focused on API translation or API mapping.

Natural language features such as function names and comment descriptions can be

48

used to find similar API calls [14, 15, 16]. Direct API translations can also be learned

using sequence alignment backed by statistical models, if a large number of API call

sequence pairs that are semantically equivalent is available to serve as API transla-

tion examples [19, 17]. Researchers also applied API translations and migrations in

a cross-language scenario [63, 17, 18].

In this chapter, we present a fully automated algorithm for API refactoring by us-

ing a combination of natural language techniques and program synthesis techniques.

We do not consider using direct API translation examples to train a statistical model,

because it requires a large amount of existing API translation examples which is dif-

ficult to harvest. Gokhale et al. [17] required users to exercise similar functionality

in application pairs and collected semantically equivalent sequence pairs by analyz-

ing execution traces. This data collection process becomes daunting when the goal

is to develop a general-purpose algorithm for API refactoring; it requires people to

repetitively exercise functionalities for potentially hundreds or even thousands of ap-

plication pairs.

To illustrate how a programmer uses our algorithm to refactor an API call se-

quence, suppose s/he provides an API call sequence and the name of a target library.

Our algorithm first uses a pre-trained language model to translate the given source

API calls into a set of candidate API calls for the target library. This language model

is trained using the comment text collected from all relevant APIs and also from the

Java 8 API. For each set of translated API calls, the algorithm feeds the translated

API calls into an API call sequence synthesizer called Bayou [1] which has learned all

the API usage idioms from the source code of all relevant APIs. Bayou will synthesize

a complete API call sequence that uses the target APIs.

We evaluated our algorithm on a diverse set of 37 benchmark problems which

49

contains API call sequences designed for everyday programming in the areas of I/O

operations, GUI programming, networking, and document parsing and processing.

The results from our evaluations show that our algorithm can refactor API call se-

quences with high accuracy where accuracy is defined as the largest length of the

corrected generated API call sequence in the top-10 candidate solutions. In addition,

our evaluations also demonstrate a high precision of our API translation method and

also high robustness of the API sequence synthesizer we choose to use.

Here, our main contribution to the problem of API refactoring is as follows:

1. We propose the first fully automated algorithm that refactors API call sequences

by combining natural language features and program synthesis techniques.

2. We present an implementation of our API refactoring algorithm and show that

our algorithm is able to refactor API calls accurately in a variety of benchmark

problems.

The rest of the chapter is organized as follows. Section 2 gives an overview of

the problem and our method; Section 3 defines our problem formally; Section 4

describes our API refactoring algorithm; Section 5 presents our evaluations of our

API refactoring algorithm and its individual components; Section 6 describes the

related work. We conclude in Section 7.

3.2 Motivating Examples

In this section, we describe our API refactoring algorithm using a few examples.

A programmer has written a program that uses standard Java API to create an

HTTP server showed in figure 3.1a. However, the user needs to update the program to

use a library called Grizzly [64] which provides better performance and abstraction.

50

1 void create_server(int port ,

2 String url ,

3 com.sun.net.httpserver.

HttpHandler h1,

4 org.glassfish.grizzly.

http.server.HttpHandler h2)

5 throws IOException {

6

7 // refactor:org.glassfish.grizzly

8 {

9 InetSocketAddress address = new

InetSocketAddress(port);

10 HttpServer server = HttpServer.create(

address , 0);

11 server.createContext(url , h1);

12 server.start();

13 }

14 }

15

(a) Java API

1 void create_server(int port ,

2 String url ,

3 com.sun.net.httpserver.

HttpHandler h1,

4 org.glassfish.grizzly.

http.server.HttpHandler h2)

5 throws IOException {

6

7 HttpServer server = HttpServer.

createSimpleServer ();

8 ServerConfiguration config = server.

getServerConfiguration ();

9 config.addHttpHandler(h2, url);

10 server.start();

11 }

12

(b) Grizzly

Figure 3.1 : HTTP server refactoring example

51

Without using our algorithm, the user needs to search for relevant documentations

and understand how to create an HTTP server using Grizzly framework. Then the

user needs to copy and paste the example code snippets showed in the documentation

and plug it into the current codebase by instantiating the API calls and using the

predefined variables from the original environment as the arguments for the instan-

tiated API calls. Refactoring this code snippet under a small project might be easy,

but it will become much di�cult when refactoring is done in a large software project.

However, our API refactoring algorithm provides a much easier experience of API

refactoring. The user encloses the code snippet into a block and writes down the target

library name as a comment, org.glassfish.grizzly, showed in figure 3.1a. Then

the user provides the method that contains the API sequence block with the target

library name and necessary variables which will be used in the target library such as

h2 to our algorithm as input. Our refactoring will pick up the method names such as

create, createContext and start and their associated types such as HttpServer

and understand that it needs to generate a program that uses Grizzly framework

to create an HTTP server. In the end, it will return another method that contains

another API call sequence showed in figure 3.1b which uses Grizzly and accomplishes

the same task.

The output method is guaranteed to be compilable. Not only it automatically

inserts necessary import declarations which are not shown here for brevity, but it also

works with the existing context naturally; it produces the correct API calls in the

correct order. In addition, the resulting API sequence uses the existing variables from

the original environment as input arguments correctly, using types and additional

hints from the API documentations as guidance. It also creates new objects such as

server and config that the original method misses and adds necessary exception

52

1 void list_files(String username ,

2 String password ,

3 String host ,

4 String path)

5 throws IOException {

6 ...

7

8 // refactor:net.schmizz

9 {

10 FTPClient f = new FTPClient ();

11 f.connect(host);

12 f.login(username , password);

13 FTPFile [] files = f.listFiles(path);

14 f.disconnect ();

15 }

16

17 ...

18 }

19

(a) Apache Commons Net

1 void list_files(String username ,

2 String password ,

3 String host ,

4 String path)

5 throws IOException {

6 ...

7

8 SFTPClient sftpc1;

9 List <RemoteResourceInfo > l1;

10 SSHClient sshc1;

11 try {

12 sshc1 = new SSHClient ();

13 sftpc1 = sshc1.newSFTPClient ();

14 sshc1.authPassword(username , password)

;

15 sshc1.connect(host);

16 l1 = sftpc1.ls(path);

17 sftpc1.close();

18 } catch (TransportException _e) {

19 } catch (UserAuthException _e) {

20 }

21

22 ...

23 }

24

(b) SSHJ

Figure 3.2 : List files in an FTP server

handlings if necessary, which will be shown in the next motivating example. We

emphasize that the user does not need to know how to create an HTTP server using

Grizzly exactly, although s/he is required to provide necessary variables such as an

HTTP handler named h2 for the target library before refactoring.

Our algorithm is also able to refactor other API call sequences. Figure 3.2a shows

an API call sequence that uses Apache Commons Net [65] to list files in an FTP server.

Our algorithm can take this API calls sequence and the target library name suggested

53

1 void read(String filename)

2 throws IOException {

3 String text;

4

5 // refactor:org.apache.pdfbox

6 {

7 PdfReader reader = new PdfReader(

filename);

8 text = PdfTextExtractor.

getTextFromPage(reader , 1);

9 reader.close();

10 }

11

12 return text;

13 }

14

(a) ITextPDF

1 void read(String filename)

2 throws IOException {

3 String text;

4

5 PDFTextStripper pdfts1;

6 PDDocument pdd1;

7 File arg01;

8 try {

9 pdd1 = PDDocument.load((arg01 = new

File(filename)));

10 pdfts1 = new PDFTextStripper ();

11 text = pdfts1.getText(pdd1);

12 } catch (InvalidPasswordException _e) {

13 }

14

15 return text;

16 }

17

(b) PDFBox

Figure 3.3 : Read from a PDF document

and generate another sequence that uses SSHJ [66] and does the same task. Notice

that our algorithm creates a new SSHClient object and a new SFTPClient object.

It also adds checks to handle TransportException and UserAuthException, since

they were not handled in the original input method.

Figure 3.3 shows another example where a programmer needs to refactor an API

call sequence that uses ITextPDF [67] to read from a PDF document into another

API call sequence that uses PDFBox [68]. Similar to the previous example, our algo-

rithm creates additional necessary objects and exception handling checks. This is an

example which demonstrates that our algorithm can refactor API call sequences for

di↵erent application domains.

54

3.3 Problem Definition

Our system works with a subset of the Java programming language. We define T as a

set of types and M as a set of methods. Each type has its constructors and methods

and each method is defined as

to.m(t1, t2, . . . , tn) : r

where to is the type that owns the method, m is the method name, t1, t2, . . . , tn are

the types of the formal parameters and r is its return type. An API call c is defined

as

v = o.m(a1, a2, . . . , an)

where o : to is an object and a1 : t1, a2 : t2, . . . , an : tn are the input arguments of the

API call. v : r is an optional object that receives the return value of the call if r is

not void. Then an API call sequence s is a sequence of API calls:

s : rn = c1, c2, . . . , cn

We denote the type of a sequence s to be the return type of the last API call. We

also define a function ut(s) to be a finite set of types used in all API calls contained

in s which includes the types that own the methods, all the argument types and all

the return types.

The semantics of an API call sequence can be defined in the standard way with

the exceptions that we do not allow generic types. However, we permit static calls,

constructors and inheritance in our setting. If a call is a static call, an object o is not

required. Constructors can be derived from changing the method name to new and

the return type can be the owning type. Inheritance gives us a notion of subtyping

relations between objects.

55

Let us define Ts as a finite set of source types, Tt as a finite set of target types, si as

an input API call sequence under that ut(si) ✓ Ts and tr 2 Ts

T
Tt as a requirement

type. Our objective is to find another API call sequence so : tr under the condition

that ut(so) ✓ Tt and that si is semantically equivalent to so.

3.4 Method

In this section, we present our API refactoring algorithm in detail. Our algorithm

has two main subproblems: API translation and API call sequence synthesis. As we

discussed in the introduction, we do not consider training a statistical model to learn

direct API refactoring, because of the scarcity of training data. Generating a large

number of pairs of similar API call sequences require humans to manually exercise

similar functionalities and collect execution traces in hundreds of applications, which

is a daunting task. We avoid such problem by breaking the API refactoring problem

the two subproblems we mentioned above. In this way, we can make use of accessible

resources such as Javadoc comments and API usages available in open source projects

to still accomplish the task of API refactoring.

Algorithm 3 shows the overall algorithm. At line 1, we first translate the input API

call sequence s into a set of candidate API calls S 0 using the API calls defined under

the library k. Then at line 3, we use an API call sequence synthesizer to synthesize a

candidate API call sequence solution s
⇤ for each sequence s

0 2 S
0. Finally, we return

the sequence in which the return type is a subtype of the given requirement return

type t. Next, we start describing our API translation method followed by the API

call sequence synthesizer we choose.

56

Procedure 3 refactor
Require: An API call sequence, s, a target library k and a required return type t

Ensure: An API call sequence s
⇤ containing only API calls defined in k

1: S 0 translate(s, k)

2: for s
0 S

0 do

3: s
⇤ synthesize(s0)

4: if match type(s⇤, t) then return s
⇤ end if

5: end for

6: return null

3.4.1 API Translation

The first step is to translate a set of individual API calls from a library into another

set of API calls defined in another library. Here, we borrow the idea from [14] and

use natural language features as a glue to translate API calls. Given two sets of API

calls across two di↵erent libraries, we translate the calls by calculating the pair-wise

similarities. Specifically, when we try to translate a method m1 from a library A,

we calculate the method similarity score between m1 and all the methods in library

B. We choose m2 from library B as the translation target if m1 is the most similar

to m2 numerically. The similarity score between the two methods is defined as the

weighted sum of the following three components. Figure 3.4 shows an example API

translation:

Name Similarity The name of a method typically carries useful semantic infor-

mation about the method. The name similarity is defined as the standard

57

cosine similarity between two word embeddings. To obtain word embeddings,

we use FastText [69], because FastText allows us to generate meaningful and

accurate embeddings even for CamelCase words such as BinarySearch and

GetInputStream.

Type Similarity We treat types as natural language words in this case. Similar to

name similarity, the type similarity is defined as the cosine similarity between

two word embeddings using FastText.

Description Similarity The description of a method is a list of sentences extracted

from the Javadoc comment. We use BERT [70] because it can capture contex-

tual information about words, in addition to semantic meaning. The similarity

between two method description can be derived by calculating the sentence

similarity.

We give more weights to description similarity and less weights to the rest because

in most cases descriptions carry the most important information. We only use the

first two sentences of the description if there are more than two sentences, because

the first two sentences are the most important and typically the rest of the text

is misleading. We also set a similarity threshold in order to prevent meaningless

translations. If two words are not similar enough, we will discard the translation.

This is necessary to prevent unreasonable translations especially when two libraries

have di↵erent terminologies and coding practices. We will discuss this issue later

in the evaluation section. Finally, we extract the text from the Javadoc of all the

relevant methods along with the text from Java 8 standard library Javadoc to train

FastText and BERT.

58

Name: clean

Type : TagNode

Desc : Parse an html document string

(a) HtmlCleaner’s parse function

Name: parse

Type : Document

Desc : Parse HTML into a Document.

(b) Jsoup’s parse function

Figure 3.4 : API translation example

3.4.2 API Call Sequence Synthesis

The next step is to synthesize complete API call sequences using a set of trans-

lated API calls. Here we use Bayou [1] to synthesize API call sequences. Bayou is

a conditional program generation system. Given an evidence containing names of

API methods and relevant types, it is able to synthesize a set of complete API call

sequences that use the API calls or relevant types suggested in the provided evidence.

Figure 3.5a shows an example program where the goal is to log into an FTP

server and list the files in a given path. The evidence here contains call names such

as connect and ls, indicating that the user needs to extract the file names in the

given path. Bayou takes this evidence along with the variables in the environment

and generates some candidate API call sequences. One example candidate sequence

is showed in figure 3.5b.

Bayou works by learning over program sketches which abstracts out noises such

as concrete names and operations. It uses a probabilistic encoder-decoder called

Gaussian Encoder-Decoder to learn a distribution over program sketches conditioned

on evidences. To synthesize a program given an evidence, it samples sketches from

the distribution using the provided evidence. Then it uses combinatorial search to

59

1 void list_files(String username ,

2 String password ,

3 String host ,

4 String path)

5 throws IOException {

6 {

7 ///call:close call:ls

8 ///call:connect call:authPassword

9 }

10 }

11

(a) Evidence for FTP file listing

1 void list_files(String username ,

2 String password ,

3 String host ,

4 String path)

5 throws IOException {

6

7 SFTPClient sftpc1;

8 List <RemoteResourceInfo > l1;

9 SSHClient sshc1;

10 try {

11 sshc1 = new SSHClient ();

12 sftpc1 = sshc1.newSFTPClient ();

13 sshc1.authPassword(password , password)

;

14 sshc1.connect(host);

15 l1 = sftpc1.ls(host);

16 sftpc1.close();

17 } catch (TransportException _e) {

18 } catch (UserAuthException _e) {

19 }

20 }

21

(b) Sketch example generated by Bayou

Figure 3.5 : API translation example

60

concretize the sampled sketches into type-safe programs.

To use Bayou in our scenario, we first train Bayou using the training data gath-

ered from the source code of all relevant libraries and methods. The training data

contains a large amount of program-evidence pairs where the evidence consists of the

names of the method calls in the corresponding program. This training data associate

the evidences with the API call sequences used in the corresponding program. To

synthesize a candidate API call sequence, we feed a set of translated API calls s0 to

Bayou. Bayou will sample a set of sketches from the learned distribution, concretize

the sketches and returns the synthesized programs consisting of the target API call

sequences. The input program in figure 3.5a shows an example translated API calls

such as connect and ls and figure 3.5b shows the concretized program generated

by Bayou. Bayou typically synthesizes multiple candidate programs. To generate a

correct solution, we enumerate all the candidate sequences and return the first top-k

programs where the return type is a subtype of the requirement type.

One feature of Bayou is that it guarantees to generate type-safe programs, as their

paper suggests [1]. However, while using Bayou to synthesis API call sequences, we

notice that Bayou sometimes fails to generate arguments, especially for the arguments

that have the same type. Figure 3.5b shows such an example, where it fails to generate

correct arguments for method calls such as authPassword, and ls. Although Bayou

is able to produce type-safe API call sequences, it tends to fail when types cannot

help.

To solve this problem, we create semantic models for variables by using the li-

braries’ source code. These semantic models can guide us to generate correct argu-

ments. Figure 3.6 illustrates the argument matching method using an example which

tries to refactor an API call for logging into an FTP server. In the first step, we

61

Figure 3.6 : Argument matching

do not know anything about the variables s1 and s2, but we can inspect the formal

parameters of the method login through its method call. From the source code, we

can construct semantic models for s1 and s2 using relevant natural language features

such as their formal parameter names, password, and username. The second step

involves normal API translation step which translates login into authPassword. In

the third step, we can inspect the source code of authPassword and match the nat-

ural language features of the formal parameters to the semantic models of s1 and

s2. Finally, we can use s1 and s2 as the first and the second arguments respectively

according to the matching result. Notice that a semantic model does not have to

use formal parameter names or even natural language features as the primary driver.

Anything that has semantic information would su�ce.

62

1 // refactor:net.schmizz

2 {

3 FTPClient f = new FTPClient ();

4 f.connect(host);

5 f.login(username , password);

6 f.retrieveFile(path , out);

7 f.disconnect ();

8 }

9

(a) Input for FTP upload

1 SSHClient ssh = new SSHClient ();

2 SFTPClient ftp = ssh.newSFTPClient ();

3 ssh.authPassword(username , password);

4 ssh.connect(host);

5 ftp.get(path , filename);

6 ssh.disconnect ();

7

(b) Output for FTP upload

Figure 3.7 : FTP upload benchmark problem

3.5 Evaluation

In this section, we evaluate the performance of our refactoring algorithm by conduct-

ing a series of experiments. These experiments consist of running our refactoring

algorithm on various inputs and test how well the algorithm would produce the ex-

pected API sequence. In addition, we evaluate the performance of our API translation

component to test if it can translate API calls accurately enough for the API call se-

quence synthesizer to produce correct sequences. Then we see if Bayou, the API call

sequence synthesizer we choose, is a good choice for API refactoring, by testing its

robustness given translated API calls in various degree of accuracies.

3.5.1 Benchmarks

Our benchmark problems consist of refactoring API call sequences from various do-

mains including CSV handling, networking, document processing, and machine learn-

ing. For each benchmark problem, our algorithm needs to refactor an input API call

sequence into another sequence using the API calls defined in another library. Fig-

ure 3.7 shows an example benchmark problem where the input program uploads a file

63

1 // refactor:org.apache.pdfbox

2 {

3 PdfReader reader = new PdfReader(

filename);

4 String text = PdfTextExtractor.

getTextFromPage(reader , 1);

5 reader.close();

6 }

7

(a) Input for PDF read

1 File infile = new File(filename);

2 PDDocument document = PDDocument.load(

infile);

3 PDFTextStripper stripper = new

PDFTextStripper ();

4 String text = stripper.getText(document);

5 document.close();

6

(b) Output for PDF read

Figure 3.8 : PDF read benchmark problem

to a remote FTP server. The enclosing context which includes variable declarations

and parameters are omitted for brevity here. Figure 3.8 shows another example where

the goal is to get the text as a string from a given PDF document.

To test the performance of our refactoring algorithm quantitatively, we define

refactoring accuracy as the highest percentage of the correct API calls generated in

the top-10 programs. A refactoring algorithm that achieves high accuracy in our

benchmark problems is considered e↵ective.

3.5.2 Experiments

We implemented our algorithm in Scala 2.12.3 and 64-bit OpenJDK 8 and the al-

gorithm runs on a 2.2GHz Intel Xeon CPU with 40 cores with 500GB RAM. For

each benchmark problem, we record the highest refactoring accuracy among the top-

10 programs. We also set the time limit to be 10 minutes and we abort any run

that exceeds the time limit. Figure 3.9a shows the accuracies of the runs on all the

benchmark problems with and without considering argument correctness.

According to the results, we can see that our refactoring algorithm is quite e↵ective

64

0%
25%
50%
75%

100%

FT
P

lo
gi

n
H

TT
P

se
rv

er
FT

P
de

le
te

C
SV

 w
rit

e
C

SV
 d

at
ab

as
e

FT
P

lis
t

em
ai

l l
og

in
N

LP
 s

en
te

nc
e

N
LP

 to
ke

n
N

LP
 ta

g
N

LP
 s

te
m

M
L

cl
us

te
r

C
SV

 re
ad

C
SV

 d
el

im
ite

r
em

ai
l c

he
ck

em
ai

l d
el

et
e

FT
P

up
lo

ad
FT

P
do

w
nl

oa
d

H
TT

P
ge

t
pd

f r
ea

d
M

L
cl

as
si

fic
at

io
n

M
L

ne
ur

al
 n

et
w

or
k

H
TT

P
po

st
gr

ap
hi

cs
H

TM
L

ad
d

no
de

M
L

re
gr

es
si

on
H

TM
L

ad
d

at
tr

em
ai

l s
en

d
pd

f w
rit

e
H

TM
L

rm
 a

ttr
H

TM
L

sc
ra

pi
ng

H
TM

L
pa

rs
e

H
TM

L
tit

le
H

TM
L

w
rit

e
w

or
d

re
ad

w
or

d
w

rit
e

gu
i

Accuracy

(a) Overall refactoring accuracy

0%
25%
50%
75%

100%

FT
P

lo
gi

n
H

TT
P

se
rv

er
FT

P
de

le
te

C
SV

 w
rit

e
C

SV
 d

at
ab

as
e

FT
P

lis
t

em
ai

l l
og

in
N

LP
 s

en
te

nc
e

N
LP

 to
ke

n
N

LP
 ta

g
N

LP
 s

te
m

M
L

cl
us

te
r

C
SV

 re
ad

C
SV

 d
el

im
ite

r
em

ai
l c

he
ck

em
ai

l d
el

et
e

FT
P

up
lo

ad
FT

P
do

w
nl

oa
d

H
TT

P
ge

t
pd

f r
ea

d
M

L
cl

as
si

fic
at

io
n

M
L

ne
ur

al
 n

et
w

or
k

H
TT

P
po

st
gr

ap
hi

cs
H

TM
L

ad
d

no
de

M
L

re
gr

es
si

on
H

TM
L

ad
d

at
tr

em
ai

l s
en

d
pd

f w
rit

e
H

TM
L

rm
 a

ttr
H

TM
L

sc
ra

pi
ng

H
TM

L
pa

rs
e

H
TM

L
tit

le
H

TM
L

w
rit

e
w

or
d

re
ad

w
or

d
w

rit
e

gu
i

Translation accuracy

(b) Translation accuracy considering top-5 results

0%
25%
50%
75%

100%

FT
P

lo
gi

n
FT

P
de

le
te

FT
P

lis
t

N
LP

 s
en

te
nc

e
N

LP
 to

ke
n

N
LP

 ta
g

N
LP

 s
te

m
M

L
cl

us
te

r
H

TT
P

se
rv

er
C

SV
 w

rit
e

C
SV

 d
at

ab
as

e
em

ai
l c

he
ck

em
ai

l l
og

in
C

SV
 re

ad
C

SV
 d

el
im

ite
r

em
ai

l d
el

et
e

FT
P

do
w

nl
oa

d
M

L
cl

as
si

fic
at

io
n

H
TM

L
ad

d
at

tr
H

TM
L

pa
rs

e
FT

P
up

lo
ad

H
TT

P
ge

t
pd

f r
ea

d
M

L
ne

ur
al

 n
et

w
or

k
H

TT
P

po
st

gr
ap

hi
cs

H
TM

L
ad

d
no

de
M

L
re

gr
es

si
on

em
ai

l s
en

d
pd

f w
rit

e
H

TM
L

sc
ra

pi
ng

H
TM

L
rm

 a
ttr

H
TM

L
tit

le
H

TM
L

w
rit

e
gu

i
w

or
d

re
ad

w
or

d
w

rit
e

Min Bayou calls

(c) Minimum calls required for Bayou to synthesize correct sequence

0%
25%
50%
75%

100%

FT
P

lo
gi

n
FT

P
de

le
te

FT
P

lis
t

N
LP

 s
en

te
nc

e
N

LP
 to

ke
n

N
LP

 ta
g

N
LP

 s
te

m
M

L
cl

us
te

r
H

TT
P

se
rv

er
C

SV
 w

rit
e

C
SV

 d
at

ab
as

e
em

ai
l c

he
ck

em
ai

l l
og

in
C

SV
 re

ad
C

SV
 d

el
im

ite
r

em
ai

l d
el

et
e

FT
P

do
w

nl
oa

d
M

L
cl

as
si

fic
at

io
n

H
TM

L
ad

d
at

tr
H

TM
L

pa
rs

e
FT

P
up

lo
ad

H
TT

P
ge

t
pd

f r
ea

d
M

L
ne

ur
al

 n
et

w
or

k
H

TT
P

po
st

gr
ap

hi
cs

H
TM

L
ad

d
no

de
M

L
re

gr
es

si
on

em
ai

l s
en

d
pd

f w
rit

e
H

TM
L

sc
ra

pi
ng

H
TM

L
rm

 a
ttr

H
TM

L
tit

le
H

TM
L

w
rit

e
gu

i
w

or
d

re
ad

w
or

d
w

rit
e

Important calls

(d) Number of important calls fed to Bayou during overall refactoring accuracy evaluation

Figure 3.9 : Evaluation results of our overall algorithm and each individual component

65

1 BodyContentHandler handler = new

BodyContentHandler ();

2 TikaConfig tika = TikaConfig.

getDefaultConfig ();

3 Metadata metadata = new Metadata ();

4 Parser parser = tika.getParser ();

5 ParseContext context = new ParseContext ();

6 parser.parse(stream , handler , metadata ,

context);

7 String text = handler.toString ();

8

1 XWPFDocument docx = new XWPFDocument(

stream);

2 XWPFWordExtractor we = new

XWPFWordExtractor(docx);

3 String text = we.getText ();

4

Figure 3.10 : Reading from a Word document

and accurate. It can successfully refactor API sequence as long as the API translation

achieve high accuracy. In some cases such as Checking Email and FTP download,

even though our API translation result is not perfect and cannot translate all API

calls, the API sequence synthesizer can still infer correct API call sequence and pro-

duce the right output.

However, our refactoring algorithm can fail in the following cases:

Di↵erent terminologies Sometimes di↵erent libraries might have di↵erent cod-

ing practices and methodologies. Figure 3.10 shows such an example. In

Word Reading problem, two libraries, Apache Tika and Apache POI, are used

for extract text from a Microsoft Word document. Apache Tika requires objects

such as a BodyContentHandler, a TikaConfig, a Metadata and etc., whereas

Apache POI only requires XWPFWordExtractor. This leads to a significant dif-

ference in their Javadoc comments in terms of terminologies. As a result, our

API translation algorithm fails to find semantic similar words, which leads to

translation failure. In short, our API translation cannot work with libraries

66

that have di↵erent vocabularies.

Rare sequences Some API sequences such as open-read-close are quite common

in the data used to train the API sequence synthesizer. Typically the synthesizer

can easily generate these sequences. However, the synthesizer tends to fail to

synthesize rare sequences in some benchmark problems such as Sending Emails

and PDF Writing, because Bayou fails to learn those sequences. This is one of

the common problems with corpus-driven program synthesis [71].

API translation evaluation

It is important to study the overall accuracy of our API translation method, be-

cause the synthesis step depends on the quality of API translation heavily. Here the

accuracy is defined as the percentage of corrected translated API calls in top-k trans-

lations. Since all translations are based on calculating similarities between words,

we collected the text from all the relevant APIs’ Javadoc comments and also from

the Java 8 standard API. We then used all the text and trained FastText and BERT.

The goal is to have a statistical model that allows us to calculate similarities between

terms specific to Java programming. Table 3.1 shows ten similar words associated

with some selected query words. We can see from the table that our FastText model

seems e↵ective in grouping the words that have similar semantic meaning.

Figure 3.9b shows the accuracies of translating API calls across two libraries.

Given an API call, our algorithm outputs multiple candidate translations ordered

by similarity descendingly, and we define accuracy as the percentage of correctly

translated API calls appearing in the top-k results. We plot the accuracies when

we consider top-5 API call translation results. We can see that for most benchmark

problems, our method is quite accurate; in most cases, correct translations appear in

67

Query word Similar words

int integer, float, long, double, short

ftp nntp, smtp, secret, pixmap, out-of-synch

button rollover, radio, tooltip, checkbox, click

index IndexFrom, MenuIndex, ListIndex, occurrence, nth

stream InputStream, StreamB, BufferTest, console, AccessFile

image gif, animation, texture, BufferedImage, RenderedImage

email bcc, recipient, sender, addresse, mail

vector scalar, dense, product, kernel, matrix

Table 3.1 : Similar words generated by FastText

the first three results. However, our translation fails for some benchmark problems

such as Word read and Word write. The main reason is that the terminologies and

coding practices across these libraries are di↵erent; it is hard to establish API call

mappings between them. Figure 3.10 shows two programs that read from a Word

document. One program requires objects such as Metadata, Parser, ParseContext,

while the other requires XWPFDocument and XWPFWordExtractor. It is impossible to

translate concepts like BodyContentHandler and Metadata across two programs.

Synthesizer evaluation

Having evaluated our translation method, let us switch to the API synthesizer we

use, Bayou. The main question we need to answer here is: is Bayou a good choice

for synthesizing API call sequences in our setting, given various translation inputs?

It is important to understand how robust Bayou is and when would Bayou fail. If we

68

provide fewer API calls to Bayou, will it still be able to synthesize the correct API

call sequence?

Figure 3.9c shows the proportions of translated API calls we need to feed into

Bayou in order to have the correct API call sequence. 0% means Bayou cannot

synthesize the correct sequence given all necessary API calls. From the figure we can

see that even if we omit a small portion of calls, Bayou is still able to synthesize

correct sequences, indicating that Bayou is seemingly robust. However, this begs

another question: which API calls can we omit? As we tried di↵erent combinations

of API calls to feed Bayou, we discovered that we can omit API calls that serve as

bases for other API calls. For example, figure 3.7a shows a program that downloads

a file from an FTP server. The gist of the calls in this program is retrieveFile and

disconnect, as retrieveFile depends on connect and login; Bayou can easily

infer the basis API calls from retrieveFile.

This result indirectly leads to another question: is Bayou able to synthesize correct

API call sequence when we give only important calls and ignore the bases? We

recorded the numbers of important calls fed into Bayou during the runs for the

benchmark problems and figure 3.9d shows the result. As we can see that for the cases

where all important calls are provided it is very likely that the final synthesis accuracy

will achieve at least 75%. If at least one important call is missing, the accuracy tends

to drop significantly. One exception is the GUI problem where redundant and noisy

calls are fed into Bayou which also causes the failure.

Bayou also fails to synthesize correct sequences when the input API calls cannot

help identify the correct sequence. In HTML title problem where the goal is to parse

an HTML string and call title to get the title of the HTML document, Bayou cannot

use the calls such as title to synthesize correct sequences, since title is widely used

69

in many other tasks which provides little information. Another reason why Bayou

might fail is that the particular API sequence we need to synthesize is quite rare in

the training data as we discussed above. In the graphics benchmark problem, we

discovered that sequences which contains a drawRect call that followed by another

drawImage call are quite rare in our training data.

3.5.3 Limitations

Finally, we summarize the limitations of our algorithm:

1. Our algorithm relies on API translations as the first step. However, the API

translation method will fail if the terminologies vary dramatically across two li-

braries. These libraries tend to use words that have di↵erent semantic meanings

to describe the same functionality, which prevents accurate API translations.

2. We use Bayou to synthesize complete API call sequences by taking individual

translated API calls as input. Bayou learns API usage idioms from relevant

source code as the training data, but sometimes it fails to generate the target

sequence that does not appear in the training data.

3.6 Summary

Software refactoring has been a cumbersome task and also is as di�cult as software

development. Meanwhile, code refactoring plays an important role in maintaining

dated programs and also in improving existing codebase in terms of functionality

and performance. In this paper, we propose an algorithm for API refactoring, which

refactors an API call sequence into another without modifying the functionality. We

first translate the input API call sequence into a set of individual API calls defined

70

in the target library. Then we use an API sequence synthesizer to generate a com-

plete API call sequence. We evaluated our algorithm on a diverse set of benchmark

problems. The results showed that our algorithm can refactor API sequences with

high accuracy.

71

Chapter 4

Related Work

4.1 Program Synthesis and Reuse

The problem of program synthesis has been considered for a long time. Pnueli and

Rosner studied the problem of synthesizing [28] for reactive systems where they devel-

oped an algorithm for synthesizing a finite-state reactive program satisfying a given

specification and a better algorithm for checking the emptiness of automata on infi-

nite trees. Jobstmann et al. [72] considered consider the problem of program repairs

as a game by turning an LTL game into a program game by freeing the values of

expressions. Finally, they showed a polynomial-time heuristic for generating mem-

oryless strategies. People used deductive and SMT Solvers for program synthesis.

Manna and Waldinger [24] introduces a deductive based theorem-proving technique

for program synthesis where they presents a series of deduction rules. Torlak and

Bodik[73] presents a symbolic virtual machine (SVM) which compiles to constraints

using only a small subset of a DSL designed by the user. They use type-driven state

merging to solve the problem of exponential state blowup, and it provides an interface

for DSL designers to extend symbolic evaluation to unlifted operations.

Providing additional constraints has been proved to be e↵ective in reducing the

search space. SKETCH [7] uses SAT solves and counterexample-driven method to

synthesize constant values in a finite and partial programs. SKETCH also uses a

subset of C grammar, but our method could synthesize blocks of code instead of

72

constant values. Syntax-guided synthesis [29] uses CEGIS and syntax to guide the

search and they have showed some successes in synthesizing reasonable-sized and

correct programs. Kuncak et al. [74] turns a decision procedure into a synthesis

procedure for quantifier-free formulas for various theories. Similar to our method,

template-based method [8] uses programmer-defined template to guide the search for

verification and synthesis. However, they convert the template into a set of constraints

to do synthesis.

Synthesis using inductions and examples has been studied for a long time. THESYS [75]

is an automatic program system for synthesizing recursive LISP programs from exam-

ples. Kitzelmann and Schmid [76] extends the previous work by developing a method

which can induce multiple recursive equations in one synthesizing step. Using type

to guide the search space has been showed to be quite e↵ective [30, 77]. Induction-

based synthesis has also been applied to many kinds of application domains including

geometry construction problems [10] and spreadsheet data manipulation [9].

Code Conjure [54] was one of the earliest works that considered the problem of

code reuse. It works by first search for relevant software components from a search

engine which supports a special query language designed specifically for code search.

Then it uses the user-provided tests to select the best software components into

programmers’ working environment. This idea is very similar to our program splicing

method, but Code Conjure only works at the granularity of functions. CodeGenie [55]

proposed a similar idea using a better code search engine called Sourcerer [45]. They

presented an implementation as an Eclipse plugin. Reiss [53] proposed a similar

method for code search as well, but with more emphasis on code search. We will

discuss their methods in detail in section. In summary, the methods mentioned here

consider reuse programs at the granularity of functions. On the other hand, our

73

method provides a Sketch-like interface where programmers can leave holes. Our

method allows reuse at the level of statements and expressions, making it more likely

that reuse is applicable.

Gilligan [78] proposed a more advanced method for code reuse. It captures the

developer’s intent by using a programmatic-reuse plan. This programmatic-reuse

plan helps Gilligan migrating the external source code into the developer’s working

environment by determining the source code component for reuse and adding and

deleting source code necessarily. They evaluated their method by conducting a user

study which demonstrated that their tool could save more time. Our idea of program

splicing is very similar to Gilligan, except that we use combinatorial search combined

with tests to integrate external code snippets.

Narasimhan and Reichenbach also considered the problem of copy-and-paste [79]

and they seeks to redeem copy-and-paste through a method that finds clones of a

fully written program and automatically merges these cloned code with the new code.

However, their work only considers extremely similar programs whose parse trees are

a few edits away and does not consider draft programs. In contrast, our approach can

bring arbitrary programs from the internet into a programming context, and uses a

combinatorial synthesizer to splice this code into the context.

Genetic programming has also been used for code transplantation. µ-Scalpel [32]

is a well known tool that uses genetic search to transplant a software component

into software project. µ-Scalpel uses genetic programming to search for relevant

code fragments and filters out the undesired ones by using user-provided tests. They

have showed that they are able to transplant major software components into one

another. Subsequent works focused on applying the idea to real-world projects such

as Pidgin [80], Kate [81] and helping citation services [82]. Genetic programming

74

has also been applied to improve the performance of C++ programs with the help of

a Boolean satisfiability (SAT) solver [83]. Although genetic programming has been

showed to be e↵ective in code transplantation, it su↵ers from e�ciency problem, as

we discussed in section 2.5 where it fails most of our benchmark problems.

CodePhage [33] transplants arbitrary code snippets across di↵erent applications,

but it focuses on applying patches to existing buggy applications where the patches are

generated from external source code. It first identifies the branches in the applications

that triggers errors. Then it search for candidate donors and insertion points that

potentially eliminate the errors. Finally it validates the patches by running regression

tests. The idea of CodePhage is very similar to our splicing method, but CodePhage

exclusively targets to applying patches for binary programs. It is unknown if its

application could be broader and if it can be used in the source code level.

4.2 Data-driven Program Synthesis

With the booming of online source code repositories and the popularity of Massive

Open Online Courses (MOOCs), some interesting work has been focused on the tasks

involving dealing with a large amount of program source code. Hindle et al. [39]

studied a large amount of source codes available online and discovered that source

codes written by real programmers are highly repetitive and predictable. Therefore,

they found out that statistical language models can capture local regularities in real-

world softwares. They indicated that those learned models can be used for code

completion and prediction.

Mishne et al. [20] focuses on mining the specification for API calls from a large

amount of code snippets. It first collects the source code from popular source code

repositories such as GitHub and SourceForge. Then a large number of partial speci-

75

fications are derived from small code snippets from those source codes. Finally, com-

plete API specifications can be consolidated from those partial specifications. They

also showed that those API specifications have been showed to be useful in several

tasks, including API call predictions and static analysis.

Online source code can also be used in general static analysis. JSNice [2] is a pop-

ular tool that deobfuscates JavaScript programs by renaming variables and inferring

variable types. It works by using conditional random fields (CRF) to learn program

properties from a corpus of JavaScript source codes. These properties typically con-

sist of variable types and names. After a CRF finishes learning those properties, it

can be used to predict variable names and types. They also evaluated their model and

showed the e↵ectiveness of their method. In the context of MOOC, a large amount

of source code has been showed to be e↵ective in grading graphical programs with

high-level specification [84]. The idea is to first learn hidden specifications from a

large amount of syntactic and semantic features of highly scored programs, and then

we can grade another unseen program by comparing the unseen features with the

learned specifications.

Raychev et al. [38] particularly focuses on learning programs from noisy data.

They propose a combination of a regularized program generator and a dataset sampler

to create a feedback loop which can detect errors and avoid overfitting. They have

showed that their method is very e↵ective in synthesizing bitstream programs using

incorrect program examples and also in dealing the growth of new examples. In

addition, they also design a domain specific language (DSL) for a new code completion

system which has been showed to be more flexible and generalizable compared to other

existing code completion methods.

Using statistical methods to help API call prediction has been showed to be very

76

e↵ective. Traditional language model such as N-Gram and recurrent neural networks

(RNN) can be learned from a large amount of API call sequences [21]. N-Gram model

can be more e↵ective in predicting short sequences, whereas RNNs is better at predict-

ing long sequences. Baysian model [22] can also be used to learn API specifications

and detect API usage anomalies. In addition, Murali et al. [1] also have showed that

deep learning can also be used to learn API specifications which in turn can predict

API call sequences. The novelty in this work is that it learns abstract representations

of API call sequences instead of concrete sequences. They have showed that these

abstract representations can also be used for API call predictions. GraLan [85] is

a graph-based statistical model for code suggestion. It represents code snippets by

analyzing abstract syntax trees (AST) and constructing graphs which can capture

control flows better than traditional language model such as N-Gram. They have

showed that these graph-based models can be e↵ective in predicting API calls and

small program expressions.

Deep learning has gained much attention in recent years and DeepCoder [23] is

one of the earliest work which shows deep learning can help program synthesis. They

design a small DSL that can represent common data processing and manipulation

tasks. After they have programs expressed in the DSL, they can train their RNN by

generating a large number of input-output examples and feed those examples into the

neural network. They have showed that their RNN can speed up the synthesis process

by an order of magnitude. However, their method is limited to synthesizing small

programs; they have not showed that their model can synthesize larger programs.

Online code corpus can also be used for program repair and patch generations.

Prophet [86] focuses on program repair by using a set of program transformations

learned from a large amount of existing patches gathered from online repositories.

77

These transformations include inserting/deleting statements and guards. Then it uses

the derived transformations combined with Staged Program Repair [26] to generate

and validate candidate patches. They have showed that their method can generate

patches for real-world applications. CodePhage [27], as we discussed in section 4.1

transfers correct code from donor applications into a buggy application.

Similar to our splicing work, some researchers have also tried to use a combination

of natural language and program snippets to predict code snippets and API calls.

SWIM [34] first takes a user query which contains English words indicating the API

of interest. Then it uses the clickthrough data gathering from well-known search

engine such as Bing to look for relevant API code snippets and represent them using

a special structure which captures simple control flows such as branches and loops.

They have evaluated their method using 30 API related queries and their method can

produce relevant solutions in top-10 results in all benchmark problems. AnyCode [57]

has very similar idea, but it uses a probabilistic context free grammar to represent Java

constructs and method calls and a customized natural language processing engine to

extract informations from queries. They have showed that their method is flexible in

handling queries and it is able to repair incorrect Java expressions. These two works

are very similar to our program splicing, but SWIM and AnyCode only focuses on

generating API code snippets whereas our splicing method is more general.

4.3 Code Search

The purpose of code search is to quickly search a large code corpus for the source

code that is relevant to a task. It plays a significant role in data-driven program

synthesis. Roy et al. [87] have given a comprehensive survey of various techniques for

similar code search and code clone detection. They classified those techniques into

78

four categories: textual, lexical, syntatic and semantic. We will next introduce these

techniques briefly.

Textual-based techniques treats program source code as strings. Comparisons

between programs are done directly on those strings with little or even no prepro-

cessings. Therefore, textual-based methods can extract “fingerprints” from program

source codes and they are often used to detect exact matches. Lexical-based methods

typically use parsers to extract tokens from programs. Then comparisons are done

on the extracted token sequences. Programs with duplicate subsequences are con-

sidered as similar or duplicates. Compared to textual-based methods, lexical-based

techniques can handle simple formatting and spacing issues during code comparisons.

Syntatic-based methods typically require input source code to be parsed into abstract

syntax trees (AST). Then tree matching techniques can be used to compare those

ASTs. Sometimes structural metrics are defined to help the comparisons. Syntactic-

based methods are typically more robust than lexical-based methods in dealing with

noises such as positional changes. Finally, semantic-based methods use static analysis

on input programs to extract semantic informations which will later be used for com-

parisons. Program dependency graphs and types are usually extracted as semantic

informations.

DECKARD [88] is a scalable and e�cient code clone detector that uses syntactic

approach. It extracts syntax features from source code and represents those features

using real vectors. The programs along with their feature vectors will be clustered

together, and the programs in the same cluster are consider similar. They presented

an implementation of their method called DECKARD and they have showed that their

method is able to detect code clones in C and Java. Keivanloo et al. [89] supports

free-form queries for similar code search. It works by first construct a database

79

of programs with their extracted keyword sequences. Code search is done by first

accepting a free-from query from the user which will be translated into a set of query

keywords. These query keywords will be used for code search in the end. They

have showed that their method can be integrated into existing web-based code search

engine and that it outperforms existing web-based code search engines. Our code

search technique in the splicing work also supports free-form queries, but our search

technique depends on comparing natural language features instead of syntactic and

semantic features from source codes.

Reiss [53] proposed a code search engine that allows users to specify various se-

mantic constraints. These semantic constraints include function signatures, security

constraints and input-output constraints. Reiss presented an implementation of the

code search and showed that using a combination of these constraints along with post-

processing can be e↵ective in locating program components that were not accessible

using traditional code search engine.

One of the drawback of Reiss’s method is that sometimes it might be di�cult to

specify some semantic constraints. Stolee and Elbaum [90] improved on semantic code

search by using SMT solvers which accepts lightweight specifications. Compared to

Reiss’s method, those lightweight specification allows users to to specify semantic con-

straints more easily. Code search is performed by first transforming a large collection

of programs into constraints o✏ine. Users can then search for interesting programs

by providing constraints. Finally, the search engine will use an SMT solver to locate

programs that satisfy the input constraints. They have showed that using lightweight

constraints and SMT solvers can be e↵ective in search for simple programs. Ke et

al. [91] applied similar code search method to program repair. To repair a buggy

program, Ke et al. proposed to extract patches from correct and semantically similar

80

programs and use the extract patches to repair the buggy program. Their code search

technique is very similar to Stolee and Elbaum’s technique. They first construct a

database of functions along with their input-output examples. Then similar func-

tions can be located by comparing the input program’s input-output examples with

the ones in the database.

TRACY [92] is another similar code search method that uses tracelets. Tracelets

are a collection of partial control-flow graph extracted from functions that begins

and ends at control-flow instructions. After the function are decomposed into sets of

tracelets, similarities are computed by counting the number of rewrite steps from one

tracelet into another. TRACY has been applied to searching similar function in binary,

and it has better precision and recall than existing techniques such as n-gram and

graphlets. TRACY is di↵erent from our code search technique in a way that we only

targets programs in the source level instead of binary level.

Kashyap et al. [40] proposed a hybrid method for code search. This method

uses a combination of syntactic and semantic features including relevant data types,

names, function signatures and abstract tree structures. It also supports searching

using natural language features such as tf-idf. The search engine is flexible in a

way that users can choose to use specific subsets of features and assign di↵erent

weights as importance indicators to features. They have demonstrated improvements

on precision and recall over existing code search techniques. In our program splicing

work, we use this method as our main code search technique. However, we only use

natural language features to search relevant programs instead of using syntactic or

semantic features.

Grechanik et al. [93] also proposed Exemplar for code search using natural lan-

guage. Exemplar works by first analyzing help documents, relating natural language

81

keywords to corresponding API calls and building connections between those API

calls and the applications where the API calls are used. When a free-form query is

provided by the user as input, Exemplar uses the keywords from the input query to

look for relevant API calls followed by the related applications. They conducted a user

study with 39 professional programmers and have found that Exemplar outperforms

existing code search engine such as SourceForge. Portfolio [94] is another similar

code search engine. It takes a free-form query from the user as input and search

a database of analyzed functions with metadata for relevant functions. The di↵er-

ence is that Portfolio combines natural language processing (NLP) techniques, such

as stemming and identifier splitting, and indexing techniques such as PageRank and

spreading activation network (SAN) algorithms. Portfolio has also been showed to be

more accurate in code search than existing engine such as Google Code Search and

Koders. Similar to the code search technique we use in our program splicing work,

these techniques all support free-form queries from users. The di↵erence here is that

our code search technique only relies on calculating the importance of keywords.

4.4 API Refactoring and Translation

API refactoring and migration has been studied for more than a decade. Balaban et

al. [13] proposed an automatic method for migrating applications that uses obsolete

libraries. Their method requires a migration specification which defines how to map

obsolete API usages into their replacements and their method is able to use type con-

straints to determine where a refactoring can be applicable. Their evaluation shows

their method is able to rewrite obsolete API usages in some real-world applications.

However, their refactoring algorithm cannot handle API call sequences. Tayton et

al. [95] mined well-known library repositories such as Maven Central, Google Code,

82

SourceForge and Github and produced library migration graphs to help library mi-

grations. Their method is able to detect common library migrations, but unlike our

API refactoring method they can only suggest new libraries instead of automate the

process of actual migration.

API mapping has also been studied and one important application is to map API

across di↵erent languages such as Java and C#. Natural language features such as

names and descriptions can used as a glue to relate similar API calls. Zhong et

al. [63] proposed a method to map APIs from Java to C#. They map the classes

and methods in the client code that contains API usages from Java and C# by using

class and method names along with API transformation graphs to map methods as

well as their parameters and return values. In contrary, our API translation method

mostly relies on comments from methods and an API sequence synthesizer. Finally,

their experiment shows that their method can indeed help project migration from one

language into another.

Pandita et al [14] uses natural language to mine API mappings across di↵erent

platforms. They map APIs in di↵erent libraries using method descriptions, type

names, method names and etc. and they use text embedding models to represent

words and map APIs by calculating similarities between words. They showed that

they are able to map more APIs in di↵erent platforms than Rosetta [17]. We borrowed

the API mapping method from this paper for our API refactoring algorithm, but in

contrast our goal in API translation is to map similar methods from two libraries in

the same language. Text embedding model can also be useful in finding API usage

relations [15, 96] and API mappings can then be inferred using two sets of similar

API usage patterns. However, they did not show that using API usage relations could

generalize to be useful in mapping the APIs that do not have obvious usage patterns.

83

Aura [16] solves one-to-many and many-to-one API mapping problems particularly

using natural language similarity with additional call dependencies. Their method has

better precision on several real-world applications and their multi-iteration algorithm

allows them to map one-to-many and many-to-one change rules. However, our API

translator does not try to solve one-to-many and many-to-one problem.

Sequence alignment is one promising research direction for API mapping or trans-

lation. Gokhale et al [17] infers API mappings by analyzing API call trace pairs

generated by running similar pairs of programs. They use Factor Graphs to represent

all possible API mappings which allows them to infer the most likely API mappings.

Their method is able to map one API call into a sequence of API calls and has overall

good accuracy. Our API translation method is di↵erent in the way that we mostly

rely on natural language and we do not consider the one-to-many mapping problem.

Program paths [18] can also be treated as sentences where individual API calls are

treated as words. As a result, API mapping can then be considered as a natural

language translation problem where the goal is to find the mappings between words

in two di↵erent sentences generated from two di↵erent libraries. They gathered apps

for Android and iOS platforms to evaluate the performance, but it is still unclear

what the actual result is.

StaMiner [19] constructs Groums [97], which are graph representations for API

usages, from existing source code and extracts API usage sequences called sentences

from Groums. Then they use a Expectation-Maximization (EM) algorithm to align

two API sequences and the alignment that has the highest score serves as the result of

API mapping. Their method can achieve high accuracy and can also handle one-to-

many and many-to-one problem naturally. Our API translation method is di↵erent

in the way that we do not gather API call sequences for mapping APIs.

84

API usage patterns and specifications have also been showed to be useful to mine

similar APIs. Nguyen et al. [98] considers the problem of software evolution adapta-

tion. They mined adaptation patterns from existing softwares in two di↵erent versions

and use graph-based object model to recommend actual adaptations. Their evalua-

tion shows that their method is able to mine adaptations accurately, but it is unclear

if users need to perform the actual software adaptations. Zhong et al. [41] tries to

mine resource specification from API documentations. They infer resource specifi-

cations from method descriptions and use automata as representations which allow

them to detect bugs where the specification is violated. They evaluated their method

and showed that their method is able to infer specifications accurately. However, it

is unknown to us that whether their method could generalize to more open source

libraries.

85

Chapter 5

Conclusion and Future Work

Software development is di�cult and time-consuming. Even though researchers have

been developed programming tools for more than a decade, the performance of tra-

ditional programming tools tends to su↵er due to their scaling problem. With the

advent of “big code”, researchers have been able to mitigate the scaling problem sig-

nificantly and develop advanced and novel data-driven algorithms for programming

tools. The idea of “big code” has been driving the technological frontier for pro-

gramming tools forward, especially in the areas of program analysis and program

synthesis.

By using “big code”, we have proposed two programming systems to facilitate

two common software workflows: software reuse and software refactoring. We first

proposed Program Splicing which automates the process of copying and pasting using

a code corpus. Our evaluation demonstrated that Splicer can outperform a state-

of-the-art programming system. Our user study also showed that Splicer can boost

software reuse productivity significantly. Second, we proposed a fully automated

algorithm for API refactoring which relies on API translation and API sequence syn-

thesis. We showed that our API refactoring algorithm is quite accurate in refactoring

API sequences given that the coding styles and the terminologies are similar across

two libraries.

Even though the evaluations of our techniques introduced in this thesis are quite

optimistic, we believe that there is still room for improvement. We first focus on some

86

possible future works for program splicing. Splicer relies on code search and enumer-

ative search, and future works can focus on improving these two parts. To improve

the code search component, one can switch to use more advanced natural language

model such as Word2Vec [42], FastText [69] and recently developed BERT [70] to en-

hance the accuracy of code search using natural language. The training data could

be the text specific to programming, similar to our method described in chapter 3.

Using web data or relying on a popular search engine has also been proved to help

code search [34, 57]. Programmers frequently use an online search engine to search

for code snippets. Websites such as StackOverflow [62] have enormous program

snippets associated with text which could be used to train statistical models.

Another future work direction for Splicer could focus on improving the search

algorithm. The current synthesis technique is an enumerative search algorithm which

uses types and roles as heuristics. The problem with this enumerative search is its low

e�ciency; the search space grows exponentially which prevents the algorithm from

synthesizing large programs quickly. This is a common problem with search-based

program synthesis. Traditional search-based synthesis algorithms typically rely on

using additional hints such as types [30, 77], templates [8] and, syntax [7, 29] to

mitigate the scaling problem and thus to generate practical results. These hints are

similar to the heuristics we used in Splicer. The problem with these heuristics is that

they typically do not generalize to other problems. Statistical methods, in contrast,

tend to be very general and can be applied to many problem domains. DeepCoder [23]

has shown that idioms learned from a code corpus can be used to reduce the search

space significantly and thus to speed up the synthesis search process. These idioms

can generalize to other synthesis problems. In addition, this type of search space

reduction which gained from a code corpus typically cannot be derived using the hints

87

and heuristics mentioned above. Besides statistical methods, applying better search

algorithm such as Monte Carlo tree search [99] (MCTS) could be another direction.

The benefit of MCTS is its flexibility; one can use smart sampling techniques which

may use deep learning to have better reward estimates. However, one important cost

of such flexibility is the rarity of the solution in the search space. The search space

is so large that it is di�cult to have meaningful reward estimations. One might need

to develop a smart estimation to overcome this problem.

Having discussed the potential future works for program splicing, let us discuss

the possible direction to improve our API refactoring algorithm. As we described ear-

lier, our API refactoring algorithm depends on first translating the API calls and then

synthesizing a complete API call sequence. Naturally, two directions for improvement

focus on API translation and API call sequence synthesis respectively. The problem

of our API translation is that it completely relies on calculating the similarities of

some specific natural language features. For libraries where the terminologies are

similar, this works quite well with a standard language model such as FastText [69]

and BERT [70]. However, as our evaluation indicated, this fails to work if two libraries

use di↵erent terminologies. The reason is that the terminologies tend to have di↵er-

ent semantic meaning, which prevents us from calculating semantic similarities. To

overcome this issue, one could use a collection of similar API call sequence to train a

statistical model for translation, as suggested in this paper [17]. This will eliminate

the dependence on natural language features. In addition, using API call sequence

pairs allows models to learn one-to-many API translations, which might give higher

translation accuracy.

Having discussed the potential improvements for the projects proposed in this

thesis, we believed that many problems related to “big code” still remain to be solved.

88

Applying corpus-driven methods to develop programming systems is still in its infant

stage. As more and more data starts to stack up and computing power gets stronger

and stronger, researchers will be able to utilize more and more resources to develop

advanced AI-powered programming systems. Even though machines still cannot write

programs for us, we believe that someday those AI-powered programming systems will

further simplify programming and debugging, improve the quality of source code and

even generate programs automatically without clear specifications from humans. In

summary, the potential of corpus-driven programming systems is enormous.

89

Bibliography

[1] V. Murali, L. Qi, S. Chaudhuri, and C. Jermaine, “Neural sketch learning for

conditional program generation,” arXiv preprint arXiv:1703.05698, 2017.

[2] V. Raychev, M. Vechev, and A. Krause, “Predicting program properties from

”big code”,” in Proceedings of the 42Nd Annual ACM SIGPLAN-SIGACT Sym-

posium on Principles of Programming Languages, POPL ’15, (New York, NY,

USA), pp. 111–124, ACM, 2015.

[3] “Junit,” 2018. Accessed: 2019-03-09.

[4] “Jira,” 2019. Accessed: 2019-03-30.

[5] “Git,” 2019. Accessed: 2019-03-30.

[6] F. Nielson, H. R. Nielson, and C. Hankin, Principles of program analysis.

Springer, 2015.

[7] A. Solar-Lezama, L. Tancau, R. Bodik, S. Seshia, and V. Saraswat, “Combi-

natorial sketching for finite programs,” in Proceedings of the 12th International

Conference on Architectural Support for Programming Languages and Operating

Systems, ASPLOS XII, (New York, NY, USA), pp. 404–415, ACM, 2006.

[8] S. Srivastava, S. Gulwani, and J. S. Foster, “Template-based program verification

and program synthesis,” International Journal on Software Tools for Technology

Transfer, vol. 15, no. 5, pp. 497–518, 2012.

90

[9] S. Gulwani, “Automating string processing in spreadsheets using input-output

examples,” in Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Sym-

posium on Principles of Programming Languages, POPL ’11, (New York, NY,

USA), pp. 317–330, ACM, 2011.

[10] S. Gulwani, V. A. Korthikanti, and A. Tiwari, “Synthesizing geometry construc-

tions,” in Proceedings of the 32Nd ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI ’11, (New York, NY, USA), pp. 50–

61, ACM, 2011.

[11] S. Gulwani, “Dimensions in program synthesis,” in Proceedings of the 12th Inter-

national ACM SIGPLAN Symposium on Principles and Practice of Declarative

Programming, PPDP ’10, (New York, NY, USA), pp. 13–24, ACM, 2010.

[12] B. Boehm, “The future of software and systems engineering processes,” Univer-

sity of Southern California, Los Angeles, CA, pp. 90089–0781, 2005.

[13] I. Balaban, F. Tip, and R. Fuhrer, “Refactoring support for class library migra-

tion,” in ACM SIGPLAN Notices, vol. 40, pp. 265–279, ACM, 2005.

[14] R. Pandita, R. P. Jetley, S. D. Sudarsan, and L. Williams, “Discovering likely

mappings between apis using text mining,” in Source Code Analysis and Manipu-

lation (SCAM), 2015 IEEE 15th International Working Conference on, pp. 231–

240, IEEE, 2015.

[15] T. D. Nguyen, A. T. Nguyen, and T. N. Nguyen, “Mapping api elements for

code migration with vector representations,” in Software Engineering Companion

(ICSE-C), IEEE/ACM International Conference on, pp. 756–758, IEEE, 2016.

91

[16] W. Wu, Y.-G. Guéhéneuc, G. Antoniol, and M. Kim, “Aura: a hybrid approach

to identify framework evolution,” in Software Engineering, 2010 ACM/IEEE

32nd International Conference on, vol. 1, pp. 325–334, IEEE, 2010.

[17] A. Gokhale, V. Ganapathy, and Y. Padmanaban, “Inferring likely mappings

between apis,” in Proceedings of the 2013 International Conference on Software

Engineering, pp. 82–91, IEEE Press, 2013.

[18] A. Gokhale, D. Kim, and V. Ganapathy, “Data-driven inference of api map-

pings,” in Proceedings of the 2nd Workshop on Programming for Mobile & Touch,

pp. 29–32, ACM, 2014.

[19] A. T. Nguyen, H. A. Nguyen, T. T. Nguyen, and T. N. Nguyen, “Statistical

learning approach for mining api usage mappings for code migration,” in Pro-

ceedings of the 29th ACM/IEEE international conference on Automated software

engineering, pp. 457–468, ACM, 2014.

[20] A. Mishne, S. Shoham, and E. Yahav, “Typestate-based Semantic Code Search

over Partial Programs,” in Proceedings of the ACM International Conference on

Object Oriented Programming Systems Languages and Applications, OOPSLA

’12, (New York, NY, USA), pp. 997–1016, ACM, 2012.

[21] V. Raychev, M. Vechev, and E. Yahav, “Code completion with statistical lan-

guage models,” in Proceedings of the 35th ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation, PLDI ’14, (New York, NY,

USA), pp. 419–428, ACM, 2014.

[22] V. Murali, S. Chaudhuri, and C. Jermaine, “Bayesian specification learning for

92

finding api usage errors,” in Proceedings of the 2017 11th Joint Meeting on Foun-

dations of Software Engineering, pp. 151–162, ACM, 2017.

[23] M. Balog, A. L. Gaunt, M. Brockschmidt, S. Nowozin, and D. Tarlow, “Deep-

coder: Learning to write programs,” arXiv preprint arXiv:1611.01989, 2016.

[24] Z. Manna and R. Waldinger, “Fundamentals of deductive program synthesis,”

IEEE Trans. Softw. Eng., vol. 18, pp. 674–704, Aug. 1992.

[25] R. Alur, R. Bodik, G. Juniwal, M. M. K. Martin, M. Raghothaman, S. Seshia,

R. Singh, A. Solar-Lezama, E. Torlak, and A. Udupa, “Syntax-guided synthesis,”

in Formal Methods in Computer-Aided Design (FMCAD), 2013, pp. 1–8, IEEE,

Oct. 2013.

[26] F. Long and M. Rinard, “Staged program repair with condition synthesis,” in

Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engi-

neering, ESEC/FSE 2015, (New York, NY, USA), pp. 166–178, ACM, 2015.

[27] S. Sidiroglou-Douskos, E. Lahtinen, F. Long, and M. Rinard, “Automatic error

elimination by horizontal code transfer across multiple applications,” in Proceed-

ings of the 36th ACM SIGPLAN Conference on Programming Language Design

and Implementation, PLDI 2015, (New York, NY, USA), pp. 43–54, ACM, 2015.

[28] A. Pnueli and R. Rosner, “On the synthesis of an asynchronous reactive module,”

in Proceedings of the 16th International Colloquium on Automata, Languages and

Programming, ICALP ’89, (London, UK, UK), pp. 652–671, Springer-Verlag,

1989.

[29] R. Alur, R. Bodik, G. Juniwal, M. M. Martin, M. Raghothaman, S. A. Seshia,

93

R. Singh, A. Solar-Lezama, E. Torlak, and A. Udupa, “Syntax-guided synthesis,”

Dependable Software Systems Engineering, vol. 40, pp. 1–25, 2015.

[30] J. K. Feser, S. Chaudhuri, and I. Dillig, “Synthesizing data structure transforma-

tions from input-output examples,” in Proceedings of the 36th ACM SIGPLAN

Conference on Programming Language Design and Implementation, PLDI 2015,

(New York, NY, USA), pp. 229–239, ACM, 2015.

[31] T. Mitchell, B. Buchanan, G. DeJong, T. Dietterich, P. Rosenbloom, and

A. Waibel, “Machine learning,” Annual review of computer science, vol. 4, no. 1,

pp. 417–433, 1990.

[32] E. T. Barr, M. Harman, Y. Jia, A. Marginean, and J. Petke, “Automated soft-

ware transplantation,” in Proceedings of the 2015 International Symposium on

Software Testing and Analysis, ISSTA 2015, (New York, NY, USA), pp. 257–269,

ACM, 2015.

[33] S. Sidiroglou-Douskos, E. Lahtinen, F. Long, and M. Rinard, “Automatic error

elimination by horizontal code transfer across multiple applications,” in ACM

SIGPLAN Notices, vol. 50, pp. 43–54, ACM, 2015.

[34] M. Raghothaman, Y. Wei, and Y. Hamadi, “Swim: Synthesizing what i mean,”

arXiv preprint arXiv:1511.08497, 2015.

[35] M. Kim, L. Bergman, T. Lau, and D. Notkin, “An ethnographic study of copy

and paste programming practices in oopl,” in Empirical Software Engineer-

ing, 2004. ISESE’04. Proceedings. 2004 International Symposium on, pp. 83–92,

IEEE, 2004.

94

[36] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner, “Do code clones

matter?,” in Proceedings of the 31st International Conference on Software Engi-

neering, pp. 485–495, IEEE Computer Society, 2009.

[37] N. Yaghmazadeh, C. Klinger, I. Dillig, and S. Chaudhuri, “Synthesizing trans-

formations on hierarchically structured data,” in Proceedings of the 37th ACM

SIGPLAN Conference on Programming Language Design and Implementation,

PLDI ’16, (New York, NY, USA), pp. 508–521, ACM, 2016.

[38] V. Raychev, P. Bielik, M. Vechev, and A. Krause, “Learning programs from

noisy data,” in ACM SIGPLAN Notices, vol. 51, pp. 761–774, ACM, 2016.

[39] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu, “On the naturalness

of software,” in 2012 34th International Conference on Software Engineering

(ICSE), pp. 837–847, IEEE, 2012.

[40] V. Kashyap, D. B. Brown, B. Liblit, D. Melski, and T. W. Reps, “Source forager:

A search engine for similar source code,” CoRR, vol. abs/1706.02769, 2017.

[41] H. Zhong, L. Zhang, T. Xie, and H. Mei, “Inferring resource specifications from

natural language api documentation,” in Proceedings of the 2009 IEEE/ACM In-

ternational Conference on Automated Software Engineering, pp. 307–318, IEEE

Computer Society, 2009.

[42] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed

representations of words and phrases and their compositionality,” in Advances

in neural information processing systems, pp. 3111–3119, 2013.

[43] H. Sajnani, V. Saini, J. Ossher, and C. Lopes, “Is popularity a measure of qual-

ity? an analysis of maven components,” in Software Maintenance and Evolution

95

(ICSME), 2014 IEEE International Conference on, pp. 231–240, Sept 2014.

[44] J. Ossher, H. Sajnani, and C. Lopes, “Astra: Bottom-up construction of struc-

tured artifact repositories,” in Reverse Engineering (WCRE), 2012 19th Working

Conference on, pp. 41–50, 2012.

[45] S. Bajracharya, J. Ossher, and C. Lopes, “Sourcerer: An infrastructure for large-

scale collection and analysis of open-source code,” Science of Computer Program-

ming, vol. 79, pp. 241 – 259, 2014.

[46] A. Solar-Lezama, “The sketching approach to program synthesis,” in Asian Sym-

posium on Programming Languages and Systems, pp. 4–13, Springer, 2009.

[47] H. Feild, D. Binkley, and D. Lawrie, “An empirical comparison of techniques for

extracting concept abbreviations from identifiers,” in Proceedings of IASTED

International Conference on Software Engineering and Applications (SEA’06),

Citeseer, 2006.

[48] Y. Feng, R. Martins, Y. Wang, I. Dillig, and T. W. Reps, “Component-based

synthesis for complex apis,” in Proceedings of the 44th ACM SIGPLAN Sym-

posium on Principles of Programming Languages, POPL 2017, (New York, NY,

USA), pp. 599–612, ACM, 2017.

[49] Y. Feng, R. Martins, J. V. Ge↵en, I. Dillig, and S. Chaudhuri, “Component-

based synthesis of table consolidation and transformation tasks from examples,”

CoRR, vol. abs/1611.07502, 2016.

[50] O. Polozov and S. Gulwani, “Flashmeta: A framework for inductive program

synthesis,” ACM SIGPLAN Notices, vol. 50, no. 10, pp. 107–126, 2015.

96

[51] A. Udupa, A. Raghavan, J. V. Deshmukh, S. Mador-Haim, M. M. Martin, and

R. Alur, “TRANSIT: specifying protocols with concolic snippets,” ACM SIG-

PLAN Notices, vol. 48, no. 6, pp. 287–296, 2013.

[52] R. Alur, R. Bodik, G. Juniwal, M. M. Martin, M. Raghothaman, S. A. Seshia,

R. Singh, A. Solar-Lezama, E. Torlak, and A. Udupa, “Syntax-guided synthesis,”

Dependable Software Systems Engineering, vol. 40, pp. 1–25, 2015.

[53] S. P. Reiss, “Semantics-based code search,” in Proceedings of the 31st Interna-

tional Conference on Software Engineering, ICSE ’09, (Washington, DC, USA),

pp. 243–253, IEEE Computer Society, 2009.

[54] O. Hummel, W. Janjic, and C. Atkinson, “Code conjurer: Pulling reusable soft-

ware out of thin air,” IEEE software, vol. 25, no. 5, 2008.

[55] O. A. Lazzarini Lemos, S. Bajracharya, J. Ossher, P. C. Masiero, and C. Lopes,

“Applying test-driven code search to the reuse of auxiliary functionality,” in

Proceedings of the 2009 ACM symposium on Applied Computing, pp. 476–482,

ACM, 2009.

[56] Y. Wang, Y. Feng, R. Martins, A. Kaushik, I. Dillig, and S. P. Reiss, “Hunter:

Next-generation code reuse for java,” in Proceedings of the 2016 24th ACM SIG-

SOFT International Symposium on Foundations of Software Engineering, FSE

2016, (New York, NY, USA), pp. 1028–1032, ACM, 2016.

[57] T. Gvero and V. Kuncak, “Interactive synthesis using free-form queries,” in

2015 IEEE/ACM 37th IEEE International Conference on Software Engineering,

vol. 2, pp. 689–692, IEEE, 2015.

[58] “Beanshell,” 2017. Accessed: 2017-04-04.

97

[59] “Nailgun,” 2017. Accessed: 2017-04-04.

[60] B. Efron, The jackknife, the bootstrap and other resampling plans. SIAM, 1982.

[61] “Jsoup,” 2017. Accessed: 2017-04-02.

[62] “Stackoverflow,” 2017. Accessed: 2017-04-02.

[63] H. Zhong, S. Thummalapenta, T. Xie, L. Zhang, and Q. Wang, “Mining api

mapping for language migration,” in Proceedings of the 32nd ACM/IEEE In-

ternational Conference on Software Engineering-Volume 1, pp. 195–204, ACM,

2010.

[64] “Project grizzly,” 2018. Accessed: 2018-09-04.

[65] “Apache commons net,” 2018. Accessed: 2018-09-04.

[66] “Sshj,” 2018. Accessed: 2018-09-04.

[67] “Itextpdf,” 2018. Accessed: 2018-09-04.

[68] “Pdfbox,” 2018. Accessed: 2018-09-04.

[69] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word vectors

with subword information,” Transactions of the Association for Computational

Linguistics, vol. 5, pp. 135–146, 2017.

[70] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of

deep bidirectional transformers for language understanding,” arXiv preprint

arXiv:1810.04805, 2018.

98

[71] Y. Lu, S. Chaudhuri, C. Jermaine, and D. Melski, “Program splicing,” in Proceed-

ings of the 40th International Conference on Software Engineering, pp. 338–349,

ACM, 2018.

[72] B. Jobstmann, A. Griesmayer, and R. Bloem, “Program repair as a game,” in

Proceedings of the 17th International Conference on Computer Aided Verifica-

tion, CAV’05, (Berlin, Heidelberg), pp. 226–238, Springer-Verlag, 2005.

[73] E. Torlak and R. Bodik, “A lightweight symbolic virtual machine for solver-

aided host languages,” in Proceedings of the 35th ACM SIGPLAN Conference

on Programming Language Design and Implementation, PLDI ’14, (New York,

NY, USA), pp. 530–541, ACM, 2014.

[74] V. Kuncak, M. Mayer, R. Piskac, and P. Suter, “Complete functional synthesis,”

in Proceedings of the 31st ACM SIGPLAN Conference on Programming Language

Design and Implementation, PLDI ’10, (New York, NY, USA), pp. 316–329,

ACM, 2010.

[75] P. D. Summers, “A methodology for lisp program construction from examples,”

J. ACM, vol. 24, pp. 161–175, Jan. 1977.

[76] E. Kitzelmann and U. Schmid, “Inductive synthesis of functional programs:

An explanation based generalization approach,” J. Mach. Learn. Res., vol. 7,

pp. 429–454, Dec. 2006.

[77] P.-M. Osera and S. Zdancewic, “Type-and-example-directed program synthesis,”

in Proceedings of the 36th ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation, PLDI 2015, (New York, NY, USA), pp. 619–

630, ACM, 2015.

99

[78] R. Holmes and R. J. Walker, “Systematizing pragmatic software reuse,” ACM

Trans. Softw. Eng. Methodol., vol. 21, pp. 20:1–20:44, Feb. 2013.

[79] K. Narasimhan and C. Reichenbach, “Copy and paste redeemed,” in Automated

Software Engineering (ASE), 2015 30th IEEE/ACM International Conference

on, pp. 630–640, IEEE, 2015.

[80] M. Harman, Y. Jia, and W. B. Langdon, “Babel pidgin: Sbse can grow and graft

entirely new functionality into a real world system,” in International Symposium

on Search Based Software Engineering, pp. 247–252, Springer, 2014.

[81] A. Marginean, E. T. Barr, M. Harman, and Y. Jia, “Automated transplantation

of call graph and layout features into kate,” in International Symposium on

Search Based Software Engineering, pp. 262–268, Springer, 2015.

[82] Y. Jia, M. Harman, W. B. Langdon, and A. Marginean, “Grow and serve: Grow-

ing django citation services using sbse,” in International Symposium on Search

Based Software Engineering, pp. 269–275, Springer, 2015.

[83] J. Petke, M. Harman, W. B. Langdon, and W. Weimer, “Using genetic improve-

ment and code transplants to specialise a c++ program to a problem class,” in

European Conference on Genetic Programming, pp. 137–149, Springer, 2014.

[84] A. Drummond, Y. Lu, S. Chaudhuri, C. Jermaine, J. Warren, and S. Rixner,

“Learning to Grade Student Programs in a Massive Open Online Course,” in

Data Mining (ICDM), 2014 IEEE International Conference on, pp. 785–790,

IEEE, Dec. 2014.

[85] A. T. Nguyen and T. N. Nguyen, “Graph-based statistical language model

100

for code,” in Proceedings of the 37th International Conference on Software

Engineering-Volume 1, pp. 858–868, IEEE Press, 2015.

[86] F. Long and M. Rinard, “Automatic patch generation by learning correct code,”

ACM SIGPLAN Notices, vol. 51, no. 1, pp. 298–312, 2016.

[87] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and evaluation of code

clone detection techniques and tools: A qualitative approach,” Science of Com-

puter Programming, vol. 74, no. 7, pp. 470–495, 2009.

[88] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “Deckard: Scalable and accurate

tree-based detection of code clones,” in Proceedings of the 29th international

conference on Software Engineering, pp. 96–105, IEEE Computer Society, 2007.

[89] I. Keivanloo, J. Rilling, and Y. Zou, “Spotting working code examples,” in Pro-

ceedings of the 36th International Conference on Software Engineering, pp. 664–

675, ACM, 2014.

[90] K. T. Stolee and S. Elbaum, “Toward semantic search via smt solver,” in Proceed-

ings of the ACM SIGSOFT 20th International Symposium on the Foundations

of Software Engineering, p. 25, ACM, 2012.

[91] Y. Ke, K. T. Stolee, C. Le Goues, and Y. Brun, “Repairing programs with

semantic code search (t),” in Automated Software Engineering (ASE), 2015 30th

IEEE/ACM International Conference on, pp. 295–306, IEEE, 2015.

[92] Y. David and E. Yahav, “Tracelet-based code search in executables,” in ACM

SIGPLAN Notices, vol. 49, pp. 349–360, ACM, 2014.

101

[93] M. Grechanik, C. Fu, Q. Xie, C. McMillan, D. Poshyvanyk, and C. Cumby, “A

search engine for finding highly relevant applications,” in ACM/IEEE Interna-

tional Conference on Software Engineering, (New York, New York, USA), ACM

Press, May 2010.

[94] C. McMillan, M. Grechanik, D. Poshyvanyk, Q. Xie, and C. Fu, “Portfolio: find-

ing relevant functions and their usage,” in International conference on Software

engineering, (New York, New York, USA), ACM Press, May 2011.

[95] C. Teyton, J.-R. Falleri, and X. Blanc, “Mining library migration graphs,” in

19th Working Conference on Reverse Engineering, WCRE 2012, Kingston, ON,

Canada, October 15-18, 2012, pp. 289–298, 2012.

[96] H. D. Phan, A. T. Nguyen, T. D. Nguyen, and T. N. Nguyen, “Statistical

migration of api usages,” in Software Engineering Companion (ICSE-C), 2017

IEEE/ACM 39th International Conference on, pp. 47–50, IEEE, 2017.

[97] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. M. Al-Kofahi, and T. N. Nguyen,

“Graph-based mining of multiple object usage patterns,” in Proceedings of the the

7th joint meeting of the European software engineering conference and the ACM

SIGSOFT symposium on The foundations of software engineering, pp. 383–392,

ACM, 2009.

[98] H. A. Nguyen, T. T. Nguyen, G. Wilson Jr, A. T. Nguyen, M. Kim, and T. N.

Nguyen, “A graph-based approach to api usage adaptation,” in ACM Sigplan

Notices, vol. 45, pp. 302–321, ACM, 2010.

[99] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling, P. Rohlfsha-

gen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton, “A survey of monte

102

carlo tree search methods,” IEEE Transactions on Computational Intelligence

and AI in games, vol. 4, no. 1, pp. 1–43, 2012.

	Abstract
	List of Illustrations
	List of Tables
	Introduction
	Program reuse via splicing
	API refactoring using natural language and API synthesizer
	Summary

	Program Splicing
	Introduction
	Motivating Examples
	Reading a Matrix from a CSV File
	Face Detection using OpenCV

	Problem formulation
	Method
	Searching for programs
	Program completion

	Evaluation
	Benchmarks
	Experiments

	Summary

	API Refactoring
	Introduction
	Motivating Examples
	Problem Definition
	Method
	API Translation
	API Call Sequence Synthesis

	Evaluation
	Benchmarks
	Experiments
	Limitations

	Summary

	Related Work
	Program Synthesis and Reuse
	Data-driven Program Synthesis
	Code Search
	API Refactoring and Translation

	Conclusion and Future Work
	Bibliography

