

ABSTRACT

Bounded Policy Synthesis for POMDPs with

Safe-Reachability and Quantitative Objectives

by

Yue Wang

Robots are being deployed for many real-world applications like autonomous driving,

disaster rescue, and personal assistance. E↵ectively planning robust executions under un-

certainty is critical for building these autonomous robots. Partially Observable Markov

Decision Processes (POMDPs) provide a standard approach to model many robot applica-

tions under uncertainty. A key algorithmic problem for POMDPs is the synthesis of poli-

cies that specify the actions to take contingent on all possible events. Policy synthesis for

POMDPs with two kinds of objectives is considered in this thesis: (1) boolean objectives

for a correctness guarantee of accomplishing tasks and (2) quantitative objectives for opti-

mal behaviors. For boolean objectives, this thesis focuses on a common safe-reachability

objective: with a probability above a threshold, a goal state is eventually reached while

keeping the probability of visiting unsafe states below a di↵erent threshold.

Previous results have shown that policy synthesis for POMDPs over infinite horizon is

generally undecidable. For decidability, this thesis focuses on POMDPs over a bounded

horizon. Solving POMDPs requires reasoning over a vast space of beliefs (probability dis-

tributions). To address this, this thesis introduces the notion of a goal-constrained belief

space that only contains beliefs reachable under desired executions that can achieve the

safe-reachability objectives. Based on this notion, this thesis presents an o✏ine approach

that constructs policies over the goal-constrained belief space instead of the entire belief

space. Simulation experiments show that this o✏ine approach can scale to large belief

spaces by focusing on the goal-constrained belief space. A full policy is generally costly

to compute. To improve e�ciency, this thesis presents an online approach that interleaves

the computation of partial policies and execution. A partial policy is parameterized by a

replanning probability and only contain a sampled subset of all possible events. This online

approach allows users to specify an appropriate bound on the replanning probability to bal-

ance e�ciency and correctness. Finally, this thesis presents an approximate policy synthe-

sis approach that combines the safe-reachability objectives with the quantitative objectives.

The results demonstrate that the constructed policies not only achieve the safe-reachability

objective but also are of high quality concerning the quantitative objective.

Acknowledgments

I would like to express my deepest gratitude to my advisors, Dr. Swarat Chaudhuri and

Dr. Lydia Kavraki for their guidance and dedication during my graduate study at Rice Uni-

versity. I benefited a lot from their constructive comments and broad perspective. Without

their valuable feedback and encouragement, none of the works presented in this thesis

would have reached the modest level of maturity.

I would like to thank my committee members, Dr. Moshe Vardi and Dr. Fathi Ghorbel

for their insightful comments during my proposal. They deserve my profound appreciation

for spending their valuable time on helping me improve the thesis.

I have been supremely fortunate to collaborate academically with wonderful members

from the Kavraki Lab. I learned a lot from Dr. Mark Moll, Dr. Srinivas Nedunuri, Dr. Ryan

Luna and Dr. Neil Dantam on many aspects of research. Many thanks to Keliang He for

his willingness to listen to me during our countless brainstorming sessions. I must thank

Dr. Juan David Hernández, Bryce Willey, Constantinos Chamzas, Zachary Kingston for

their kind assistance in preparing the physical experiments on Fetch.

Additionally, the administrative sta↵ in the Department of Computer Science deserve

my sincere appreciation for their help with all kinds of things, especially Sherry Nassar,

Melissa Cisneros, Beth Rivera, and Lena Sifuentes.

Finally, I would like to thank my wife Yahong, our combined family, and my friends

for always being supportive.

The work in this thesis was funded in part by grants from NSF CCF 1139011, NSF

CCF 1514372, NSF CCF 1162076 and NSF IIS 1317849.

Contents

Abstract ii

Acknowledgments iv

List of Illustrations viii

List of Tables xii

1 Introduction 1
1.1 Overview . 1

1.2 Related Work . 4

1.2.1 Partially Observable Markov Decision Processes 4

1.2.2 Markov Decision Processes . 7

1.2.3 Task and Motion Planning Under Uncertainty 8

1.2.4 Program Verification and Synthesis 9

1.3 Contributions . 10

1.3.1 POMDPs with Safe-Reachability Objectives 11

1.3.2 POMDPs with Both Safe-Reachability and Quantitative Objectives 13

1.4 Thesis Structure . 13

2 POMDPs with Safe-Reachability Objectives 15
2.1 Definitions . 16

2.1.1 POMDPs . 16

2.1.2 Safe-Reachability Objective . 17

2.1.3 Policy and Conditional Plan . 18

2.2 Relation to POMDPs with Quantitative Objectives 20

vi

3 O✏ine Synthesis for POMDPs with Safe-Reachability Objectives 24
3.1 Problem Formulation . 26

3.1.1 Goal-Constrained Belief Space . 26

3.1.2 Problem Statement . 27

3.2 Bounded Policy Synthesis . 27

3.2.1 Constraint Generation . 30

3.2.2 Plan Generation . 31

3.2.3 Policy Generation . 31

3.3 Algorithm Analysis . 33

3.3.1 Algorithm Complexity . 33

3.3.2 Observability . 34

3.4 Experiments . 35

3.4.1 Performance . 37

3.4.2 Horizon Bound . 39

3.4.3 Physical Validation . 40

3.5 Discussion . 42

4 Online Planning for POMDPs with Safe-Reachability Objectives 44
4.1 Problem Formulation . 46

4.1.1 Partial Policy . 46

4.1.2 Replanning Probability . 48

4.1.3 Problem Statement . 51

4.2 Online Partial Policy Synthesis . 52

4.2.1 Partial Policy Synthesis . 53

4.2.2 Partial Policy Generation . 55

4.3 Experiments . 58

4.3.1 Performance . 59

4.3.2 Success Rate . 61

vii

4.3.3 Gains from Updating Replanning Probability Bound 62

4.3.4 Physical Validation . 64

4.3.5 Tag Domain . 65

4.4 Discussion . 66

5 Combining Safe-Reachability and Quantitative Objectives 68
5.1 Problem Formulation . 71

5.1.1 Quantitative Objectives . 71

5.1.2 Problem Statement . 72

5.2 Point-Based Policy Synthesis . 74

5.2.1 Bounded Policy Synthesis . 75

5.2.2 Policy Iteration . 75

5.2.3 Algorithm Analysis . 77

5.3 Experiments . 82

5.3.1 Results . 83

5.3.2 Physical Validation . 85

5.4 Discussion . 86

6 Conclusions and Future Work 88
6.1 Open Questions . 90

Bibliography 92

Illustrations

1.1 An example uncertain domain. A robot with imperfect actuation and

perception needs to navigate through an o�ce to pick up the blue can on

the table, while avoiding collisions with uncertain obstacles such as floor

signs and file cabinets (boolean objective). There are two regions marked

with red tape, and the robot should avoid visiting these red regions as

much as possible (quantitative objective). 2

2.1 A conditional plan � for an uncertain domain with 2 observations (o1 and

o2), represented as a tree rooted at the belief b. Circle nodes represent

beliefs, the edges (e.g., a1, a0
2, a

1
2, . . .) from circle nodes to rectangle nodes

represent actions and the edges (o1 and o2) from rectangle nodes to circle

nodes represent observations. 20

2.2 An example to show the di↵erence between POMDPs with

safe-reachability objectives and unconstrained/C/RS/CC-POMDPs. There

are 3 states: start state sready, unsafe state sunsafe and goal state sgoal. Dashed

green edges represent transitions of executing left-hand pick-up action aL

in state sready and solid red edges represent transitions of executing

right-hand pick-up action aR in state sready. For each edge, the first line is

the transition probability and the second line is the tuple of observation

probabilities (popos , poneg). 21

ix

2.3 The belief space transition for the POMDP in Figure 2.2. Blue nodes

(psready , psunsafe , psgoal) represent beliefs (probability distributions over states),

and red nodes represent observation. The edges from blue nodes to red

nodes represent actions and the edges from red nodes to blue nodes

represent observations and the corresponding probabilities. 22

3.1 An example of a safe-reachability objective: a robot with uncertain

actuation and perception needs to navigate through the kitchen and pick

up a green cup from the black storage area (reachability), while avoiding

collisions with uncertain obstacles (e.g., chairs) modeled as cylinders in

the yellow “shadow” region (safety). 25

3.2 The core steps of the BPS algorithm. 27

3.3 An example run of BPS. The black box represents the goal-constrained

belief space BG over the bounded horizon k. Circle nodes represent

beliefs, the edges (e.g., a�k
s+1, a�k

i) from circle nodes to rectangle nodes

represent actions and the edges (e.g., o�k
s+1, o0s+1) from rectangles nodes to

circle nodes represent observations. The dashed green path represents one

candidate plan �k found by the incremental SMT solver. BPS constructs a

policy tree from this candidate plan by considering other branches

following the rectangle node for each step. 29

3.4 Performance of BPS as the number of obstacles M varies. The plot of

circles shows the performance of BPS with incremental solving and the

plot of squares shows the performance of BPS without incremental solving. 38

3.5 The number of plans checked (i.e, the number of SMT calls) by BPS

during policy synthesis as the number of obstacles M varies. 38

3.6 Performance of BPS for the kitchen domain with M = 2 obstacles as the

horizon bound h increases. The blue dashed line is the plot hmin = 9. 40

x

3.7 An example uncertain domain with safe-reachability objective: a robot

with imperfect actuation and perception needs to navigate through an

o�ce to pick up the blue can from the table, while avoiding collisions

with uncertain obstacles such as floor signs and file cabinets. 41

3.8 Physical validation of BPS for the domain shown in Figure 3.7. 42

4.1 A k-step partial policy ⇡p for an uncertain domain with 2 observations (o1

and o2), represented as a partial tree rooted at the initial belief b0

(including only solid branches). Circle nodes represent beliefs, the edges

(e.g., a1, a0
2, a

1
2, . . .) from circle nodes to rectangle nodes represent actions,

and the edges (o1 and o2) from rectangle nodes to circle nodes represent

observations. 45

4.2 OPPS . 51

4.3 Partial policy synthesis . 51

4.4 Performance results for the kitchen domain as the bound �preplan increases.

Di↵erent plots correspond to tests with di↵erent numbers M of obstacles.

Missing data points in a plot indicate the timeout. The red dashed line is

the timeout (time = 1800 seconds). The blue dashed line passes through

the data points generated by BPS. All the results are averaged over 50

independent runs. 60

4.5 Success rate as �preplan increases. The green dotted line shows the plot of

success rate = 1.0 � �preplan . The red dashed line is the plot of

success rate = 1.0. The blue dashed line passes through the data points

generated by BPS. 62

4.6 Replanning probability and total computation time as the bound �preplan

increases (M = 4). The green dotted line shows the plot of

replanning probability = �preplan . The blue dashed line passes through the

data points generated by BPS. 63

xi

4.7 Physical validation of OPPS for the domain shown in Figure 3.7. 65

4.8 Performance results for the Tag domain as the replanning probability

bound �preplan increases. All the results are averaged over 50 independent runs. 66

5.1 Overview of the PBPS algorithm. PBPS interleaves computation of valid

policies and policy iteration. 72

5.2 Executions of policies constructed by BPS (figures in the first row) and

PBPS (figures in the second row) for the domain shown in Figure 1.1. . . . 86

Tables

5.1 Performance of PBPS with and without the exploration step for di↵erent

problems. 84

1

Chapter 1

Introduction

1.1 Overview

Deploying robots in the physical world presents a fundamental challenge with planning

robust executions under uncertainty. For example, a personal robot assistant performing

daily household tasks needs to consider uncertainty from uncontrollable human activities,

a self-driving car on the road needs to consider uncertainty from imperfect controllers and

sensors, and an autonomous underwater vehicle exploring oceans needs to consider uncer-

tainty from the unexpected disturbance in the environment. Failing to account uncertainty

in these scenarios may cause tasks failing and severe consequences such as human injury

and robot damage.

The framework of Partially Observable Markov Decision Processes (POMDPs) [67,70]

o↵ers a standard approach to model a variety of problems under uncertainty [8, 22, 37, 52].

As an example, in robotics, many applications in uncertain domains can be modeled using

the POMDP formulation [7, 8, 29, 37].

Perhaps the central algorithmic problem for POMDPs is the synthesis of policies [67,

70]: recipes that specify the actions to take contingent on all possible events in the envi-

ronment. While this policy synthesis problem has traditionally been posed with respect to

optimality objectives, many applications in robotics are better modeled by POMDPs where

the objective is a boolean requirement. For example, in an o�ce environment, a robot

needs to navigate through the o�ce to pick up a target object while avoiding collisions

2

Figure 1.1 : An example uncertain domain. A robot with imperfect actuation and percep-
tion needs to navigate through an o�ce to pick up the blue can on the table, while avoiding
collisions with uncertain obstacles such as floor signs and file cabinets (boolean objective).
There are two regions marked with red tape, and the robot should avoid visiting these red
regions as much as possible (quantitative objective).

with uncertain obstacles such as wet-floor signs and file cabinets, as shown in Figure 1.1.

This task requirement is naturally formulated as policy synthesis from a high-level boolean

objective written in a temporal logic. What’s more, in some robotic domains where a strong

correctness guarantee of completing tasks is required, formulating boolean requirements as

quantitative objectives by assigning penalties for unsafe states and rewards for goal states,

may lead to policies that are overly conservative or overly risky [75], depending on the par-

ticular reward function chosen. Moreover, designing an appropriate reward function that

encodes the boolean requirement exactly is also a non-trivial task for users. Thus, new for-

mulations and algorithms are required to deal with boolean requirements in POMDPs ex-

3

plicitly. Section 2.2 discusses an example POMDP problem to demonstrate that POMDPs

with safe-reachability objectives can provide a better guarantee of both safety and reacha-

bility than the existing quantitative POMDP models in some robotic domains.

Policy Synthesis for POMDPs with boolean requirements has been considered in pre-

vious work [7, 8, 74, 78, 79]. In [7], the authors introduced two kinds of analysis prob-

lems for POMDPs with boolean requirements: (1) the qualitative analysis problem that

checks whether the boolean requirement can be ensured with probability 1 (almost-sure

satisfaction); and (2) the quantitative analysis problem that checks whether the boolean re-

quirement can be ensured with a probability above a threshold. It has been shown that

both analysis problems are undecidable in general for POMDPs with boolean require-

ments [10,50,57]. These previous works [7,8,74] focus on the qualitative analysis problem

of POMDPs with boolean requirement restricted to finite-state and memoryless controllers

to make the problem tractable.

This thesis studies the quantitative analysis problem of POMDPs with a common boolean

requirement: safe-reachability, which requires that with a probability above a certain thresh-

old, a goal state is eventually reached while keeping the probability of visiting unsafe states

below a di↵erent threshold. Many task requirements of robot applications such as the one

shown in Figure 1.1 can be formulated as a safe-reachability objective. As mentioned be-

fore, this quantitative analysis problem is undecidable in general [10, 50, 57]. However,

when restricted to the bounded horizon, this problem is PSPACE-complete [53,56]. There-

fore, to make the problem tractable, this thesis assumes there is a horizon bound h, and users

are not interested in policies beyond this horizon bound h. This assumption is particularly

reasonable for robot applications since robots often need to complete tasks in bounded

steps because of some resource constraints, e.g., time and energy constraints. Based on

this assumption, this thesis presents a series of practical policy synthesis approaches for

4

POMDPs with safe-reachability objectives over a bounded horizon.

1.2 Related Work

1.2.1 Partially Observable Markov Decision Processes

Partially Observable Markov Decision Processes (POMDPs) [67, 70] provide a principled

mathematical framework for modeling a variety of applications in the face of uncertainty [8,

22, 37, 52]. The main algorithmic problem in POMDPs is the synthesis of policies [67, 70]

that specify the action choice for every possible event during execution. Policy synthesis for

POMDPs can be divided into three di↵erent categories, based on the objectives associated

with POMDPs that the synthesized policy must achieve.

POMDPs with Quantitative Objectives

In the first category, the objectives of POMDPs are quantitative objectives such as (dis-

counted) rewards. Policy synthesis for quantitative POMDPs is to find optimal policies

that maximize cumulative expected rewards. Many existing POMDP algorithms for robot

applications [1,6,29,33,42,49,58,69,71] deal with this quantitative POMDP formulation.

Due to uncertainty, policy synthesis for POMDPs usually reasons over the space of

beliefs: probability distributions over all possible states. A big challenge in policy synthesis

for POMDPs is that belief space is a high-dimensional, continuous space with an infinite

number of beliefs, which makes POMDPs extremely di�cult to solve [50, 56]. In recent

years, there have been significant e↵orts in developing algorithms that produce approximate

policies in order to solve large POMDPs. Many of these approximation algorithms are

point-based POMDP solvers based on the notion of (optimally) reachable belief space [1,

6, 42, 49, 58, 60, 65, 66, 68, 69, 71, 72].

5

The policy synthesis approaches presented in this thesis take inspiration from these ef-

ficient point-based POMDP solvers. The o✏ine policy synthesis approach presented in

this thesis resembles these e�cient point-based POMDP solvers by focusing on the goal-

constrained belief space instead of the original belief space. The idea of partial policies

behind the online planning approach presented in this thesis is inspired by the state-of-

the-art online POMDP solvers based on Determinized Sparse Partially Observable Tree

(DESPOT) [6, 69]. Both DESPOT and partial policies only include a subset of all possi-

ble executions to approximate a full policy and improve scalability. There are two major

di↵erences between DESPOT and partial policies: first, DESPOT deals with POMDPs

with quantitative objectives while partial policies are introduced to handle POMDPs with

safe-reachability objectives. Second, DESPOT consists of all action branches while partial

policies only include one action branch per step, which is part of the desired execution

achieving the given safe-reachability objective.

Constrained/Risk-Sensitive/Chance-Constrained POMDPs

In the second category, the objectives of POMDPs extend the quantitative objectives of the

traditional POMDPs with notions of risk and cost. Recently, there has been a large body of

work in constrained POMDPs (C-POMDPs) [35, 40, 61, 75], chance-constrained POMDP

(CC-POMDPs) [63], and risk-sensitive POMDPs (RS-POMDPs) [34, 51] that deal with

expected cost or risk constraints explicitly.

There are two significant di↵erences between their models and the formulation of

POMDPs with safe-reachability objectives studied in this thesis. First, the goal of these

models is to maximize the cumulative expected reward while keeping the expected cost

or risk below a threshold, while in POMDPs with safe-reachability objectives, the goal is

to satisfy a safe-reachability objective in all possible executions including the worst case.

6

Therefore, POMDPs with safe-reachability objectives provide a better safety guarantee

than the C/RS/CC-POMDPs with expected cost or risk threshold constraints. Second, to

encode reachability objectives, C/RS/CC-POMDPs typically assigns a positive reward for

goal states. This encoding does not provide any guarantee on the probability of reaching

goal states. POMDPs with safe-reachability objectives can directly encode the constraint of

reach a goal state with a probability above a threshold as a boolean requirement. Therefore,

POMDPs with safe-reachability objectives provide a better reachability guarantee than the

C/RS/CC-POMDPs.

While C/RS/CC-POMDPs are suitable for many applications, there are settings in robotics

such as autonomous driving and disaster rescue that demand synthesis of policies that can

provide such a strong guarantee of reaching goal states safely.

POMDPs with Boolean Objectives

In the third category, the objectives of POMDPs are high-level boolean requirements speci-

fied in the form of a temporal logic. There are two kinds of analysis problems for POMDPs

with boolean requirements [7]: (1) the qualitative analysis problem that asks whether the

boolean requirement can be ensured with probability 1 (almost-sure satisfaction); and (2)

the quantitative analysis problem that asks whether the boolean requirement can be ensured

with probability above a threshold. Previous works [10, 50, 57] have shown that both anal-

ysis problems are undecidable in general for POMDPs with boolean requirements. Recent

work [7,8,74] has investigated the almost-sure satisfaction problem restricted to finite-state

and memoryless controllers to make the problem tractable.

Although the policy with almost-sure satisfaction provides a strong guarantee of com-

pleting tasks, this almost-sure satisfaction may not be achievable in general. Therefore, this

thesis focuses on the more general quantitative analysis problem of POMDPs with boolean

7

requirements. Specifically, this thesis studies POMDPs with a common boolean require-

ment: safe-reachability, which requires that with a probability above a certain threshold,

a goal state is eventually reached while keeping the probability of visiting unsafe states

below a di↵erent threshold. The main challenge is that the quantitative analysis problem is

undecidable in general [10, 50, 57]. However, when restricted to the bounded horizon, this

problem is PSPACE-complete [53, 56]. Therefore, to make the problem tractable, this the-

sis assumes there is a horizon bound h, and users are not interested in policies beyond this

horizon bound h. This assumption is particularly reasonable for robot applications since

robots often need to complete tasks in bounded steps because of some resource constraints,

e.g., time and energy constraints.

1.2.2 Markov Decision Processes

Markov Decision Processes (MDPs) are a standard model for stochastic systems featuring

non-determinism. The fundamental problem in MDPs is to design a strategy that optimizes

the value of a given objective function. For MDPs, many di↵erent objectives, such as !-

regular or LTL properties [14,15,77], conditional value-at-risk [43], and multiple objectives

[11, 12, 24, 28, 81] have been studied with a variety of applications.

In MDPs, states are fully observable while in POMDPs, states are only partially observ-

able. However, beliefs (probability distributions over all possible states) are always fully

observable. A POMDP can be reduced to an MDP with a continuous state space, i.e., the

belief space. When restricted to a bounded horizon, POMDPs can be reduced to an MDP

with a finite state space, i.e., the reachable belief space Bb0 . Many existing approaches can

deal with MDPs with boolean objectives, e.g., [14, 15, 20, 24, 44, 46–48, 77, 82].

This thesis focuses on POMDP formulations rather than reducing POMDPs to the cor-

responding MDPs and applying existing approaches for MDPs with boolean objectives,

8

based on two reasons. First, in order to employ existing MDP-based approaches, it is typ-

ically required to represent the state space explicitly. As mentioned above, POMDPs with

a bounded horizon can be reduced to MDPs with a finite state space, i.e., the reachable

belief space. It is clear that the size of the reachable belief space grows exponentially as

the horizon increases. Therefore, explicitly representing the reachable belief space may

not be tractable in practice. Second, value functions of POMDPs over finite-horizon has

nice properties, which are piece-wise linear and convex. Moreover, they can be represented

as a finite set of vectors called ↵-vectors [37, 67, 70]. This vector representation contains

not only the value information but also the gradient of the value functions, which can be

used as a global approximation over the entire belief space. This is one of the key ideas

behind many e�cient point-based POMDP solvers [1, 6, 33, 42, 49, 58, 69, 71]. The thesis

also exploits this idea to e�ciently generate good approximated policies for POMDPs with

both boolean and quantitative objectives.

1.2.3 Task and Motion Planning Under Uncertainty

Task and Motion Planning (TMP) [2,16–18,21,23,25–27,31,32,39,41,45,73,80] describes

a class of challenging problems that combine low-level motion planning and high-level task

reasoning. Most of these TMP approaches focus on deterministic domains, while several

of them apply to uncertain domains with uncertainty in perception [31, 39]. These TMP

under uncertainty works perform online planning with a determinized approximation of

belief space dynamics [59] assuming the most likely observation will be obtained. In some

cases, due to the limited time budget for replanning, the online approach constructs a plan

over a small subset of possible events which may miss some rare events that are critical to

safety [49]. Therefore it is worth investigating both online and o✏ine approaches to gain a

better understanding of planning under uncertainty and to develop methodologies that can

9

combine both approaches to achieve a good balance between e�ciency and safety.

1.2.4 Program Verification and Synthesis

Policy synthesis for robotics is closely related to program synthesis and program verifi-

cation for general software; both require determining the correct response to a variety of

possible events or inputs. The classical program synthesis solves the problem of discov-

ering a program, which implements the required system, from user intent expressed in

the form of some logical formulas [30]. Recent work [4, 5, 13] in program synthesis and

program verification has investigated combining boolean and quantitative objectives.

Synthesizing policies and programs is computationally hard due to the large and pos-

sibly infinite search space. In the context of synthesizing policies for POMDPs, the search

space is a high-dimensional, continuous space of probability distributions (beliefs) called

belief space. To address this challenge, this thesis introduces the notion of goal-constrained

belief space that only contains beliefs reachable from a given initial belief under desired

executions that can achieve the safe-reachability objectives. Since not every execution can

satisfy the safe-reachability objective, the goal-constrained belief space is much smaller

than the original belief space in general. This thesis applies techniques from Bounded

Model Checking (BMC) [3] to compactly represent the goal-constrained belief space over

a bounded horizon as a set of symbolic constraints. BMC verifies whether a finite state sys-

tem satisfies a given temporal logic specification. Thanks to the tremendous increase in the

reasoning power of practical SMT (SAT) solvers, BMC can scale up to large systems with

hundreds of thousands of states. The goal-constrained belief space is e�ciently explored

through a modern, incremental SMT solver [19]. It has been shown that the incremental ca-

pability of the SMT solver leads to an e�cient planning algorithm for TMP [17,54,55,80].

Inspired by this result, this thesis now leverages incremental SMT solvers for belief space

10

policy synthesis.

1.3 Contributions

Traditionally, POMDPs are posed with quantitative objectives such as (discounted) re-

wards [1, 6, 33, 42, 49, 58, 63, 69]. Recently, there has been a growing interest in POMDPs

with boolean objectives [7, 8, 74, 78]. Many robot tasks in uncertain domains, such as the

one shown in Figure 1.1, is naturally formulated as POMDPs with a high-level boolean

objective written in a temporal logic. POMDPs with quantitative objectives provide an

optimality guarantee but may lead to overly conservative or overly risky behaviors [75],

depending on the particular reward function chosen. On the other hand, POMDPs with

boolean objectives provides a strong correctness guarantee of completing tasks safely [78],

but the constructed policy may not be optimal. For the example domain shown in Fig-

ure 1.1, there are many valid policies that can achieve the task objective, i.e., satisfy the

boolean objective. Among these valid policies, the preferable policy is the one that passes

the smallest number of red regions that the robot should avoid. Therefore, for domains

that desire both correctness and optimality, POMDPs with both boolean and quantitative

objectives are natural formulations.

Policy synthesis for POMDPs with both boolean and quantitative objectives has been

studied before [9]. In their work, the goal is to find an optimal policy that also ensures a

goal state is reached with probability 1 (almost-sure satisfaction). A more general policy

synthesis problem of POMDPs with both boolean and quantitative objectives is to syn-

thesize an optimal policy that satisfies the boolean objective with a probability above a

threshold. This thesis studies this problem for the particular case of safe-reachability ob-

jectives, which require that with a probability above a threshold, a goal state is eventually

reached while keeping the probability of visiting unsafe states below a di↵erent threshold.

11

Many robot tasks such as the one shown in Figure 1.1 can be formulated as POMDPs with

safe-reachability and quantitative objectives.

This thesis introduces the formulation of POMDPs with safe-reachability objectives

and demonstrates that in specific domains that require a strong correctness guarantee of

accomplishing tasks , POMDPs with safe-reachability objectives can provide a better guar-

antee of both safety and reachability than the existing POMDP models. Based on this

formulation, this thesis first presents two policy synthesis approaches for POMDPs with

safe-reachability objectives: (1) an o✏ine policy synthesis approach for a strong correct-

ness guarantee; and (2) an online planning approach for a balance between e�ciency and

correctness. Based on these approaches, this thesis then presents a policy synthesis ap-

proach for POMDPs with both safe-reachability and quantitative objectives.

1.3.1 POMDPs with Safe-Reachability Objectives

This thesis presents both o✏ine synthesis and online planning approaches for POMDPs

with safe-reachability objectives.

O✏ine Synthesis

The major challenge in policy synthesis for POMDPs is reasoning over a high-dimensional,

continuous space of probability distributions (beliefs) called belief space. It is intractable

to compute a full policy that specifies an action choice for every belief of the entire belief

space. To address this challenge, this thesis introduces the notion of goal-constrained belief

space that only contains beliefs reachable from a given initial belief under desired execu-

tions that can achieve the safe-reachability objectives. Since not every execution can satisfy

the safe-reachability objective, the goal-constrained belief space is much smaller than the

original belief space in general. Based on this notion, this thesis presents an approach

12

called Bounded Policy Synthesis (BPS) that synthesize policies with a bounded horizon

o✏ine over the goal-constrained belief space. The performance of BPS is evaluated in both

simulated experiments on PR2 and physical experiments on Fetch. The results show that

BPS can solve problems with large belief space by focusing on the goal-constrained belief

space.

Online Planning

BPS is an o✏ine method that synthesizes a full policy over the goal-constrained belief

space before execution. Another category of approaches for solving POMDPs is online

planning that interleaves the computation of a single plan and execution [62]. The choice

of the approach depends on the problem at hand. A policy provides faster responses during

execution, while a single plan is cheaper to compute. O✏ine policy synthesis provides a

strong correctness guarantee, but it is di�cult to scale. Online planning is much more scal-

able but makes it hard to ensure correctness. To balance between e�ciency and correctness,

this thesis introduces the notion of a partial policy, which is parameterized by a replanning

probability and only contains a sampled subset of all possible events to approximate a full

policy. This thesis proves that the probability of the constructed partial policy failing is

bounded by the replanning probability. This theoretical result indicates that the replanning

probability is a good measure of the approximation quality of a partial policy. Based on this

idea, this thesis presents an online approach called Online Partial Policy Synthesis (OPPS)

that interleaves the computation of partial policies and execution. OPPS allows users to

specify an appropriate bound on the replanning probability to achieve a good balance be-

tween e�ciency and correctness. Simulation results demonstrate that OPPS scales better

than BPS and can solve problems that are beyond the capabilities of BPS.

13

1.3.2 POMDPs with Both Safe-Reachability and Quantitative Objectives

Both BPS and OPPS focus on boolean reasoning: the goal is to synthesize a policy that

satisfies a safe-reachability objective. However, in some robot applications where many

resource constraints such as energy and time are required to be considered, boolean rea-

soning is not enough. A safe-reachability objective is naturally used to set a “lower bound”

on the desirability of the synthesized policy: the policy should at least satisfy the given safe-

reachability objective. However, there can be many policies that meet the safe-reachability

objective, and some of them are more desirable than others. Given this, it is appropriate

to consider policy synthesis where the synthesized policy must not only satisfy a safe-

reachability objective but also be optimal with respect to a quantitative objective. To com-

plete the picture, this thesis presents a policy synthesis approach, called Point-Based Pol-

icy Synthesis (PBPS) that combines the safe-reachability objectives with the traditional

quantitative objectives. This thesis provides a theoretical analysis for this PBPS approach,

showing that the value di↵erence between the policy constructed by PBPS and the potential

solution policy that is both optimal and satisfies the safe-reachability objective is bounded.

Both simulation and physical experiment results demonstrate that the policies constructed

by PBPS achieve the safe-reachability objective and are of high quality with respect to the

quantitative objective.

1.4 Thesis Structure

The remainder of this thesis is organized as follows:

In Chapter 2, the formulation of POMDPs with safe-reachability is formally defined.

An example POMDP domain is discussed to demonstrate the advantage of this POMDP

formulation against the existing POMDP models.

14

In Chapter 3 and 4, policy synthesis for POMDPs with only safe-reachability objec-

tives is studied. Chapter 3 presents an o✏ine policy synthesis approach for POMDPs with

safe-reachability objectives and the corresponding experimental results. Chapter 4 presents

an online planning approach for POMDPs with safe-reachability objectives and the corre-

sponding theoretical and empirical analysis.

In Chapter 5, policy synthesis for POMDPs with both safe-reachability and quantitative

objectives is investigated.

Conclusions and discussions of future work are addressed in Chapter 6.

15

Chapter 2

POMDPs with Safe-Reachability Objectives

Deploying robots in the physical world presents a fundamental challenge with planning

robust executions under uncertainty, e.g., uncertain e↵ects from imperfect controllers and

uncertain observations from noisy sensors. The framework of POMDPs [67] is a standard

approach for modeling a variety of robot tasks under uncertainty (e.g., [6, 7, 37, 58, 78]).

Perhaps the central algorithmic problem for POMDPs is the synthesis of policies [67]

or conditional plans [33]: recipes that specify the actions to take contingent on all possi-

ble events in the environment. Traditionally, this policy synthesis problem is posed with

quantitative objectives such as (discounted) rewards [1, 6, 33, 42, 49, 58, 63, 69]. Recently,

there has been a growing interest in POMDPs with boolean objectives [7, 8, 74, 78, 79].

Many robot tasks in uncertain domains, such as the one shown in Figure 1.1, is naturally

formulated as POMDPs with a high-level boolean objective written in a temporal logic.

On the one hand, POMDPs with quantitative objectives provide an optimality guarantee

but may lead to overly conservative or overly risky behaviors [75], depending on the partic-

ular reward function chosen. On the other hand, POMDPs with boolean objectives provides

a strong correctness guarantee of completing tasks [7, 8, 74, 78], but the constructed policy

may not be optimal. For the example domain shown in Figure 1.1, many valid policies can

achieve the task objective, i.e., satisfying the boolean objective. Among these valid poli-

cies, the preferable policy is the one that passes the smallest number of red regions that the

robot should avoid. Therefore, for domains that require both correctness and optimality,

POMDPs with both boolean and quantitative objectives are natural formulations.

16

This thesis considers policy synthesis for POMDPs with both boolean and quantitative

objectives. Specifically, this thesis study a common boolean objective: safe-reachability

objectives, which require that with a probability above a threshold, a goal state is eventually

reached while keeping the probability of visiting unsafe states below a di↵erent threshold.

Many robot tasks such as the one shown in Figure 1.1 can be formulated as POMDPs with

safe-reachability and quantitative objectives.

This chapter provides the formulation of POMDPs with safe-reachability objectives.

We follow the notation in [78, 79].

2.1 Definitions

2.1.1 POMDPs

Definition 2.1.1 (POMDP).

A POMDP is a tuple P = (S,A,T ,O,Z, r):

• S is a finite set of states.

• A is a finite set of actions.

• T is a probabilistic transition function: T (s, a, s0) = Pr(s0|s, a) is the probability of

moving to state s0 2 S after taking action a 2 A in state s 2 S.

• O is a finite set of observations.

• Z is a probabilistic observation function: Z(s0, a, o) = Pr(o|s0, a) is the probability

of observing o 2 O after taking action a 2 A and reaching s0 2 S.

• r is a reward function: r(s, a) defines the reward of executing action a 2 A in state

s 2 S.

17

Due to uncertainty in transition and observation, the actual state is partially observable

and typically the robot maintains a belief, which is a probability distribution over all possi-

ble states b : S! [0, 1] with
P
s2S

b(s) = 1. The set of beliefs B = {b : S! [0, 1] |
P
s2S

b(s) =

1} is known as the belief space.

The belief space transition function TB : B ⇥ A ⇥ O ! B is deterministic. bo
a =

TB(b, a, o) is the successor belief for a belief b 2 B after taking an action a 2 A and

receiving an observation o 2 O, defined according to Bayes rule:

8 s0 2 S, bo
a(s0) =

Z(s0, a, o)
P
s2S
T (s, a, s0)b(s)

Pr(o|b, a)
(2.1)

where Pr(o|b, a) =
P

s02S
Z(s0, a, o)

P
s2S
T (s, a, s0)b(s) is the probability of receiving the

observation o after taking the action a in the belief b.

Definition 2.1.2 (k-Step Plan).

A k-step plan is a sequence � = (b0, a1, o1, . . . , ak, ok, bk) such that for all i 2 (0, k], the

belief updates satisfy the transition function TB, i.e., bi = TB(bi�1, ai, oi), where ai 2 A is

an action and oi 2 O is an observation. |�| = k is the length of the k-step plan �.

2.1.2 Safe-Reachability Objective

This thesis studies a common boolean objective: safe-reachability, defined as follows:

Definition 2.1.3 (Safe-Reachability Objective).

A safe-reachability objective is a tuple G = (Dest, Safe):

• Safe is a set of safe beliefs

• Dest is a set of goal beliefs. In general, goal beliefs are safe beliefs, i.e., Dest ✓ Safe.

18

A safe-reachability objective G compactly represents the set ⌦G of valid plans in belief

space:

Definition 2.1.4 (Valid k-Step Plan). A k-step plan (b0, a1, o1, . . . , ak, ok, bk) is valid w.r.t.

a safe-reachability objective G = (Dest, Safe) if there exists a goal belief bj (j  k) at step

j (bj 2 Dest) and all beliefs bi (i < j) visited before step j are safe beliefs (bi 2 Safe).

Note that safe-reachability objectives are defined using sets of beliefs (probability dis-

tributions). The quantitative analysis problem of POMDPs with requirements of a goal

state is eventually reached with a probability above some threshold while keeping the

probability of visiting unsafe states below some threshold can be easily formulated as a

safe-reachability objective G = (Dest, Safe) defined as follows:

Dest = {b 2 B |

0
BBBBBB@

X

s is a goal state

b(s)

1
CCCCCCA > 1 � �1} (2.2)

Safe = {b 2 B |

0
BBBBBB@

X

s violates safety

b(s)

1
CCCCCCA < �2} (2.3)

Where �1 and �2 are small values that represent tolerance.

2.1.3 Policy and Conditional Plan

Previous results [10, 50, 57] have shown that policy synthesis of POMDPs is generally

undecidable. However, when restricted to a bounded horizon, policy synthesis of POMDPs

becomes PSPACE-complete [53,56]. Therefore, this thesis focuses on computing a bounded

policy ⇡ and the horizon (number of steps) of the policy is less than a given bound h. This

bounded policy ⇡ is essentially a set of conditional plans [33]:

Definition 2.1.5 (Conditional Plan).

A conditional plan � is a tuple � = (a, ⌫), where a 2 A is an action and ⌫ is an observation

19

strategy that maps an observation o 2 O to a conditional plan �0.

Figure 2.1 shows an example of a conditional plan � = (a1, ⌫) represented as a tree

rooted at the belief b. � together with the belief b defines a set ⌦�,b of k-step plans

�k = (b, a1, o1, . . . , ak, ok, bk) in the belief space. For each plan �k 2 ⌦�,b, the execution

is the following process: initially, the execution starts at the belief b and take the action

a1 specified by �. Upon receiving an observation o, the execution moves to the successor

belief bo
a = TB(b, a1, o) and start executing the conditional plan �o for the observation o

specified by the observation strategy ⌫ of the conditional plan �. This process repeats until

the execution reaches a terminal belief. The horizon h� = max
�2⌦�,b

|�| of a conditional plan �

is defined as the maximum length of the plans in ⌦�,b.

Definition 2.1.6 (Valid Conditional Plan).

A conditional plan � is valid starting from a belief b 2 B w.r.t. a safe-reachability objective

G if every plan in ⌦�,b is valid (⌦�,b ✓ ⌦G).

Definition 2.1.7 (k-Step Policy).

A k-step policy ⇡ = {�1, �2, . . . } is a set of conditional plans. ⇡ is associated with a set

of beliefs B⇡ ✓ B. Each conditional plan � 2 ⇡ is associated with a belief b 2 B⇡ and

⇡(b) = � specifies this conditional plan � for this belief b. For a k-step policy ⇡, the horizon

h⇡ = max
�2⇡

h� is k.

Similarly, the k-step policy ⇡ = {�1, �2, . . . } defines a set ⌦⇡ =
S

b2B⇡
⌦�,b of plans, where

� is the conditional plan specified for the belief b by the policy ⇡.

Definition 2.1.8 (Valid k-Step Policy).

A k-step policy ⇡ is valid w.r.t. a safe-reachability objective G if every plan in the set ⌦⇡ is

valid (⌦⇡ ✓ ⌦G).

20

b

· · ·

o 1

· · ·
o

2

a0
3

o 1

· · ·

o 1

· · ·

o
2

a1
3

o
2

a0
2

o1

· · ·

o 1

· · ·

o
2

a2
3

o 1

· · ·

o 1

· · ·

o
2

a3
3

o
2

a1
2

o2

a1

Figure 2.1 : A conditional plan � for an uncertain domain with 2 observations (o1 and o2),
represented as a tree rooted at the belief b. Circle nodes represent beliefs, the edges (e.g.,
a1, a0

2, a
1
2, . . .) from circle nodes to rectangle nodes represent actions and the edges (o1 and

o2) from rectangle nodes to circle nodes represent observations.

2.2 Relation to POMDPs with Quantitative Objectives

There are two distinct approaches that can model safe-reachability objectives implicitly us-

ing the existing POMDP models in the literature. The first approach is to incorporate safety

and reachability constraints as negative penalties for unsafe states and positive rewards for

goal states in unconstrained POMDPs with quantitative objectives. However, the authors

of [75] have shown a counterexample that demonstrates formulating constraints as uncon-

strained POMDPs with quantitative objectives does not always yield good policies. The

second approach is to encode safe-reachability objectives implicitly as C/RS/CC-POMDPs

that extend unconstrained POMDPs with notions of risk and cost [34,35,40,51,61,63,75].

21

sready

sunsa f e

sgoal

aL aR

0.1
(0.3, 0.7)

0.9
(0.8, 0.2)

0.05
(0.8, 0.2)

0.1
(0.8, 0.2)

0.85
(0.8, 0.2)

Figure 2.2 : An example to show the di↵erence between POMDPs with safe-reachability
objectives and unconstrained/C/RS/CC-POMDPs. There are 3 states: start state sready, un-
safe state sunsafe and goal state sgoal. Dashed green edges represent transitions of executing
left-hand pick-up action aL in state sready and solid red edges represent transitions of execut-
ing right-hand pick-up action aR in state sready. For each edge, the first line is the transition
probability and the second line is the tuple of observation probabilities (popos , poneg).

This section shows the di↵erences between POMDPs with safe-reachability objectives and

unconstrained/C/RS/CC-POMDPs through an example.

In this simple example, the robot tries to pick up a target cup from the storage area.

There are two action choices: pick-up using the left hand (action aL) and pick-up using the

right hand (action aR). Both aL and aR are uncertain, and the robot may hit the storage while

executing aL or aR, which results in an unsafe collision state sunsafe. There are two possible

observations after executing aL or aR: observation opos representing the robot observes a cup

in its hand and observation oneg representing the robot observes no cup in its hand (Note

that the actual state may be di↵erent from the observation due to uncertainty). The task

22

(1, 0, 0)

(0.05, 0.1, 0.85)

oneg : 0.2

(0.05, 0.1, 0.85)
opos : 0.8

aR

(0, 0.28, 0.72)

oneg : 0.25

(0, 0.04, 0.96)

opos : 0.75

aL

Figure 2.3 : The belief space transition for the POMDP in Figure 2.2. Blue nodes
(psready , psunsafe , psgoal) represent beliefs (probability distributions over states), and red nodes
represent observation. The edges from blue nodes to red nodes represent actions and the
edges from red nodes to blue nodes represent observations and the corresponding probabil-
ities.

objective is to reach a goal state sgoal where the robot holds a cup in its hand with a prob-

ability greater than 0.8 (reachability) while keeping the probability of visiting unsafe state

sunsafe below the threshold 0.2 (safety). The probability transition and observation functions

are shown in Figure 2.2. Based on Formula 2.1, the transition in the corresponding belief

space is constructed (see Figure 2.3).

If this problem is modeled as an unconstrained POMDP by assigning a negative penalty

�P (P > 0) for unsafe state sunsafe and a positive reward R (R > 0) for goal state sgoal, the

optimal action for sready that achieves the maximum reward is always aL, no matter what

values of P and R are. This is because the expected reward of action aL (0.9R � 0.1P) is

greater than the expected reward of aR (0.85R � 0.1P). However, action aL does not satisfy

the original safe-reachability objective in the worst case where the robot observing oneg

after executing action aL and the resulting belief state (0, 0.28, 0.72) violates the original

23

safety-reachability objective.

If this problem is model this problem as a C/RS/CC-POMDP by assigning a positive

reward R for goal state sgoal and a cost 1 for visiting unsafe state sunsafe, the best action for

sready will be aL since both aL and aR satisfies the cost/risk constraint (expected cost/risk

0.1 < 0.2) and the expected reward of aL (0.9R) is greater than the expected reward of aR

(0.85R). However, action aL violates the original safe-reachability objective for the same

reason explained above.

On the contrary, using the formulation of POMDPs with safe-reachability objectives,

the best action for sready will be aR. This is because, as shown in Definition 2.1.8, a valid

policy should satisfy the safe-reachability objective in all possible executions and only aR

satisfies the safe-reachability objective in every possible execution.

This simple example intends to illustrate that in some domains that require the robot to

accomplish the task safely, the formulation of POMDPs with safe-reachability objectives

can provide a better guarantee of both safety and reachability than the existing POMDP

models. While the formulations of cost/risk as negative penalties in unconstrained POMDPs

and expected cost/risk threshold constraints in C/RS/CC-POMDPs are suitable for many

applications, there are domains such as autonomous driving and disaster rescue that demand

synthesis of policies that can provide such a strong guarantee of reaching goal states safely,

especially when violating safety requirements results in irreversible damage to robots.

24

Chapter 3

O✏ine Synthesis for POMDPs with Safe-Reachability Ob-
jectives

This chapter presents an o✏ine policy synthesis algorithm called Bounded Policy Synthesis

(BPS) for POMDPs with safe-reachability objectives, first published in [78].

Previous results [10, 50, 57] have shown that the quantitative analysis problem of

POMDPs with reachability objectives is undecidable. To make the problem tractable, this

thesis assumes there exists a bounded horizon h such that h is su�ciently large to prove

the existence of a valid policy or the user is not interested in plans beyond the bounded

horizon h. This assumption is particularly reasonable for robotic domains because robots

are often required to accomplish a task in bounded steps due to some resource constraints

such as energy/time constraints. Figure 3.1 shows an example of such a scenario: a robot

with uncertain actuation and perception needs to navigate through a kitchen to pick up an

object in bounded steps while avoiding collisions with uncertain obstacles.

Like most other algorithms for POMDP policy synthesis, BPS is based on reasoning

about the space of beliefs, or probability distributions over possible states of the POMDP.

The primary algorithmic challenge is that the belief space is a vast, high-dimensional space

of probability distributions. To address this challenge, BPS exploits the notion of a goal-

constrained belief space. This notion takes inspiration from recent advances in point-based

algorithms [42,49,58,69] for POMDPs with discounted reward objectives. These POMDP

algorithms exploit the notion of the reachable belief space Bb0 from an initial belief b0 and

compute an approximately optimal policy over Bb0 rather than the entire belief space. Sim-

25

Figure 3.1 : An example of a safe-reachability objective: a robot with uncertain actuation
and perception needs to navigate through the kitchen and pick up a green cup from the
black storage area (reachability), while avoiding collisions with uncertain obstacles (e.g.,
chairs) modeled as cylinders in the yellow “shadow” region (safety).

ilarly, BPS computes a valid policy over a goal-constrained belief space, which contains

beliefs visited by desired executions that can achieve the safe-reachability objective. The

goal-constrained belief space is generally much smaller than the original belief space.

BPS computes a valid policy by iteratively searching for a candidate plan in the goal-

constrained belief space and constructing a policy from this candidate plan. BPS compactly

represents the goal-constrained belief space over a bounded horizon using symbolic con-

straints. The applicability of constraint-based methods has been already advocated in sev-

eral robotics planning algorithms [17,39,54,80]. Many of these algorithms take advantage

of a modern, incremental SMT solver [19] for e�ciency. Inspired by this, BPS applies the

SMT solver to e�ciently explore the symbolic goal-constrained belief space to generate

candidate plans. Note that a candidate plan is a single path that only covers a particular

observation at each step, while a valid policy is contingent on all possible observations.

Therefore, once a candidate plan is found, BPS tries to generate a valid policy from the

candidate plan by considering all possible events at each step. If this policy generation

26

fails, BPS adds additional constraints that block invalid plans and force the SMT solver to

generate other better plans. The incremental capability of the SMT solver allows BPS to

generate alternate candidate plans when the constraints are updated e�ciently. If there is

no new candidate plan for the current horizon, BPS increases the horizon and repeats the

above steps until it finds a valid policy or reaches a given horizon bound.

The scalability of BPS is evaluated using a case study involving a partially observable

robotic domain with uncertain obstacles (Figure 3.1). The experimental results demonstrate

that BPS can scale up to large belief spaces by focusing on the goal-constrained belief

space.

3.1 Problem Formulation

3.1.1 Goal-Constrained Belief Space

Computing a full policy that selects an action for every belief is intractable, due to the

curse of dimensionality [56]: the belief space B is a high-dimensional, continuous space

with an infinite number of beliefs. One way to make the problem tractable is to focus on the

reachable belief space Bb0 [42, 58], which only contains beliefs reachable from the given

initial belief b0 and is generally much smaller than the original belief space B.

The safe-reachability objective G defines a set ⌦G of plans that satisfy G. Combining

the reachable belief space Bb0 and the set ⌦G of valid plans defined by the safe-reachability

objective G defines a goal-constrained belief space BG that contains beliefs reachable from

the initial belief b0 under a valid plan � 2 ⌦G. The goal-constrained belief space BG is

usually much smaller than the reachable belief space Bb0 . Thus, computing policies over

the goal-constrained belief space BG can lead to a substantial gain in e�ciency.

27

Constraint
Generation

Plan
Generation

Policy
Generation

POMDP and
Safe-Reachability

Objective

constraints �k

no new plan
increase horizon

candidate
plan

additional
constraints

Policy

Figure 3.2 : The core steps of the BPS algorithm.

3.1.2 Problem Statement

Given a POMDP P, an initial belief b0 and a safe-reachability objective G, the goal is to

synthesize a valid policy ⇡ over the corresponding goal-constrained belief space BG.

3.2 Bounded Policy Synthesis

The core steps of BPS (Algorithm 1) are shown in Figure 3.2. BPS computes a valid policy

by iteratively searching for a candidate plan in the goal-constrained belief space BG and

constructing a valid policy from this candidate plan. Figure 3.3 graphically depicts one

example run of BPS.

First BPS compactly encodes the goal-constrained belief space BG (the black box in

Figure 3.3) w.r.t. the given POMDP P, the initial belief b0 and the safe-reachability ob-

jective G over a bounded horizon k as a logical formula �k (Algorithm 1, lines 2, 6, 8).

More details of the constraints that encode the goal-constrained belief space are discussed

in Section 3.2.1.

Then BPS computes a candidate plan by checking the satisfiability of the constraint �k

(line 10) through a modern, incremental SMT solver [19]. Note that the horizon k restricts

the length of the plan and thus the robot can only execute k actions.

28

Algorithm 1: BPS
Input:
POMDP P
Initial Belief b0

Safe-Reachability Objective G
Start Step s
Horizon Bound h
Output: A Valid Policy ⇡

1 k s; /* Initial horizon */

2 �k (bs = b0) ; /* Initial belief */

3 while k  h do
4 �k ;; /* �k: Candidate plan */

/* Add transition at step k if k > s */

5 if k > s then
6 �k �k ^ (bk = TB(bk�1, ak, ok));
7 push(�k); /* Push scope */

/* Add goal constraints at step k (Formula 3.1) */

8 �k �k ^ G(�k,G, k);
9 while ; = �k do

/* Candidate generation */

10 �k IncrementalSMT(�k);
11 if ; = �k then /* No new plan */

12 break;
13 else

/* �: constraints for blocking invalid plans */

14 ⇡, � = PolicyGeneration(P,G,�k, s + 1, h);
15 if ⇡ = ; then /* Generation failed */

16 �k �k ^ �;
17 else
18 return ⇡;
19 �k ;;

/* Pop scope: pop goal and � at step k */

20 pop(�k);
21 k k + 1 ; /* Increase horizon */

22 return ;;

29

'

&

$

%

b�k
s

· · ·

b0s+1 · · ·
o0s+1

b�k
s+1 · · · b�k

i�1

· · ·

b0i · · ·
o0i

b�k
i · · ·

o
� k

i

a�k
i

o
� k

s+
1

a�k
s+1

BG

Figure 3.3 : An example run of BPS. The black box represents the goal-constrained belief
space BG over the bounded horizon k. Circle nodes represent beliefs, the edges (e.g., a�k

s+1,
a�k

i) from circle nodes to rectangle nodes represent actions and the edges (e.g., o�k
s+1, o0s+1)

from rectangles nodes to circle nodes represent observations. The dashed green path repre-
sents one candidate plan �k found by the incremental SMT solver. BPS constructs a policy
tree from this candidate plan by considering other branches following the rectangle node
for each step.

If �k is satisfiable, the SMT solver returns a candidate plan (the dashed green path in

Figure 3.3) and BPS tries to generate a valid policy from the candidate plan by considering

all possible observations, i.e., other branches following the rectangle node at each step

(line 14). If this policy generation succeeds, BPS finds a valid policy. Otherwise, BPS adds

additional constraints that block this invalid plan (line 16) and forces the SMT solver to

generate another better candidate.

If�k is unsatisfiable and thus there is no new plan for the current horizon, BPS increases

the horizon by one (line 21) and repeats the above steps until a valid policy is found (line

18) or a given horizon bound h is reached (line 3).

This incremental SMT solver [19] can e�ciently generate alternate candidate plans by

maintaining a stack of scopes, where each scope is a container for a set of constraints and

the corresponding “knowledge” learned from this set of constraints. For fast repeated sat-

30

isfiability checks, when updating constraints (lines 2, 6, 8, 16), rather than rebuilding the

“knowledge” from scratch, the incremental SMT solver only changes the “knowledge” re-

lated to the updates by pushing (line 7) and popping (line 20) scopes. Thus the “knowledge”

learned from previous satisfiability checks can be reused.

3.2.1 Constraint Generation

In the first step, BPS uses an encoding from Bounded Model Checking (BMC) [3] to con-

struct the constraint�k representing the goal-constrained belief spaceBG w.r.t. the POMDP

P, the initial belief b0 and the safe-reachability objective G over the bounded horizon k.

The idea behind BMC is to find a finite plan with increasing horizon that satisfies the given

safe-reachability objective.

The constraint �k contains three parts:

1. Starting from the initial belief (line 2): bs = b0.

2. Unfolding of the transition up to the horizon k (line 6):
Vk

i=s+1(bi = TB(bi�1, ai, oi)).

3. Satisfying the safe-reachability objective G (line 8).

A safe-reachability objective can be represented as a constraint G(�k,G, k) on bounded

plans �k = (bs, as+1, os+1, . . . , ak, ok, bk) using the rules provided by BMC [3] as follows:

G(�k,G, k) =
k_

i=s

(bi 2 Dest ^ (
i�1̂

j=s

(bj 2 Safe))) (3.1)

For a safe-reachability objective G with a set Dest of goal beliefs and a set Safe of safe

beliefs, a finite plan that visits a goal belief while staying in the safe region is su�cient to

satisfy G. Therefore, it is su�cient to specify that a bounded plan with length k eventually

31

visits a belief bi 2 Dest while staying in the safe region (
Vi�1

j=s(bj 2 Safe)), as shown in

Formula 3.1.

3.2.2 Plan Generation

The next step is to generate a candidate plan �k of length k that satisfies the constraint

�k. BPS applies an incremental SMT solver to e�ciently search for such a candidate

in the goal-constrained belief space BG defined by �k (line 10). If �k is unsatisfiable,

there is no bounded plan �k for the current horizon. In this case, BPS increases the

horizon (line 21). If �k is satisfiable, the SMT solver will return a satisfying model

that assigns concrete values b�k
i , a�k

i+1 and o�k
i+1 for the belief bi, action ai+1 and observa-

tion oi+1 at each step i respectively, which can be used to construct the candidate plan

�k = (b�k
s , a�k

s+1, o
�k
s+1, b

�k
s+1 . . . , a

�k
k , o

�k
k , b

�k
k).

3.2.3 Policy Generation

Plan generation returns a candidate plan �k (the dashed green path in Figure 3.3) that

satisfies the safe-reachability objective G. This candidate plan is a single path that only

covers a particular observation o�k
i at each step i. A valid policy should also consider other

possible observations o0i , o�k
i , i.e., other branches following the rectangle node for each

step i. Policy generation (Algorithm 2) tries to construct a valid policy from a candidate

plan by considering all possible observations at each step.

For a candidate plan �k, BPS processes each step of �k, starting from the last step

(Algorithm 2, line 24). For each step i, since the set of observations O is finite, BPS enu-

merates every possible observation o0i , o�k
i (line 25) and compute the next belief b0i using

the transition function (line 26). To ensure the action a�k
i also works for this di↵erent ob-

servation o0i , BPS computes a valid policy for the branch starting from b0i , which is another

32

Algorithm 2: PolicyGeneration
Input:
POMDP P
Safe-Reachability Objective G
Candidate Plan �k = (b�k

s , a�k
s+1, o

�k
s+1, b

�k
s+1, . . . , b

�k
k)

Start Step s
Horizon Bound h
Output: A Valid Policy ⇡ and Constraints � for blocking invalid plans if the input

candidate plan is invalid
23 ⇡ ;;
24 for i = k downto s do
25 foreach observation o 2 O � {o�k

i } do
/* Try observation o */

26 b0i TB(b�k
i�1, a

�k
i , o);

/* Call BPS to construct the branch */

27 ⇡0 BPS(P, b0i ,G, i, h);
28 if ; = ⇡0 then

/* Construction failed */

29 Construct � using Formula 3.2
30 return ;, �;

/* Combine policy */

31 ⇡ ⇡ [⇡0

/* Record action choice for belief b�k
i�1 */

32 ⇡(b�k
i�1) a�k

i ;
33 return ⇡, ;;

BPS problem and can be solved using Algorithm 1 (line 27).

If BPS successfully constructs the valid policy ⇡0 for this branch, BPS adds ⇡0 to the

policy ⇡ for the original synthesis problem (line 31). Otherwise, this candidate plan �k

can not be an element of a valid policy �k < ⌦⇡. In this case, the prefix of the candidate

plan (b�k
s , a�k

s+1, o
�k
s+1, . . . , b

�k
i�1, a

�k
i) is invalid for current horizon k and BPS adds additional

33

constraints � to block all invalid plans that have this prefix (line 29):

� = ¬ ((bs = b�k
s) ^ (ai = a�k

i) ^
0
BBBBB@

i�1̂

m=s+1

(am = a�k
m) ^ (om = o�k

m) ^ (bm = b�k
m)

1
CCCCCA) (3.2)

Note that � is only valid for current horizon k and when the horizon increases, BPS

pops the scope related to the additional constraints � from the stack of the SMT solver (line

20) so that those plans with this prefix with the increased horizon can be revisit. If BPS

successfully constructs policies for all other branches at step i, the choice of action a�k
i for

belief b�k
i�1 is valid for all possible observations. Then BPS records this choice for belief

b�k
i�1 in the policy (line 32). This policy generation terminates when it reaches the start step

s as stated in the for-loop (line 24) or it fails to construct the valid policy ⇡0 for a branch

(line 28).

3.3 Algorithm Analysis

3.3.1 Algorithm Complexity

The reachable belief space Bb0 can be seen as a tree where the root node is the initial belief

b0 and at each node, the tree branches on every action and observation. The given horizon

bound h limits the height of the tree. Therefore, the reachable belief space Bb0 of height h

contains O(|A|h|O|h) plans, where |A| and |O| are the size of the action setA and the size of

observation set O respectively. To synthesize a valid policy, a naive approach that checks

every plan in the reachable belief space Bb0 requires O(|A|h|O|h) calls to the SMT solver.

This exponential growth of the reachable belief space Bb0 due to branches on both action

and observation is a major challenge for synthesizing a valid policy.

34

In contrast, BPS exploits the notion of goal-constrained belief space BG and e�ciently

explores the goal-constrained belief space BG by leveraging an incremental SMT solver

to generate a candidate plan � of length at most h. This candidate plan fixes the choice

of actions at each step and thus the policy generation process only needs to consider the

branches on observations for each step, as shown in Figure 3.3. Therefore, BPS requires

O(I|O|h) calls to the SMT solver, where I is the number of interactions between plan gener-

ation and policy generation, while the naive approach described above requires O(|A|h|O|h)

SMT solver calls. In general, I is often much smaller than |A|h, which leads to much faster

policy synthesis.

3.3.2 Observability

As discussed in the previous section (Section 3.3.1), the number of plans checked by BPS

is O(I|O|h) calls to the SMT solver, where I is the number of interactions between plan

generation and policy generation. Thus, the observability of the domain, i.e., the capability

of the robot’s perception, plays an important role in the performance of BPS.

In one extreme case, if the robot has perfect perception and the domain is fully ob-

servable, the robot knows the exact current state during execution. Then the underly-

ing model becomes an MDP rather than a POMDP, and there is a large body of works

[14, 15, 20, 24, 44, 46–48, 77, 82] that can deal with MDP with boolean objectives as dis-

cussed in Section 1.2.2). A fully observable domain can also be modeled as a POMDP

P = (S,A,T ,O,Z, r) where the set of observations is equivalent to the state space, i.e.,

O = S, and the probabilistic observation function is Z(s0, a, o) = 0 for every s0 , o and

Z(s0, a, o) = 1 when s0 = o. To solve this fully observable domain, BPS requires O(I|S|h)

calls to the SMT solver, where I is the number of interactions between plan generation and

policy generation. For complex robot tasks, the state space S is usually very large. As an

35

example, the size of the state space for the kitchen domain (Figure 3.1) with N regions and

M obstacles is |S | = C(N,M) · N, where C(N,M) is the number of M-combinations from

the set of N regions. For N = 24 and M = 4, there are more than 105 states. Therefore,

BPS may check a huge number of plans in order to compute a valid policy due to a high

dimensional observation space and thus may not scale well for fully observable domains.

In another extreme case, if the robot has no perception and the domain is unobservable,

the robot has no information about the current state. Then the underlying model becomes

an unobservable MDP (UMDP) [53] rather than a POMDP. A UMDP can be modeld as a

POMDP P = (S,A,T ,O,Z, r) where the set of observations O = {o} contains only one

element (the same observation o is received for every state) and the probabilistic observa-

tion function is constant, i.e., Z(s0, a, o) = 1
|S|

for all s0 2 S. To solve this unobservable

domain, BPS only requires O(I) calls to the SMT solver, where I is the number of inter-

actions between plan generation and policy generation. This is because for unobservable

domains, there is no branching on observations and a policy is just a plan. Therefore, BPS

only checks a small number of plans in order to compute a valid policy and thus scales well

for unobservable domains.

For general cases where the domain is partially observable, BPS requires O(I|O|h) calls

to the SMT solver, where I is the number of interactions between plan generation and policy

generation, as discussed in Section 3.3.1. Therefore, BPS is usually e↵ective for POMDPs

with a restricted partially observable component, but may not scale well for POMDPs with

high-dimensional/continuous observation space.

3.4 Experiments

BPS is evaluated in a partially observable kitchen domain (Figure 3.1) with a PR2 robot

and M uncertain obstacles placed in the yellow “shadow” region. The task for the robot is

36

to pass the yellow “shadow” region safely avoiding collisions with uncertain obstacles and

eventually pick up a green cup from the black storage area.

The kitchen environment is first discretized into N regions. The locations of the obsta-

cles are uniformly distributed among the regions in the yellow “shadow” region and there is

at most one obstacle in each region. The robot starts at a known initial location. However,

due to the robot’s imperfect perception, the locations of the robot, the locations of uncertain

obstacles, and the location of the target cups are all partially observable during execution.

In this domain, the actuation and perception of the robot are imperfect. There are ten

uncertain robot actions (|A| = 10):

1. Four move actions that move the robot to an adjacent region in four directions: in-

cluding move-north, move-south, move-west and move-east. Move actions could fail

with a probability pfail, resulting in no change in the state.

2. Four look actions that observe a region to see whether there is an obstacle in that

region, including look-north, look-south, look-west, look-east (look at the adjacent

region in the corresponding direction). When the robot calls look to observe a par-

ticular regioni, it may either make an observation o = opos representing the robot

observes an obstacle in regioni or o = oneg representing the robot observers no ob-

stacle in regioni. The probabilistic observation functionZ(s0, a, o) for look actions is

defined based on the false positive probability pfp and the false negative probability

pfn.

3. Two pick-up actions that pick up an object from the black storage area: pick-up using

the left hand aL and pick-up using the right hand aR. The model of pick-up actions is

the same as that discussed in Section 2.2 (see Figure 2.2).

The task shown in Figure 3.1 can be specified as a safe-reachability objective with a set

37

Dest of goal beliefs and a set Safe of safe beliefs, defined as follows:

Dest = {b 2 B |
⇣X

b(target cup in robot’s hand))
⌘
> 1 � �1}

Safe = {b 2 B |
⇣X

b(robot in collision))
⌘
< �2} (3.3)

where �1 and �2 are small values that represent tolerance. The reachability objective speci-

fies that in a goal belief, the probability of having the target cup in the robot’s hand should

be greater than the threshold 1 � �1. The safety objective specifies that in a safe belief, the

probability of the robot in collision (the robot and one obstacle in the same region) should

be less than the tolerance �2.

The goal is to generate a valid policy for the robot that is guaranteed to achieve the

safe-reachability objective, even with uncertain actuation and perception.

3.4.1 Performance

The performance of BPS is evaluated using test cases of the kitchen domain with various

numbers of obstacles. Z3 [19] is used as the backend incremental SMT solver. All ex-

periments were conducted on a 3.0GHz Intel R� processor with 32GB memory. For all the

tests, the horizon bound is h = 20 and the number of regions in the kitchen environment is

N = 24.

To evaluate the gains from incremental solving, BPS is tested in two settings: with and

without incremental solving. Note that when incremental solving is disabled, each call to

the SMT solver requires solving the SMT constraints from scratch, rather than reusing the

results from the previous SMT solver calls. Figure 3.4 shows the performance results of

BPS with and without incremental solving. As shown in Figure 3.4, enabling incremental

solving in BPS leads to a performance improvement in policy synthesis. This is because

38

1 2 3 4

100

101

102

103

Number of obstacles M

Po
lic

y
Sy

nt
he

si
s

Ti
m

e
(s

)
BPS (with inc.)
BPS (no inc.)

Figure 3.4 : Performance of BPS as the number of obstacles M varies. The plot of circles
shows the performance of BPS with incremental solving and the plot of squares shows the
performance of BPS without incremental solving.

1 2 3 4
20

40

60

80

100

120

Number of obstacles M

N
um

be
ro

fP
la

ns
C

he
ck

ed

Figure 3.5 : The number of plans checked (i.e, the number of SMT calls) by BPS during
policy synthesis as the number of obstacles M varies.

the BMC encoding [3] used in BPS is particularly suitable for incremental solving since

increasing horizon and blocking invalid plans correspond to pushing/popping constraints.

39

To demonstrate the gains from utilizing the goal-constrained belief space compared

to a simple exhaustive search in the reachable belief space, this thesis first estimates the

number of plans in the reachable belief space. There is no observation branching for the

four move actions, and there are two observation branches for the four look actions. The

two pick-up actions can be ignored since these two actions are not available in every step

and can only be performed when the robot is fairly confident that it is in the position where

it is ready to pick up a cup from the black storage area. Therefore, the approximate lower

bound of the number of plans in the reachable belief space with at most h = 20 steps is

(4 + 4 ⇥ 2)20
⇡ 1021. However, as shown in Figure 3.5, for the largest test, the number of

plans checked (around 120) in BPS is very small compared to the number of plans in the

reachable belief space. These results show that BPS can solve problems in large reachable

belief spaces with a small number of SMT solver calls by focusing on the goal-constrained

belief space.

However, Figure 3.4 also shows that the synthesis time grows exponentially as the

number of obstacles increases, which matches the complexity analysis in Section 3.3.1.

This is because the current implementation of BPS operates on an exact tree representation

of policies with all the observation branches. As the number of obstacles increases, both

the horizon bound (the height of the policy tree) and the size of the state space (the belief

space dimension) increase, which leads to exponential growth of plans in the policy tree

and makes the policy synthesis problem much harder.

3.4.2 Horizon Bound

To evaluate how BPS performs with di↵erent horizon bounds, BPS is tested in the kitchen

domain with M = 2 obstacles. Figure 3.6 shows the performance results of BPS as the

horizon bound h increases. For the kitchen domain with M = 2 obstacles, it requires at

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0

100

200

300

Horizon Bound h

Po
lic

y
Sy

nt
he

si
s

Ti
m

e
(s

)

Figure 3.6 : Performance of BPS for the kitchen domain with M = 2 obstacles as the
horizon bound h increases. The blue dashed line is the plot hmin = 9.

least hmin = 9 (the blue dashed line in Figure 3.6) steps to complete the tasks. As shown

in Figure 3.6, when the horizon bound h < hmin, there is no valid policy within the horizon

bound, and BPS needs to explore every plan in the goal-constrained belief space in order

to confirm non-existence of valid policies. Therefore, the computation time of BPS grows

rapidly as the horizon bound h increases when the horizon bound h < hmin. When the

horizon bound h � hmin, the computation time of BPS does not change much as the horizon

bound h increases. This is because BPS stops increasing the horizon after a valid policy is

found as shown in Algorithm 1. Therefore, when the horizon bound h � hmin, increasing

the horizon bound does not a↵ect the performance of BPS.

3.4.3 Physical Validation

BPS is validated on a Fetch robot for the domain shown in Figure 3.7. The setup of this

domain is similar to the kitchen domain. The Fetch needs to pick up a target object (the blue

can on the table) while avoiding collisions with uncertain obstacles such as floor signs and

41

Figure 3.7 : An example uncertain domain with safe-reachability objective: a robot with
imperfect actuation and perception needs to navigate through an o�ce to pick up the blue
can from the table, while avoiding collisions with uncertain obstacles such as floor signs
and file cabinets.

file cabinets, which can be placed in di↵erent locations. The POMDP’s state space consists

of robot locations and object locations. A Vicon system is used to detect object locations,

which is usually accurate but can still produce false negative and false positive due to

occlusion or inappropriate Vicon marker configurations on objects. The false negative and

false positive probabilities can be estimated by counting the false negative and false positive

events during 100 Vicon detections. The POMDP’s probabilistic observation function is

defined based on the false negative and false positive probabilities. Sometimes the Fetch

may fail to move its base when given a move action command and stay in the same place.

The failure probability of these move actions can be estimated by counting the failure

42

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.8 : Physical validation of BPS for the domain shown in Figure 3.7.

events during 100 move action executions. The POMDP’s probabilistic transition function

is defined based on this failure probability.

Figure 3.8a, 3.8b, 3.8c, 3.8d, 3.8e, 3.8f, 3.8g, and 3.8h show the execution of the pol-

icy constructed by BPS. BPS produces a policy that achieves the given safe-reachability

objective.

3.5 Discussion

In this chapter, an o✏ine policy synthesis method called BPS is presented for POMDPs

with safe-reachability objectives. BPS exploits the notion of a goal-constrained belief

space to improve computational e�ciency. BPS constructs constraints in a way similar

to Bounded Model Checking [3] to compactly represent the goal-constrained belief space,

which can be e�ciently explored through an incremental Satisfiability Modulo Theories

solver [19]. BPS is evaluated in an uncertain robotic domain, and the results show that

43

BPS can synthesize policies for large problems by focusing on the goal-constrained belief

space.

The current implementation of BPS operates on an exact representation of the policy

(the tree structure shown in Figure 3.3). As a result, BPS su↵ers from the exponential

growth as the horizon increases. An important ongoing question is how to represent the

policy approximately while preserving correctness. Another issue arises from the discrete

representations (discrete POMDPs) used in BPS. While many robot tasks can be modeled

using these representations, discretization often su↵ers from the “curse of dimensionality”.

Investigating how to deal with continuous state spaces and continuous observations directly

without discretization is another promising future direction for this work and its application

in robotics.

44

Chapter 4

Online Planning for POMDPs with Safe-Reachability Ob-
jectives

This chapter presents an online policy synthesis algorithm called Online Partial Policy

Synthesis (OPPS) for POMDPs with safe-reachability objectives, first published in [79].

The BPS method presented in Chapter 3 is an o✏ine synthesis method that computes a

full policy before execution. Another category of approaches to planning under uncertainty

is online planning that interleaves planning and execution [6, 31, 38, 39, 49, 64, 69]. The

choice of the approach depends on the problem at hand. O✏ine synthesis provides a strong

correctness guarantee, but it is di�cult to scale. Online planning is much more scalable

but makes it hard to ensure correctness. Online planning works well for domains where

replanning is likely to succeed but often fails for domains where replanning is di�cult or

infeasible in some states.

This chapter presents an online planning method, OPPS, to scale up the previous BPS

approach further through online planning and achieve a good balance between e�ciency

and correctness. OPPS is based on the notion of partial policies, which only contain a

sampled subset of all observation branches at each step and approximate full policies. This

idea of partial policies resembles the state-of-the-art online POMDP algorithm based on

Determinized Sparse Partially Observable Tree (DESPOT) [6,69]. Both DESPOT and par-

tial policies contain a subset of all possible observations to improve e�ciency. There are

two major di↵erences between OPPS and DESPOT: first, DESPOT handles POMDPs with

(discounted) rewards while OPPS solves POMDPs with safe-reachability objectives. Sec-

45

b0

· · ·

o 1

· · ·

o
2

a0
3

o 1

· · ·

o 1

· · ·

o
2

a1
3

o2

a0
2

o1

· · ·

o 1

· · ·

o
2

a2
3

o 1

· · ·

o 1

· · ·

o
2

a3
3

o2

a1
2

o2

a1

Figure 4.1 : A k-step partial policy ⇡p for an uncertain domain with 2 observations (o1

and o2), represented as a partial tree rooted at the initial belief b0 (including only solid
branches). Circle nodes represent beliefs, the edges (e.g., a1, a0

2, a
1
2, . . .) from circle nodes

to rectangle nodes represent actions, and the edges (o1 and o2) from rectangle nodes to
circle nodes represent observations.

ond, DESPOT contains all action branches while OPPS constructs partial policies (Figure

4.1) that only contains one action per step, which is part of the desired execution satisfying

the safe-reachability objective.

OPPS computes a partial policy parameterized by a replanning probability, which is

the probability of the event that the robot receives an observation not covered by the partial

policy, thus requiring replanning. Moreover, this chapter provides a theoretical analysis of

this replanning probability framework, showing that the probability of the constructed par-

tial policy failing is bounded by the replanning probability. OPPS allows users to specify

an appropriate bound on the replanning probability to balance e�ciency and correctness:

46

for domains where replanning is likely to succeed, users can increase the bound for e�-

ciency; on the other hand, for domains where replanning is di�cult or infeasible in some

states, users can decrease the bound and allocate more computational resources to achieve

a higher success rate.

To further improve performance, OPPS updates the replanning probability bound in-

stead of using the same bound during partial policy construction. This bound update step

enables quicker detection of the current partial policy meeting the bound and avoids unnec-

essary computation. To o↵er better safety guarantees, once a partial policy is constructed,

OPPS checks whether the immediate successor belief of every uncovered observation of

the constructed partial policy satisfies the safety requirement. Thus OPPS guarantees that

the robot still satisfies the safety requirement when replanning fails. Section 4.2.2 has more

details on the bound update step and safety guarantees.

OPPS is evaluated in the uncertain mobile manipulation domain presented in [78] and

the Tag domain [58]. OPPS is also validated on a Fetch robot for the domain shown in Fig-

ure 3.7. The results demonstrate that OPPS scales better than BPS and can solve problems

that are beyond the capabilities of BPS within the time limit.

4.1 Problem Formulation

4.1.1 Partial Policy

Computing an exact policy that selects an action for every belief is intractable, due to the

curse of dimensionality [56]: the belief space B is a high-dimensional, continuous space

with an infinite number of beliefs. One way to make the problem tractable is to focus on the

reachable belief space Bb0 [42, 58], which only contains beliefs reachable from the initial

belief b0 and is generally much smaller than the original belief space B. Therefore, instead

47

of computing a policy ⇡ : B 7! A over the entire belief space, these methods [42, 58] only

compute a policy ⇡Bb0
: Bb0 7! A over the reachable belief space.

Chapter 3 has shown that the performance of policy synthesis for POMDPs with safe-

reachability objectives can be further improved based on the notion of a goal-constrained

belief space BG. The goal-constrained belief space BG combines the reachable belief space

Bb0 and the set ⌦G of valid plans defined by the safe-reachability objective G, which only

contains beliefs reachable from the initial belief b0 under a valid plan � 2 ⌦G. In general,

BG is much smaller than the reachable belief space Bb0 . Thus, BPS only computes a policy

⇡BG : BG 7! A over the goal-constrained belief space to improve e�ciency. This policy

⇡BG is essentially a set � of conditional plans [33] in Definition 2.1.5. Figure 2.1 shows an

example of a conditional plan � = (a1, ⌫) represented as a tree rooted at the initial belief b0.

It is clear that the number of valid plans in a valid conditional plan � grows exponen-

tially as the horizon h� increases. To address this challenge, this thesis introduces partial

conditional plans that only contains a small number of valid plans to approximate full con-

ditional plans:

Definition 4.1.1 (Partial Conditional Plan).

A k-step partial conditional plan is a tuple �p = (a,Op, ⌫p), where a 2 A is an action,

O
p
✓ O is a subset of the observation set O, and ⌫p is a partial observation strategy that

maps an observation o 2 Op to a partial conditional plan �p0 .

Similar to a full conditional plan defined in Section 2.1.3, a partial conditional plan

�p = (a1,Op, ⌫p) together with a belief b defines a set ⌦�p,b of k-step plans �k = (b, a1, o1,

. . . , ak, ok, bk) in belief space. For each plan �k 2 ⌦�p,b, the execution is the following

process: initially, the execution starts at the belief b and take the action a1 specified by

the partial conditional plan �p. Upon receiving the observation o1 2 O
p, the execution

moves to the successor belief b1 = TB(b, a1, o1) and start executing the conditional plan

48

�p
o1 for the observation o1 specified by the observation strategy ⌫p of the partial conditional

plan �p. This process repeats until the execution reaches a terminal belief. The horizon

h�p = max
�2⌦�p ,b

|�| of a partial conditional plan �p is defined as the maximum length of the

plans in ⌦�p,b.

Definition 4.1.2 (Valid Partial Conditional Plan).

A partial conditional plan �p is valid w.r.t. a safe-reachability objective G and a belief

b 2 B if every plan in the set ⌦�p,b is a valid plan, i.e., ⌦�p,b ✓ ⌦G.

Definition 4.1.3 (Partial Policy).

A k-step partial policy ⇡p = {�p
1 , �

p
2 , . . . } is a set of partial conditional plans. ⇡p is associated

with a set of beliefs B⇡p ✓ B. Each partial conditional plan �p
2 ⇡p is associated with a

belief b 2 B⇡p and ⇡p(b) = �p specifies this partial conditional plan �p for this belief b. For

a k-step partial policy ⇡p, the maximum horizon hmax = max
�p2⇡p

h�p is k.

Similarly, the k-step partial policy ⇡p = {�p
1 , �

p
2 , . . . } defines a set ⌦⇡p =

S
b2B⇡p
⌦�p,b of

plans, where �p = ⇡p(b) is the partial conditional plan specified for the belief b by the

partial policy ⇡p .

Definition 4.1.4 (Valid Partial Policy).

A k-step partial policy ⇡p is valid w.r.t. a safe-reachability objective G if every plan in the

set ⌦⇡p is valid (⌦⇡p ✓ ⌦G).

4.1.2 Replanning Probability

Since a partial policy ⇡p only contains a subset of all observation branches at each step (see

Figure 4.1), during online execution, it is possible that a dotted observation branch o that

is not part of the partial policy is visited. In this case, the new successor belief b0 of this

branch o is not covered by the partial policy (b0 < B⇡p) and it is required to recursively

49

compute a new partial policy for this new belief b0. However, since ⇡p does not consider all

possible observation branches, it is possible that the partial conditional plan �p chosen by

⇡p is invalid for the new observation branch o, even for a valid partial policy. As a result,

there is no partial policy for the new belief b0 and execution fails.

To preserve correctness, it is ideal to bound the execution failure probability pfail(⇡p) of

a valid partial policy ⇡p, which is equivalent to the execution failure probability measured

from the initial belief b0 under the valid partial conditional plan �p = ⇡p(b0) specified

for the belief b0 by the partial policy ⇡p, i.e., pfail(⇡p) = pfail(b0, �p) = Pr(failure|b0, �p).

The challenge is that pfail(⇡p) is di�cult to compute because it requires checking whether

every valid partial conditional plan �p = (a,Op, ⌫p) 2 ⇡p is also valid for every uncovered

observation o < Op, i.e., there exists a valid partial policy for the successor belief b0 of the

uncovered observation branch o, which essentially computes a valid full policy ⇡.

However, the replanning probability preplan(⇡p) = preplan(b0, �p) = Pr(replanning| b0, �p)

(�p = ⇡p(b0) = (a,Op, ⌫p) is the partial conditional plan for the initial belief b0 specified by

the partial policy ⇡p) of visiting a dotted observation branch that is not part of the partial

policy and replanning a new partial policy is easy to compute recursively:

preplan(⇡p) = preplan(b0, �
p) =

X

o2Op

Pr(o|b, a)preplan(b0, ⇡p(b0)) +
X

o<Op

Pr(o|b, a) (4.1)

where Pr(o|b, a) =
P

s02S
Z(s0, a, o)

P
s2S
T (s, a, s0)b(s) is the probability of receiving obser-

vation o after performing action a in belief b. For the base case where the belief b is

associated with a partial conditional plan �p = (a,Op, ;) with empty observation strategies,

preplan(b, �p) =
P

o<Op
Pr(o|b, a).

The following theorem states that for a valid partial policy ⇡p, the failure probability

pfail(⇡p) is bounded by the replanning probability preplan(⇡p):

50

Theorem 4.1.1. For any k-step valid partial policy ⇡p = {�p
1 , �

p
2 , . . . }, pfail(⇡p)  preplan(⇡p).

Proof. Theorem 4.1.1 can be proved by induction. Let �fail(b) : B 7! {0, 1} be a failure

indicator and when �fail(b) = 1, there is no valid partial policy for belief b and exeution

fails.

• Base case: consider those beliefs b associated with partial conditional plans �p =

(a,Op, ;) = ⇡p(b) with empty observation strategies. Since ⇡p is valid, �p is also valid

according to Definition 4.1.2 and 4.1.4. Therefore, for every observation o 2 Op,

b0 = TB(b, a, o) 2 Dest is the terminal goal belief and �fail(b0) = 0. Thus,

pfail(b, �p) =
X

o<Op

Pr(o|b, a)�fail(b0)



X

o<Op

Pr(o|b, a) = preplan(b, �p)

since �fail(b0)  1.

• Inductive case: consider those beliefs b associated with partial conditional plans �p =

(a,Op, ⌫p) = ⇡p(b) with non-empty observation strategies. For every o 2 Op
k , let b0 =

TB(b, a, o) be the successor belief and assume pfail(b0, ⇡p(b0))  preplan(b0, ⇡p(b0)),

then

pfail(b, �p) =
X

o2Op

Pr(o|b, a)pfail(b0, ⇡p(b0)) +
X

o<Op

Pr(o|b, a)�fail(b0)



X

o2Op

Pr(o|b, a)preplan(b0, ⇡p(b0)) +
X

o<Op

Pr(o|b, a)

= preplan(b, �p)

51

POMDP, Initial Belief
Replanning Probability Bound
Safe-Reachability Objective

Horizon Bound

Partial
Policy

Synthesis

⇡p = ;:
execution

fails

Robot
Execution

reach a
goal belief:
execution
succeeds

⇡p , ;
current belief

b < B⇡p

current belief
b 2 B⇡p

Figure 4.2 : OPPS

Constraint
Generation

reach
horizon
bound:
⇡p = ;

Plan
Generation

Partial
Policy

Generation

valid partial
policy ⇡p

constraint �k

no valid
plan: increase

horizon k

valid plan �k
additional

constraint �

Figure 4.3 : Partial policy synthesis

since �fail(b0)  1.

Therefore, For any belief b 2 B⇡p , pfail(b, ⇡p(b))  preplan(b, ⇡p(b)). Thus pfail(⇡p) =

pfail(b0, ⇡p(b0))  preplan(b0, ⇡p(b0) = preplan(⇡p). ⇤

Since pfail(⇡p) � 0, by Theorem 4.1.1, pfail(⇡p) = 0 when the replanning probability for

a valid partial policy preplan(⇡p) = 0. In this case, ⇡p is a full policy.

4.1.3 Problem Statement

Given a POMDP P, an initial belief b0, a replanning probability bound �preplan , a safe-

reachability objective G and a horizon bound h, the goal is to synthesize a valid k-step

(k  h) partial policy ⇡p with a replanning probability preplan(⇡p)  �preplan .

Since the replanning probability preplan(⇡p) is bounded by �preplan , by Theorem 4.1.1, ⇡p

provides the guarantee of achieving the given safe-reachability objective with probability

at least 1 � �preplan .

52

Algorithm 3: OPPS
Input:
POMDP P
Initial Belief b0

Replanning Probability Bound �preplan

Safe-Reachability Objective G = (Dest, Safe)
Horizon Bound h
Output:
A boolean: true - success, false - failure
/* Generate partial policy */

34 �p
 PartialPolicySynthesis(P, b0, G, �preplan , 0, h)

35 if ⇡p = ; then
/* No partial policy: failure */

36 return false
/* Track current belief */

37 b b0

38 repeat
/* Get the partial conditional plan for current belief */

39 �p
 ⇡p(b)

/* Unpack the partial conditional plan for current belief */

40 (a,Op, ⌫p) �p

41 Execute action a
42 Receive observation o

/* Update belief */

43 b TB(b, a, o)
44 if b 2 Dest then

/* reach a goal belief: success */

45 return true
46 until b < B⇡p;
/* recursively perform OPPS */

47 return OPPS(P, b, �preplan , G, h)

4.2 Online Partial Policy Synthesis

Figure 4.2 shows the overall structure of OPPS (Algorithm 3). OPPS follows the typical

online planning paradigm [62] that interleaves synthesis of valid partial policies (line 34)

and execution (lines 41, 42, 43). If there are no valid partial policies within the horizon

bound (line 35), execution fails. Otherwise, OPPS follows the generated partial policy

53

until a goal belief is reached (line 44: execution succeeds) or a new belief b < B⇡p is

visited (line 46). In the latter case, OPPS recursively replans for this belief b. Next section

describes the component of partial policy synthesis shown in Figure 4.3.

4.2.1 Partial Policy Synthesis

The core steps of partial policy synthesis (Algorithm 4) are shown in Figure 4.3. OPPS

replaces the component of policy generation in BPS with a new component of partial policy

generation (the green dashed component).

For a given POMDP P, an initial belief b0 and a safe-reachability objective G =

(Dest, Safe), OPPS first symbolically encodes the goal-constrained belief space over a

bounded horizon k as a logical formula �k (lines 48, 52, 54). �k compactly represents

the requirement of reaching a goal belief b 2 Dest safely in k steps. In constraint genera-

tion (Figure 4.3), OPPS uses the Bounded Model Checking [3] encoding to construct �k,

which contains three parts:

• start from the initial belief (line 48) : bs = b0.

• unfold the transition up to horizon k (line 52) :
Vk

i=s+1(bi = TB(bi�1, ai, oi)).

• satisfy the objective G (line 54): G(�k,G, k) =
Wk

i=s(bi 2 Dest ^ (
Vi�1

j=s(bj 2 Safe))).

Then in plan generation (Figure 4.3), OPPS compute a valid plan �k by checking the

satisfiability of �k (line 56) through an SMT solver [19]. Note that the horizon k restricts

the plan length and thus the robot can only execute k actions before reaching a goal belief

b 2 Dest.

If �k is satisfiable, the SMT solver returns a valid plan �k = (b�k
0 , a

�k
1 , o

�k
1 , . . . , b

�k
k).

This valid plan only covers a particular observation o�k
i at step i. In partial policy gen-

eration (Figure 4.3), OPPS generates a valid partial policy ⇡p with replanning probability

54

Algorithm 4: PartialPolicySynthesis
Input: POMDP P
Initial Belief b0

Replanning Probability Bound �preplan

Safe-Reachability Objective G = (Dest, Safe)
Start Step s
Horizon Bound h
Output: Valid partial policy ⇡p with a replanning probability preplan(⇡p)  �preplan

/* Start from initial belief */

48 �k (bs = b0)
/* Initial horizon */

49 k s
50 while k  h do

/* Add transition at step k if k > s */

51 if k > s then
52 �k �k ^ (bk = TB(bk�1, ak, ok))

/* Push scope */

53 push(�k)
/* Add goal constraints at step k */

54 �k �k ^ G(�k,G, k)
55 repeat

/* Generate valid plan */

56 �k IncrementalSMT(�k);
57 if �k , ; then /* Find valid plan */

/* Generate partial policy */

58 ⇡p, � = PartialPolicyGeneration(P, �preplan , G,�k, s + 1, h)
59 if ⇡p = ; then /* Generation failed */

/* Blocking invalid plans */

60 �k �k ^ �
61 else
62 return ⇡p

63 until �k = ;;
/* Pop goal and � at step k */

64 pop(�k)
/* Increase horizon */

65 k k + 1
66 return ;

55

preplan(⇡p)  �preplan from �k by sampling a subset Op
✓ O of observations (solid branches in

Figure 4.1) at each step, where �preplan is the given replanning probability bound.

If this partial policy generation succeeds, OPPS finds a valid partial policy ⇡p. Oth-

erwise, OPPS constructs an additional constraint � to block invalid plans (line 60) and

force the SMT solver to generate another plan. Note that � is only valid for the current

horizon k and when the horizon increases, OPPS should pop the scope related to the addi-

tional constraint � from the stack of the SMT solver (line 64) so that OPPS can revisit �k

with an increased horizon. The incremental SMT solver can e�ciently generate alternate

valid plans by maintaining a stack of scopes for the “knowledge” learned from previous

satisfiability checks [19] [17, 78].

If�k is unsatisfiable and there are no valid plans for the current horizon, OPPS increases

the horizon (line 65) and repeat the above steps until a valid partial policy is found (line 62)

or a given horizon bound is reached (line 50) . Next section describes the new component

of partial policy generation.

4.2.2 Partial Policy Generation

In partial policy generation (Algorithm 5), OPPS constructs a valid partial policy ⇡p that

satisfies the given bound �preplan from a valid plan �k. For each step i, OPPS recursively

constructs a partial policy for the branch o�k
i (line 71). If the replanning probability of ⇡p

is greater than the given bound �preplan , OPPS needs to add more observation branches to ⇡p

by sampling a new observation o0 (line 77) and recursively constructing a partial policy ⇡p0

for o0. This is another partial policy synthesis problem with a new initial belief (line 78),

and can be solved recursively using Algorithm 4 (line 79).

If OPPS successfully constructs a valid ⇡p0 for o0, OPPS can add the observation o0 to

the partial conditional �p for the current belief b (line 74 or 83). Otherwise, this input plan

56

Algorithm 5: PartialPolicyGeneration
Input: POMDP P
Replanning Probability Bound �preplan

Safe-Reachability Objective G = (Dest, Safe)
Valid Plan �k = (b�k

0 , a
�k
1 , o

�k
1 , . . . , b

�k
k)

Step i
Horizon Bound h
Output: Valid partial policy ⇡p with replanning probability preplan(⇡p)  �preplan ,

Constraint � for blocking invalid plans
67 if i > k then /* Reach end of the plan */

/* Terminal belief: �p
is an empty partial conditional plan */

68 �p
 ;, ⇡p

 {�p
}

69 return ⇡p, ;
70 Op

 ;, ⌫p
 ;, �0preplan

 �preplan , b b�k
i�1, a a�k

i , o0 o�k
i /* Initialize */

/* Recursively process next step */

71 ⇡p, � PartialPolicyGeneration(P, �0preplan
,G,�k, i + 1, h)

72 if ⇡p = ; then
73 return ;, �
74 b0 b�k

i , Op
 O

p
[{o0}, ⌫p(o0) ⇡p(b0), �p

 (a,Op, ⌫p) /* Add o0 to �p
*/

75 while preplan(⇡p) > �preplan do
/* Update replanning probability bound */

76 �0preplan
 �0preplan

+
Pr(o0 |b,a)(�0preplan

�preplan(b0,⌫p(o0))
P

o2O�Op�{o0}
Pr(o|b,a)

77 o0 sampled observation in O � Op according to the probability of occurrence
78 b0 TB(b, a, o0) /* Get new initial belief */

/* Recursively construct partial policy */

79 ⇡p0
 PartialPolicySynthesis(P, b0i , �

0

preplan
,G, i, h)

80 if ⇡p0 = ; then /* Construction failed */

81 Construct � using Formula 3.2
82 return ;, �
83 O

p
 O

p
[{o0}, ⌫p(o0) ⇡p0(b0i), ⇡

p
 ⇡p

[⇡p0
/* Add o0 to �p

*/

84 foreach observation o 2 O � Op do /* Final safety check */

85 b0i TB(b, a, o); /* Try observation o */
86 if b0i < Safe then /* Violates safety */

87 Construct � using Formula 3.2
88 return ;, �
89 ⇡p(b) �p

/* Record partial conditional plan for b in ⇡p
*/

90 return ⇡p, ;

57

�k cannot be an element of a valid partial policy ⇡p, i.e., �k < ⌦⇡p . In this case, the prefix of

this plan (b�k
0 , a

�k
1 , o

�k
1 , . . . , b

�k
i�1, a

�k
i) is invalid for current horizon k and OPPS can construct

the additional constraint � to block invalid plans based on Formula 3.2.

� blocks the invalid plans that have this prefix (line 81) and avoids unnecessary checks

of these plans (checking �k has already shown that these plans are invalid).

Updating Replanning Probability Bound

As OPPS adds more observation branches to the partial conditional plan �p = (a,Op, ⌫p)

for the current belief b, the replanning probability bound �0preplan
for the remaining uncovered

observation branches O � Op needs to be updated (line 76) in order to avoid unnecessary

computation.

Initially, Op is empty and �0preplan
is the input bound �preplan (line 70). �0preplan

bounds the re-

planning probability preplan(b0, ⌫p(o)) of the next-step partial conditional plan ⌫p(o) for every

remaining uncovered observation o 2 O � Op, where b0 = TB(b, a, o) is the correspond-

ing successor belief for the observation o. �0preplan
= �preplan guarantees that the replanning

probability preplan(⇡p) of the current partial policy ⇡p satisfies the original bound �preplan , i.e.,

preplan(⇡p) = preplan(b, �p) =
P

o2O
Pr(o|b, a)preplan(b0, ⌫p(o)) 

P
o2O

Pr(o|b, a)�0preplan
 �0preplan

=

�preplan since preplan(b0, ⌫p(o))  �0preplan
based on the definition of �0preplan

.

During partial policy generation, after adding a new observation o0 2 O�Op to the par-

tial conditional plan �p (line 74 or 83), the replanning probability bound �0preplan
is updated in

order to avoid unnecessary computation. Suppose a new next-step partial conditional plan

⌫p(o) with the same replanning probability ↵ is constructed for every remaining uncovered

observation o 2 O�Op
� {o0}. Then the replanning probability of the observation branches

O�O
p is Pr(o0|b, a)preplan(b0, ⌫p(o0))+↵

P
o2O�Op�{o0}

Pr(o|b, a) 
P

o2O�Op
Pr(o|b, a)�0preplan

, where

b0 = TB(b, a, o0) is the corresponding successor belief for the observation o0. Therefore

58

↵  �0preplan
+

Pr(o0 |b,a)(�0preplan
�preplan(b0,⌫p(o0))

P
o2O�Op�{o0}

Pr(o|b,a) . Then the new bound for the remaining uncovered

observation o 2 O � Op
� {o0} should be �0preplan

+
Pr(o0 |b,a)(�0preplan

�preplan(b0,⌫p(o0))
P

o2O�Op�{o0}
Pr(o|b,a) and this new

bound is at least �0preplan
since preplan(b0, ⌫p(o0))  �0preplan

according to the definition of �0preplan
.

When the replanning probability bound becomes larger, computing a partial conditional

plan is usually less expensive. Therefore, updating the replanning probability bound (line

76) improves e�ciency and still makes the current partial policy ⇡p satisfy the original

bound �preplan .

Safety Guarantee

OPPS constructs a valid partial policy ⇡p with a replanning probability bounded by the

given bound �preplan . By Theorem 4.1.1, the execution failure probability pfail(⇡p) is also

bounded by �preplan . If the replanning probability preplan(⇡p) > 0, in the worst case, the robot

might visit a belief b < B⇡p and find that there is no valid partial policy for this belief b,

and then execution fails due to unsuccessful replanning. In this case, though OPPS cannot

achieve the original safe-reachability objective, a guarantee of the robot still satisfying

the safety requirement is preferable to the situation where the robot violates the safety

requirement. OPPS can provide this safety guarantee by checking whether the successor

belief of every uncovered observation at every step is safe (lines 84, 85, 86, 87, 88).

4.3 Experiments

OPPS is tested on the kitchen domain (horizon bound h = 30) presented in Chapter 3 and

the classic Tag domain [58] (h = 100). OPPS is also validated on a Fetch robot for the

scenario shown in Figure 3.7 (h = 20). Z3 [19] is used as the backend SMT solver. All

experiments were conducted on a 3.0 GHz Intel R� processor with 32 GB of memory. The

59

time-out is set to be 1800 seconds. For all the tests of the kitchen and Tag domains, the

results are averaged over 50 independent runs.

In the uncertain kitchen domain [78], a robot needs to eventually pick up a cup from the

storage while avoiding collisions with M uncertain obstacles. This kitchen domain is an ex-

ample scenario that requires a correctness guarantee of accomplishing tasks, and POMDPs

with boolean objectives provide a better safe-reachability guarantee than the quantitative

POMDP models [78].

The kitchen environment is discretized into N = 36 regions. The actuation and percep-

tion of the robot are imperfect, modeled as ten uncertain robot actions: move and look in

four directions, pick-up using the left hand and pick-up using the right hand. The robot

starts at a known initial location. However, due to the robot’s imperfect perception, the

location of the robot and the locations of uncertain obstacles are all partially observable

during execution. This kitchen domain has a large state space |S | = C(N,M) · N, where

C(N,M) is the number of M-combinations from the set of N regions. In the largest test

(M = 7) there are more than 108 states.

4.3.1 Performance

The previous method BPS and OPPS are evaluated with di↵erent replanning probability

bounds (from 0.1 to 0.9) in this kitchen domain for test cases with various numbers of

obstacles. BPS computes a full policy that covers all observation branches and is equivalent

to OPPS with replanning probability bound �preplan = 0.

Figure 4.4a, 4.4b, 4.4c and 4.4d show the average computation time of one synthesis

call, the average number of synthesis calls, the average total computation time and the

average computation time per step as the bound �preplan increases, respectively. As shown

in Figure 4.4a (semi-log scale) and 4.4b, as the bound �preplan increases, the computation

60

BPS 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

100

101

102

�preplan

O
ne

C
al

lC
om

pu
ta

tio
n

Ti
m

e
(s

)

BPS 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

1.5

2

2.5

3

�preplan

N
um

be
ro

fS
yn

th
es

is
C

al
ls

BPS 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

100

101

102

103

�preplan

To
ta

lC
om

pu
ta

tio
n

Ti
m

e
(s

)

BPS 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

10�1

100

101

�preplan

C
om

pu
ta

tio
n

Ti
m

e
pe

rS
te

p
(s

)

(a) (b)

(c) (d)
M = 1 M = 2 M = 3 M = 4

M = 5 M = 6 M = 7

Figure 4.4 : Performance results for the kitchen domain as the bound �preplan increases.
Di↵erent plots correspond to tests with di↵erent numbers M of obstacles. Missing data
points in a plot indicate the timeout. The red dashed line is the timeout (time = 1800
seconds). The blue dashed line passes through the data points generated by BPS. All the
results are averaged over 50 independent runs.

time of one synthesis call decreases very quickly while the number of calls to partial policy

synthesis does not increase much. Therefore, the total computation time (Figure 4.4c) keeps

decreasing as the bound �preplan increases. Additionally, shown in Figure 4.4c (semi-log

scale), with a small bound �preplan = 0.1, OPPS achieves a big performance gain compared

61

to BPS: for the test case with M = 4 obstacles, the speedup is around 5 times, and for the

test case with M = 5 obstacles, BPS cannot solve this within the time limit while OPPS

with �preplan = 0.1 can solve this in around 9 minutes. Therefore OPPS achieves better

performance than BPS in the tests by computing valid partial policies instead of valid full

policies. The same trend is also shown in the results of the average computation time per

step (Figure 4.4d). These results suggest that for some robotic domains where replanning

is easy, such as the tested mobile manipulation domain, users can increase the replanning

probability bound for better scalability.

4.3.2 Success Rate

For all the previous performance tests, the constructed partial policies by OPPS with dif-

ferent bounds �preplan always achieve the given safe-reachability objective, i.e., the success

rate is 100%. This is because the robot can move in four directions. When the robot en-

ters a region surrounded by obstacles in three directions, the robot can always move back

to its previous position, which means replanning is always possible. However, for some

domains such as autonomous driving cars and robot chefs, once the robot commits to an

action and finds something wrong, it is di�cult or impossible to reverse the e↵ect of the

action and replan. To evaluate how OPPS performs in these scenarios, OPPS is tested in

the kitchen domain with di↵erent numbers M of obstacles (M  4 since BPS cannot solve

tests with more than 4 obstacles within the time limit), but the robot’s power is restricted

by disabling the move-north action. Therefore, when the robot performs move-south and

enters a region surrounded by obstacles in three directions, replanning fails. However, the

robot still satisfies the safety requirement, thanks to the safety guarantee of OPPS.

Figure 4.5 shows the success rate as the bound �preplan increases. For all the tests,

the success rate is always greater than 1.0 � �preplan (all data points are above the plot of

62

BPS 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.25

0.5

0.75

1

�preplan

Su
cc

es
s

R
at

e

M = 1 M = 2 M = 3 M = 4

Figure 4.5 : Success rate as �preplan increases. The green dotted line shows the plot of
success rate = 1.0 � �preplan . The red dashed line is the plot of success rate = 1.0. The blue
dashed line passes through the data points generated by BPS.

success rate = 1.0 � �preplan). This matches Theorem 4.1.1: the failure probability of a

valid partial policy is bounded by the replanning probability. Moreover, as the bound �preplan

decreases to 0, OPPS produces a valid full policy with 100% success rate. These results

suggest that for some domains where replanning is di�cult, users can decrease the bound

�preplan and allocate computational resources for a high success rate.

Note that the replanning probability bound is a conservative upper bound of the failure

probability since it pessimistically assumes all the uncovered observation branches that

require replanning will fail, which is a rare case in practice. As shown in Figure 4.5, even

with a high replanning probability bound �preplan = 0.9, the success rate is still at least 70%

and the failure rate is at most 30%, which is much smaller than the given bound �preplan = 0.9.

4.3.3 Gains from Updating Replanning Probability Bound

As discussed in Section 4.2.2, updating the replanning probability bound during partial

policy generation is important for avoiding unnecessary computation and improving e�-

63

BPS 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

�preplan

R
ep

la
nn

in
g

Pr
ob

ab
ili

ty

BPS 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

101

102

103

�preplan

To
ta

lC
om

pu
ta

tio
n

Ti
m

e
(s

)

(a) (b)
with bound update
no bound update

Figure 4.6 : Replanning probability and total computation time as the bound �preplan increases
(M = 4). The green dotted line shows the plot of replanning probability = �preplan . The blue
dashed line passes through the data points generated by BPS.

ciency. To evaluate the gains from this bound update step, OPPS is tested with and without

bound update in the kitchen domain with M = 4 obstacles.

Figure 4.6a and 4.6b (semi-log scale) show the average replanning probability of the

constructed partial policies and the average total computation time as the bound �preplan in-

creases, respectively. As shown in Figure 4.6a, with both settings (with and without bound

update) OPPS constructs a partial policy with a replanning probability smaller than the

bound �preplan . However, OPPS without bound update constructs a partial policy with a

lower replanning probability than that constructed by OPPS with bound update. Therefore,

OPPS without bound update performs unnecessary computation and constructs a partial

policy with more branches and thus spends more time than OPPS with bound update, as

shown in Figure 4.6b. For the tests with the bound �preplan = 0.1, 0.2, 0.3 that take more

time to solve than those with �preplan > 0.3, OPPS with bound update achieves a 2-5 times

speedup.

64

4.3.4 Physical Validation

OPPS is validated on a Fetch robot for the domain shown in Figure 3.7. The setup of this

domain is similar to the kitchen domain. The Fetch needs to pick up a target object (the

blue can on the table) while avoiding collisions with uncertain obstacles such as floor signs

and file cabinets, which can be placed in di↵erent locations. The POMDP’s state space

consists of robot locations and object locations. A Vicon system is used to detect object

locations, which is usually accurate but can still produce false negative and false positive

due to occlusion or inappropriate Vicon marker configurations on objects. The false neg-

ative and false positive probabilities can be estimated by counting the false negative and

false positive events during 100 Vicon detections. The POMDP’s probabilistic observa-

tion function is defined based on the false negative and false positive probabilities. To test

the e↵ects of di↵erent replanning probability bounds, the Fetch is only allowed to move in

three directions (west, east and south), similar to the setup in the previous success rate tests.

Sometimes the Fetch may fail to move its base when given a move action command and

stay in the same place. The failure probability of these move actions can be estimated by

counting the failure events during 100 move action executions. The POMDP’s probabilistic

transition function is defined based on this failure probability. Figure 4.7a shows the initial

state. There are two uncertain obstacles (a wet-floor sign and a file cabinet). OPPS is tested

with two bounds �preplan = 0.9 and �preplan = 0.1.

With �preplan = 0.9, after observing no obstacle in the south direction, the Fetch decides

to move south (Figure 4.7b) because the partial policy constructed with a high replanning

probability bound does not cover the case where the Fetch is surrounded by obstacles and

the wall. Then replanning fails, but the Fetch still satisfies the safety requirement as shown

in Figure 4.7b, thanks to the safety guarantee of OPPS.

However, with �preplan = 0.1, after observing no obstacles in the south direction, the

65

(a) (b) (c) (d) (e)

Figure 4.7 : Physical validation of OPPS for the domain shown in Figure 3.7.

Fetch decides to move west (Figure 4.7c) because the partial policy constructed with a low

replanning probability bound covers the case where obstacles surround the robot. In order

to avoid this situation, the Fetch needs to move west and gather more information. Then the

Fetch observes an obstacle in the south direction and decides to move west again (Figure

4.7d). Next, the Fetch observes no obstacle in the south direction, and now it can move

south safely. Unlike the case shown in Figure 4.7b where the robot is surrounded by two

obstacles and the wall, in the situation shown in Figure 4.7d, if there is another obstacle

in the south direction, the Fetch can still move west since there are only two obstacles.

Finally, the Fetch moves to the table and picks up the target object (Figure 4.7e).

4.3.5 Tag Domain

To further demonstrate the advantage of OPPS over the previous BPS method, OPPS is

evaluated on a classic POMDP benchmark [58]. The task for the robot is to search for

and tag a moving agent in a grid with 29 locations. The agent follows a fixed strategy that

intentionally moves away from the robot. Both the robot and the agent can move in four

directions or stay. The robot’s location is fully observable while the agent’s location is

unobservable unless the robot and the agent are in the same location.

This Tag domain is challenging for BPS because of a large number of observations

(|O| = 30) and more importantly, a huge planning horizon for computing a full policy.

66

BPS 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

20

30

40

�preplan

To
ta

lC
om

pu
ta

tio
n

Ti
m

e
(s

)

BPS 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.5

0.6

0.7

�preplan

C
om

pu
ta

tio
n

Ti
m

e
pe

rS
te

p
(s

)

(a) (b)

Figure 4.8 : Performance results for the Tag domain as the replanning probability bound
�preplan increases. All the results are averaged over 50 independent runs.

However, computing a full policy is unnecessary since replanning is easy in this domain.

Figure 4.8a and 4.8b show the average total computation time and the average computation

time per step for the Tag domain as �preplan increases. These results show a similar trend

to the previous kitchen domain tests: with a small bound �preplan = 0.1, OPPS achieves a

big performance gain compared to BPS. BPS cannot solve this test within the 1800-second

time limit while OPPS with �preplan = 0.1 can solve this test in around 40 seconds and the

computation time per step is less than 1 second.

4.4 Discussion

This chapter presented a new approach, called OPPS, to policy synthesis for POMDPs with

safe-reachability objectives. OPPS introduces the notion of a partial policies to improve

computational e�ciency. Rather than explicitly enumerating all possible observations to

construct a full policy, OPPS samples a subset of all observations at each step to ensure

bounded replanning probability. The theoretical and empirical results both show that the

67

failure probability of a valid partial policy is bounded by the replanning probability. More-

over, OPPS guarantees that the robot still satisfies the safety requirement when replanning

fails. The results show that compared to the previous BPS approach, OPPS with a proper

replanning probability bound scales better in the tested benchmarks and can solve problems

beyond the capabilities of BPS within the time limit. Moreover, the results also suggest that

for domains where replanning is easy, users can increase the replanning probability bound

for e�ciency. On the other hand, for domains where replanning is di�cult, users can de-

crease the replanning probability bound and allocate more computation time in order to

achieve a higher success rate. The results also indicate that by updating the replanning

probability bound during partial policy generation, OPPS can quickly detect if the current

partial policy satisfies the bound and avoid unnecessary computation.

The current implementation of OPPS is restricted to discrete POMDPs. While many

robot applications can be modeled using this discrete representation, discretization often

su↵ers from the “curse of dimensionality”. Investigating how to deal with continuous

POMDPs [1, 33, 64] directly without discretization is a promising future direction for this

work and its application in robotics. OPPS constructs partial conditional plans by sampling

observations according to the probability of occurrence (Algorithm 5, line 77), which does

not consider the importance of observations [49]. How to extend OPPS to handle critical

observations is another important ongoing question.

68

Chapter 5

Combining Safe-Reachability and Quantitative Objectives

This chapter presents an o✏ine policy synthesis algorithm, called Point-Based Policy Syn-

thesis (PBPS) for POMDPs with both safe-reachability objective and quantitative objec-

tives.

Chapter 3 and 4 investigates practical policy synthesis approaches for POMDPs with

only boolean (safe-reachability) objectives. POMDPs with boolean objectives provides a

strong correctness guarantee of completing tasks [78], but the constructed policy may not

be optimal. On the other hand, POMDPs with quantitative objectives provide an optimality

guarantee but may lead to overly conservative or overly risky behaviors [75], depending on

the particular reward function chosen. For the example domain shown in Figure 1.1, there

are many valid policies that can achieve the task objective, i.e., satisfying the boolean ob-

jective. Among these valid policies, the preferable policy is the one that passes the smallest

number of red regions that the robot should avoid. Therefore, for domains that require

both correctness and optimality, POMDPs with both boolean and quantitative objectives

are natural formulations.

Policy synthesis for POMDPs with both boolean and quantitative objectives has been

studied before [9]. In their work, the goal is to find an optimal policy that also ensures a

goal state is reached with probability 1 (almost-sure satisfaction). A more general policy

synthesis problem of POMDPs with both boolean and quantitative objectives is to syn-

thesize an optimal policy that satisfies the boolean objective with a probability above a

threshold. This thesis studies this problem for the special case of safe-reachability objec-

69

tives, which require that with a probability above a threshold, a goal state is eventually

reached while keeping the probability of visiting unsafe states below a di↵erent threshold.

Many robot tasks such as the one shown in Figure 1.1 can be formulated as POMDPs with

safe-reachability and quantitative objectives.

The previous chapters consider POMDPs with only safe-reachability objectives. For

o✏ine synthesis, an approach called Bounded Policy Synthesis (BPS) has been presented

in Chapter 3. BPS computes a valid policy over a goal-constrained belief space rather

than the entire belief space to improve scalability. The goal-constrained belief space only

contains beliefs visited by desired executions with a bounded horizon that can achieve the

safe-reachability objective and is generally much smaller than the original belief space.

On the other hand, for POMDPs with only quantitative objectives, point-based POMDP

solvers [1, 6, 36, 42, 49, 58, 69, 71] have become quite successful in recent years. Point-

based POMDP solvers can solve large POMDPs by producing approximated policies over

a finite set of representative beliefs instead of the entire belief space.

Ideally, an exact policy for POMDPs with safe-reachability and quantitative objectives

can be constructed by enumerating all beliefs in the goal-constrained belief space and per-

forming the value iteration on these beliefs. However, this enumeration is generally very

expensive [76] even though the goal-constrained belief space is finite when restricted to a

bounded horizon. To improve e�ciency, this thesis selects representative beliefs from the

goal-constrained belief space and produce an approximate policy by performing the point-

based backup [42,58] on these representative beliefs that approximate the goal-constrained

belief space. This selection process essentially asks whether there exists a valid policy

starting from a belief and can be solved by BPS. Since policies need to be constructed in

order to approximate the goal-constrained belief space, policy iteration is chosen to han-

dle the quantitative objective because policy iteration typically converges faster than value

70

iteration [36].

This chapter presents an o✏ine policy synthesis approach, Point-Based Policy Synthesis

(PBPS), for POMDPs with safe-reachability and quantitative objectives. PBPS combines

BPS [78] and Point-Based Policy Iteration (PBPI) [36] to synthesize good approximate

policies that satisfy the safe-reachability objective. At a high level, PBPS applies BPS to

e�ciently explore the goal-constrained belief space for finding a valid policy ⇡ that satisfies

the safe-reachability objective. Then PBPS adapts PBPI to transform ⇡ into an improved

policy ⇡0. This improved policy ⇡0 may reach some belief b0 that is not visited by the

current policy. Therefore, PBPS invokes BPS again to check whether there exists a valid

policy starting from b0. By doing this, new belief regions can be explored, and the set of

representative beliefs can be expanded, which is crucial to the quality of the constructed

policy [36, 42, 58]. PBPS alternates between the computation of valid policies and policy

iteration until the termination condition is satisfied.

The theoretical analysis shows that PBPS inherits many desirable properties of PBPI.

First, PBPS maintains validity and is monotonic: at each iteration before termination, PBPS

produces a valid policy for which the values increase for at least one belief of the repre-

sentative belief set and decrease for none of these beliefs. Second, the error introduced by

PBPS due to approximation is bounded. PBPS is evaluated in the kitchen domain [78] and

the Tag domain [58]. PBPS is also validated on a Fetch robot for the domain in Figure

1.1. The results demonstrate that PBPS produces good approximate policies that achieve

the given safe-reachability objective.

71

5.1 Problem Formulation

5.1.1 Quantitative Objectives

Each conditional plan � = (a, ⌫) 2 ⇡ in a k-step policy ⇡ = {�1, �2, . . . } induces a value

function V�(b) that specifies the expected total reward of executing the conditional plan �

starting from the belief b:

V�(b) =
X

s2S

r(s, a)b(s) +
X

o2O

Pr(o|b, a)V�o(b
o
a) (5.1)

where bo
a = TB(b, a, o) is the successor belief and �o is the conditional plan for the

observation o specified by the observation strategy ⌫ of the conditional plan �.

Since the value function V� is linear with respect to the belief space [67], Formula 5.1

can be rewritten as:

V�(b) = ↵� · b (5.2)

where ↵� is the ↵-vector that specifies the reward for every state s 2 S following the

conditional plan � = (a, ⌫):

↵�(s) = r(s, a) +
X

o2O

X

s02S

Z(s0, a, o)T (s, a, s0)↵�o(s0) (5.3)

Therefore, the value function V⇡ of the policy ⇡ can be represented as a set of ↵-vectors

V⇡ = {↵�1 ,↵�2 , . . . }. For every belief b 2 B⇡, V⇡(b) = V�(b) = ↵� · b, where � is the

conditional plan for the belief b specified by the policy ⇡.

72

POMDP, Initial Belief
Safe-Reachability Objective and Horizon Bound

Bounded
Policy

Synthesis

Policy
Iteration

Policy
Evaluation

Policy
Improvement

termination condition satisfied: return ⇡

valid policy
⇡ = {�1, �2, . . . }

value function
V⇡ = {↵�1 ,↵�2 , . . . }

new policy
⇡0 = {�01, �

0

2, . . . }

new belief
b0

Figure 5.1 : Overview of the PBPS algorithm. PBPS interleaves computation of valid
policies and policy iteration.

5.1.2 Problem Statement

Given a POMDP P = (S,A,T ,O,Z, r), an initial belief b0, a safe-reachability objective

G, and a horizon bound h, the goal is to synthesize a valid k-step (k  h) policy ⇡⇤
G

that

maximizes the expected reward from the initial belief b0

⇡⇤
G
= argmax

valid ⇡
V⇡(b0) (5.4)

Note that ⇡⇤
G

is di↵erent from the optimal policy ⇡⇤ = argmax
⇡

V⇡(b0) without the re-

quirement of satisfying the safe-reachability objective (⇡⇤ may not be valid).

73

Algorithm 6: PBPS
Input:
POMDP P, Initial Belief b0, Safe-Reachability Objective G, Horizon Bound h
Output: A Valid k-Step Policy ⇡

91 ⇡ BPS(P, b0,G, 0, h) ; /* Compute an initial valid policy */

92 while true do
93 Compute V⇡ = {↵�1 ,↵�2 , . . . } ; /* Policy evaluation */

/* Start policy Improvement */

94 ⇡0 ;
/* Point-based backup */

95 foreach b 2 B⇡ do
96 foreach a 2 A do
97 ⌫a ;

98 foreach o 2 O do
99 bo

a TB(b, a, o); /* Compute successor belief */

100 � ;

101 foreach � 2 ⇡ do
102 if ⌦�,bo

a ✓ ⌦G then
/* � is valid */

103 � � [{�}
104 if � = ; then

/* Every � 2 ⇡ is invalid, invoke BPS to explore */

105 ⇡o
a BPS(P, bo

a,G, 0, h)
/* Add this new conditional plan to ⇡0 for improvement */

106 ⇡0 ⇡0 [⇡o
a

107 �o
a ⇡

o
a(bo

a)
108 else
109 �o

a argmax
�2�

↵� · bo
a

/* Record observation strategy */

110 ⌫a(o) = �o
a

111 foreach s 2 S do
112 ↵a(s) r(s, a) +

P
o2O

P
s02S
Z(s0, a, o)T (s, a, s0)↵�o

a(s0)

113 a0 argmax
a2A

↵a · b

/* Construct a new conditional plan */

114 �0 = (a0, ⌫a0)
115 ⇡0 ⇡0 [{�0}

116 if

1
|B⇡ |

P
b2B⇡

(V⇡0(b) � V⇡(b))
!
 ✏ then

/* termination condition satisfied */

117 return ⇡0
118 ⇡ = ⇡0

74

5.2 Point-Based Policy Synthesis

Figure 5.1 shows the overview of the Point-Based Policy Synthesis (PBPS) approach (Al-

gorithm 6). PBPS combines Bounded Policy Synthesis (BPS) [78] and Point-Based Policy

Iteration (PBPI) [36] to compute a good approximate policy ⇡ that satisfies the given safe-

reachability objective..

At a high level, PBPS aims to achieve both boolean (safe-reachability) and quantitative

(maximizing rewards) objectives. In order to satisfy the given safe-reachability objective,

PBPS applies BPS to e�ciently explore the goal-constrained belief space BG and generate

a valid k-step policy ⇡ (line 91). This valid policy ⇡ may not be optimal. Therefore, PBPS

applies PBPI to compute an improved policy ⇡0 with respect to the value function V⇡ of

the current policy ⇡. Although the goal-constrained belief space over a bounded horizon is

finite, performing the backup on the entire goal-constrained belief space is still very expen-

sive [76]. Therefore, the point-based backup [42,58] is performed on the representative set

B⇡ of beliefs visited by the current policy ⇡ to improve e�ciency.

This improved policy ⇡0 may reach some successor belief bo
a = TB(b, a, o) for a belief

b 2 B⇡ (line 99), and none of the existing conditional plans in ⇡ are valid starting from

bo
a (line 104). In this case, PBPS invokes BPS to check whether bo

a belongs to the goal-

constrained belief space (line 105). PBPS alternates between the computation of valid

policies and policy iteration until the policy improvement 1
|B⇡ |

P
b2B⇡

(V⇡0(b)�V⇡(b)) meets the

threshold ✏ (line 116).

Next section describes each component (Figure 5.1) of the PBPS algorithm (Algorithm

6).

75

5.2.1 Bounded Policy Synthesis

For a given POMDP P, an initial belief b0, a safe-reachability objective G = (Dest, Safe)

and a horizon bound h, first the same BPS algorithm presented in Chapter 3 is applied to

compute a valid k-step (k  h) policy ⇡. For completeness, a brief summary of BPS is

provided here. See Chapter 3 for more details.

BPS first symbolically encodes the goal-constrained belief space over a bounded hori-

zon k as a compact logical formula �k. �k compactly represents the requirement of reach-

ing a goal belief b 2 Dest safely in k steps, based on the encoding from Bounded Model

Checking [3]. Then BPS computes a valid plan by checking the satisfiability of the con-

straint �k through an SMT solver [19].

If �k is satisfiable, the SMT solver returns a valid plan �k = (b0, a1, o1, . . . , bk) (the

dashed green path in Figure 2.1). �k only covers a particular observation oi at step i.

BPS tries to generate a valid policy ⇡ based on this valid plan �k by considering all other

observations, i.e., other branches following the rectangle node at each step.

If �k is unsatisfiable and there is no new valid plan for the current horizon, BPS in-

creases the horizon by one and repeat the above steps until a valid policy is found or a

given horizon bound is reached.

5.2.2 Policy Iteration

Once a valid k-step policy ⇡ is found, PBPS tries to improve ⇡ by adapting the PBPI algo-

rithm presented in [36]. PBPI considers infinite-horizon policies represented as finite-state

controllers while PBPS focuses on bounded-horizon policies represented as a set of con-

ditional plans. Moreover, PBPI only deals with quantitative objectives while PBPS needs

to consider both boolean (safe-reachability) and quantitative objectives. Therefore, PBPS

cannot directly apply PBPI to compute an improved policy. Instead, PBPS adapts the policy

76

evaluation and the policy improvement steps in PBPI for policy iteration.

Policy Evaluation

For a valid k-step policy ⇡ = {�1, �2, . . . }, PBPS recursively computes the ↵-vector ↵� for

each conditional plan � = (a, ⌫):

• If � is a conditional plan associated with a terminal belief, ↵�(s) = r(s, a).

• If � is a conditional plan associated with a non-terminal belief, PBPS computes the

↵-vector ↵� based on Formula 5.3.

Then the value function of ⇡ can be represented as a set of ↵-vectors V⇡ = {↵�1 ,↵�2 , . . . }

(line 93).

Policy Improvement

In the policy improvement step, PBPS computes an improved policy ⇡0 based on the value

function V⇡ of the current policy ⇡. This policy improvement step applies the point-based

backup algorithm [42, 58] to the finite set B⇡ of beliefs visited by the current policy ⇡.

Since PBPS needs to consider not only a quantitative objective as in the standard point-

based backup, but also a boolean objective that defines the validity of a policy, PBPS can

not directly apply the standard point-based backup in PBPS. There are two important dif-

ferences between PBPS and the standard point-based backup.

First, the standard point-based backup loops over all ↵-vectors in the value function V⇡

of the current policy ⇡ to find the best ↵-vector ↵o
a = argmax

↵2V⇡
↵ · bo

a for the successor belief

bo
a = TB(b, a, o). Conceptually, this step applies each conditional plan � in the policy ⇡ to

the belief bo
a and finds the best conditional plan for bo

a. However, not every conditional plan

� in the policy ⇡ is valid starting from the belief bo
a. Therefore, PBPS performs an additional

77

filtering step (lines 101, 102, 103) to construct a subset � ✓ ⇡ of valid conditional plans

starting from the belief bo
a. Then PBPS selects the best conditional plan from these valid

ones (line 109).

Second, after PBPS performs the filtering step described above, it is possible that the

current policy ⇡ does not contain a valid conditional plan for bo
a, i.e., � = ; (line 104).

In this case, PBPS invokes BPS again to compute a valid policy ⇡o
a for the belief bo

a (line

105) and add ⇡o
a to the new policy ⇡0 so that in later iterations, the value of ⇡o

a (line 106)

can be improved. By constructing this new policy ⇡o
a, new belief regions that have not

been reached by previous policies can be explored. This exploration step together with the

point-based backup (when a di↵erent action becomes more optimal) expands the belief set

B⇡. As pointed out by previous works [36, 42, 58] , this expansion of the representative

belief set B⇡ is crucial to the quality of the constructed policy.

5.2.3 Algorithm Analysis

This section provides two theorems to address the important properties of PBPS. Theorem

5.2.1 shows that PBPS maintains validity and keeps improving the value of the policy at

each iteration before termination. Theorem 5.2.2 shows that the error introduced by PBPS

due to approximation is bounded.

Theorem 5.2.1. At each iteration before termination, PBPS transforms a policy ⇡ to a new

policy ⇡0. For each belief b 2 B⇡, �0 = ⇡0(b) is valid and V⇡0(b) � V⇡(b). For at least one

belief b 2 B⇡, V⇡0(b) > V⇡(b).

Proof. Each iteration of PBPS consists of two steps:

• In the policy evaluation step, PBPS computes the exact value function V⇡ of the

current policy ⇡ (line 93).

78

• In the point-based backup step, PBPS constructs a conditional plan � for each belief

b 2 B⇡. According to Algorithm 6, for each observation o, PBPS selects the best

conditional plan �o
a from the subset � ✓ ⇡ of valid conditional plans starting from

the successor belief bo
a (line 109). When � = ;, PBPS invokes BPS to construct a

new valid conditional plan �o
a for the belief bo

a (lines 105, 106, 107). Then PBPS

selects the best action a for the belief b (line 113) and construct the best conditional

plan � (line 114) with respect to the value function V⇡ of the current policy ⇡. By

construction, � is also valid stating from the belie b.

Therefore, PBPS can not cause a reduction in the value of any belief b 2 B⇡ and PBPS

always produce a valid policy ⇡0. According to the termination condition (line 116), ⇡0

improves the value for at least one belief b 2 B⇡ before termination. ⇤

Theorem 5.2.1 states that PBPS maintains validity and keeps improving the value of

the policy after each iteration.

PBPS is an approximation method that performs the point-based backup on the repre-

sentative set B⇡ of beliefs visited by the policy ⇡ rather than the entire goal-constrained

belief space BG. As a result, PBPS implicitly prunes conditional plans for every belief

b 2 BG � B⇡. This implicit pruning may remove conditional plans that are part of the opti-

mal policy ⇡⇤
G

that is also valid with respect to the safe-reachability objective G, producing

a suboptimal policy.

Note that ⇡⇤
G

is di↵erent from the optimal policy ⇡⇤ without the requirement of satisfying

the safe-reachability objective (⇡⇤ may not be valid). As PBPS continues improving ⇡,

the value V⇡ is getting closer to the value V⇡⇤
G
, but V⇡ may not converge to the optimal

value V⇡⇤ due to the additional safe-reachability objective. Let �⇡ = max
b2B⇡

(V⇡⇤(b) � V⇡(b))

to be the measurement of the di↵erence between ⇡⇤ and ⇡. �⇡ can also be seen as the

79

measurement of the di↵erence between the quantitative objective and the safe-reachability

objective. Intuitively, if proper rewards for goal states and unsafe states are set, �⇡ should

not be too large since the reward function also encodes the safe-reachability objectives to

some extent, and the di↵erence between the quantitative objective and the safe-reachability

objective is small. However, as discussed in [78], there exist domains where no reward

function exactly encodes the safe-reachability objective and �⇡ may always be greater than

0. How to design a proper reward function that minimizes �⇡ is beyond the scope of this

work.

The following theorem shows the error introduced by PBPS is bounded.

Theorem 5.2.2. PBPS produces a policy ⇡ with error ⌘ = V⇡⇤
G
(b0) � V⇡(b0) bounded by

⌘  h(rmax � rmin)dB⇡ + �⇡ (5.5)

where b0 is the initial belief, h is the horizon bound, rmax = max
s,a

r(s, a), rmin = min
s,a

r(s, a),

dB⇡ = max
b02BG

min
b2B⇡
||b � b0|| is the maximum distance from any b0 2 BG to B⇡.

Proof. Let �⇤ = (a⇤, ⌫⇤) be the optimal conditional plan specified by ⇡⇤
G

for the belief b0

80

and � = (a, ⌫) be the conditional plan specified by ⇡ for the belief b0.

⌘ = V⇡⇤
G
(b0) � V⇡(b0) = V�⇤(b0) � V�(b0)

=

0
BBBBB@
X

s2S

r(s, a⇤)b(s) +
X

o2O

Pr(o|b0, a⇤)V⇡⇤
G
(bo

a⇤)
1
CCCCCA

�

0
BBBBB@
X

s2S

r(s, a)b(s) +
X

o2O

Pr(o|b0, a)V⇡(bo
a)
1
CCCCCA Formula 5.1

=

0
BBBBB@
X

s2S

r(s, a⇤)b(s) +
X

o2O

Pr(o|b0, a⇤)V⇡⇤
G
(bo

a⇤)
1
CCCCCA

�

0
BBBBB@
X

s2S

r(s, a)b(s) +
X

o2O

Pr(o|b0, a)V⇡(bo
a)
1
CCCCCA

+

0
BBBBB@
X

s2S

r(s, a⇤)b(s) +
X

o2O

Pr(o|b0, a⇤)V⇡(bo
a⇤)

1
CCCCCA

�

0
BBBBB@
X

s2S

r(s, a⇤)b(s) +
X

o2O

Pr(o|b0, a⇤)V⇡(bo
a⇤)

1
CCCCCA add 0

=
X

o2O

Pr(o|b0, a⇤)
⇣
V⇡⇤
G
(bo

a⇤) � V⇡(bo
a⇤)

⌘

+

0
BBBBB@
X

s2S

r(s, a⇤)b(s) +
X

o2O

Pr(o|b0, a⇤)V⇡(bo
a⇤)

1
CCCCCA

�

0
BBBBB@
X

s2S

r(s, a)b(s) +
X

o2O

Pr(o|b0, a)V⇡(bo
a)
1
CCCCCA (5.6)

Since the policy ⇡ specify the conditional plan � for the belief b0, � should be the best

conditional plan for b0 w.r.t. the value function V⇡ and thus the sum of last two terms in For-

mula 5.6:

P
s2S

r(s, a⇤)b(s) +
P

o2O
Pr(o|b0, a⇤)V⇡(bo

a⇤)
!
�

P
s2S

r(s, a)b(s) +
P

o2O
Pr(o|b0, a)V⇡(bo

a)
!


0. Therefore, ⌘ 
P

o2O
Pr(o|b0, a⇤)

⇣
V⇡⇤
G
(bo

a⇤) � V⇡(bo
a⇤)

⌘
. Let b0 2

S
o2O
{bo

a⇤} be the successor be-

lief where PBPS makes its worst error, �⇤o be the optimal conditional plan specified by

the policy ⇡⇤
G

for b0, �o be the best conditional plan in ⇡ for b0 and b 2 B⇡ be the belief

81

associated with �o. Then

⌘ 
X

o2O

Pr(o|b0, a⇤)(↵�⇤o · b
0
� ↵�o · b

0)

 ↵�⇤o · b
0
� ↵�o · b

0

X

o2O

Pr(o|b0, a⇤) = 1

= (↵�⇤o � ↵�o) · (b
0
� b) + (↵�⇤o � ↵�o) · b add 0 (5.7)

Following the derivations in [58], for the first term in Formula 5.7

(↵�⇤o � ↵�o) · (b
0
� b)

 k↵�⇤o � ↵�ok1kb
0
� bk1 Hölder’s inequality

 k↵�⇤o � ↵�ok1dB⇡ definition of dB⇡

 h(rmax � rmin)dB⇡

The last inequality holds because ↵-vector represents the reward starting from some state

within the horizon bound h.

For the second term (↵�⇤o � ↵�o) · b in Formula 5.7, since �⇤o may not be valid starting

from b, ↵�⇤o · b is at most V⇡⇤(b) where ⇡⇤ is an optimal policy without the requirement of

satisfying the safe-reachability objective and may not be valid. According to the definition

of �⇡ , (↵�⇤o � ↵�o) · b  �⇡. Based on the above analysis, ⌘  h(rmax � rmin)dB⇡ + �⇡. ⇤

As the set B⇡ is expanded through the exploration step (line 105) and the point-based

backup, B⇡ covers more beliefs from the goal-constrained belief space BG. Therefore, the

first term h(rmax�rmin)dB⇡ in the error bound converges to 0 since the distance dB⇡ converges

to 0. As discussed before, the value of the second term �⇡ in the error bound is closely

related to the reward function. How to design a proper reward function that minimizes the

82

second term �r of the error bound is still an open question.

5.3 Experiments

PBPS is tested on two domains: the kitchen domain (horizon bound h = 20) presented

in [78] and the Tag domain (horizon bound h = 30) presented in [58]. PBPS is also

validated on a Fetch robot for the scenario shown in Figure 1.1 (h = 20). Z3 [19] is used as

the backend SMT solver. All experiments were conducted on a 2.9 GHz Intel R� processor

with 16 GB memory.

Kitchen Domain

In the kitchen domain [78], a robot needs to eventually pick up a cup from the storage while

avoiding collisions with M uncertain obstacles. This kitchen domain is an example scenario

that requires a correctness guarantee of accomplishing tasks, and POMDPs with boolean

objectives provide a better guarantee than the purely quantitative POMDP formulations

[78].

The kitchen environment is discretized into N = 36 regions. The actuation and percep-

tion of the robot are imperfect, modeled as ten uncertain robot actions: move and look in

four directions, pick-up using the left hand and pick-up using the right hand. The robot

starts at a known initial location. However, due to the robot’s imperfect perception, the

location of the robot and the locations of uncertain obstacles are all partially observable

during execution. The same safe-reachability objective G = (Dest, Safe) in [78] is used to

83

specify the task:

Dest = {b 2 B |
⇣X

b(target cup in hand))
⌘
> 1 � �1}

Safe = {b 2 B |
⇣X

b(robot in collision))
⌘
< �2}

where �1 and �2 are small values that represent tolerance.

For the quantitative objective, it is desired that the robot avoid certain regions as much

as possible by assigning the reward of �10 for states where the robot is in these regions. A

reward of �1 is assigned for each action.

Tag Domain

In the Tag domain [58], the task for the robot is to search for and tag a moving agent in

a grid with 29 locations. The agent follows a fixed strategy that intentionally moves away

from the robot. Both the robot and the agent can move in four directions or stay. The robot’s

location is fully observable while the agent’s location is unobservable unless the robot and

the agent are in the same location. The safe-reachability objective G = (Dest, Safe) for this

domain is: (1) Dest contains beliefs where the robot can tag the agent with a probability at

least �; (2) Safe = B since there are no unsafe states and all beliefs are safe beliefs.

5.3.1 Results

The performance results of PBPS are summarized in Table 5.1. To evaluate how the quality

of constructed policies is a↵ected by the exploration step (line 105) of PBPS (Algorithm 6)

where BPS is invoked to explore an uncovered belief region, PBPS is tested in two settings:

with and without the exploration step.

As shown in Table 5.1, PBPS with exploration achieves much better reward compared

84

Table 5.1 : Performance of PBPS with and without the exploration step for di↵erent prob-
lems.

Domain Reward Time (s) |B⇡|

w. exp. no exp. w. exp. no exp. w. exp. no exp.

Kitchen (M = 1) -9.350 -9.350 18.166 10.321 147 94
Kitchen (M = 2) -13.040 -24.296 347.281 33.798 396 73
Kitchen (M = 3) -16.882 -31.801 3611.684 290.019 474 64

Tag (� = 0.5) -6.987 -9.070 509.235 21.352 370 109
Tag (� = 0.6) -6.871 -9.108 1132.996 21.985 811 107

to PBPS without exploration for large problems. However, this exploration step is expen-

sive and requires more computation time. The results also demonstrate the advantage of

approximate policies against exact policies: computing exact policies requires exhaustively

exploring the whole goal-constrained belief space, which is intractable in practice since ex-

ploration is costly as shown in Table 5.1. On the contrary, PBPS produces approximate

policies by performing the point-based backup, and only explores belief regions of the

goal-constrained belief space that are promising based on the current value function.

To compare with solvers for POMDPs with only quantitative objectives, a state-of-the-

art POMDP solver SARSOP [42] is tested on the Tag domain. The policy produced by

SARSOP achieves an expected reward of �6.02 but only visits beliefs where the proba-

bility of tagging the agent is at most 0.539. The policy generated by PBPS for the Tag

domain with � = 0.6 guarantees that the robot eventually visits a belief where the proba-

bility of tagging the agent is at least 0.6. For the kitchen domain, since PBPS considers

both safe-reachability and quantitative objectives, PBPS also provides a better guarantee of

accomplishing tasks than solvers for purely quantitative POMDP formulations as discussed

in [78].

85

5.3.2 Physical Validation

PBPS is validated on a Fetch robot for the domain shown in Figure 1.1. The setup of this

domain is similar to the kitchen domain. The Fetch needs to pick up a target object (the

blue can on the table) while avoiding collisions with uncertain obstacles such as floor signs

and file cabinets, which can be placed in di↵erent locations. There are two regions marked

with red tape, and it is desired that the robot avoid these red regions as much as possible by

assigning the reward of �10 for states where the robot is in these regions. A reward of �1

is assigned for each action.

The POMDP’s state space consists of robot locations and object locations. A Vicon sys-

tem is used to detect object locations, which is usually accurate but can still produce false

negative and false positive due to occlusion or inappropriate Vicon marker configurations

on objects. The false negative and false positive probabilities can be estimated by counting

the false negative and false positive events during 100 Vicon detections. The POMDP’s

probabilistic observation function is defined based on the false negative and false positive

probabilities. Sometimes the Fetch may fail to move its base when given a move action

command and stay in the same place. The failure probability of these move actions can be

estimated by counting the failure events during 100 move action executions. The POMDP’s

probabilistic transition function is defined based on this failure probability.

Both BPS and PBPS are evaluated in this o�ce domain. Figure 5.2a, 5.2b, 5.2c, 5.2d,

and 5.2e show the execution of the policy constructed by BPS. Figure 5.2f, 5.2g, 5.2h, 5.2i,

and 5.2j show the execution of the policy constructed by PBPS. As shown in these figures,

both executions accomplish the task safely. However, the execution for BPS visits both red

regions (Figure 5.2b and 5.2d) that the robot should avoid while the execution for PBPS

visits zero red regions. Therefore, PBPS produces a policy that is more optimal than that

produced by BPS by considering both boolean and quantitative objectives.

86

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5.2 : Executions of policies constructed by BPS (figures in the first row) and PBPS
(figures in the second row) for the domain shown in Figure 1.1.

5.4 Discussion

This chapter presented a new policy synthesis approach called PBPS for POMDPs with

both safe-reachability and quantitative objectives. PBPS combines BPS [78] and Point-

Based Policy Iteration [36]: BPS is applied to e�ciently explore the goal-constrained belief

space, and the point-based backup is performed on a finite subset of representative beliefs

from the goal-constrained belief space to compute good approximate policies that satisfy

safe-reachability objectives. The theoretical analysis shows that PBPS maintains validity

and guarantees improved policies at each iteration before termination. Moreover, the error

introduced by PBPS is bounded. Both simulation and physical experiments demonstrate

that the policies constructed by PBPS achieve the safe-reachability objective and are of

high quality with respect to the quantitative objective.

This thesis focuses on a common boolean objective: safe-reachability. While many

robot tasks can be formulated using safe-reachability objectives, there are settings in robotics

such as patrolling and surveillance that require general temporal properties to specify the

tasks. Investigating how to extend PBPS to deal with general temporal properties is a

87

promising future direction for this work and its application in robotics. The current imple-

mentation of PBPS is restricted to discrete POMDPs. How to extend PBPS for continuous

POMDPs is another important ongoing question.

88

Chapter 6

Conclusions and Future Work

Planning robust executions under uncertainty is a fundamental challenge for building au-

tonomous robots, especially in domains like disaster rescue, self-driving vehicles, health

care, and even around the home. POMDPs [67,70] provide a standard framework for mod-

eling a variety of robot applications in the face of uncertainty. Traditionally, POMDPs

have been posed with respect to quantitative objectives such as maximizing rewards. How-

ever, for many robot applications that desire a strong correctness guarantee of completing

tasks, POMDPs with boolean requirements are natural formulations. This thesis investi-

gates POMDPs with a common boolean requirement: safe-reachability, which requires that

with a probability above a threshold, a goal state is eventually reached while keeping the

probability of visiting unsafe states below a di↵erent threshold. Many robot tasks such as

the one shown in Figure 3.7 can be formulated as a safe-reachability objective. Moreover,

this thesis discusses an example POMDP domain in Section 2.2, showing that for certain

robot domains that require accomplishing tasks safely, POMDPs with safe-reachability ob-

jectives provide a better guarantee of both safety and reachability than existing quantitative

POMDP formulations.

The central challenge in solving POMDPs is the requirement of reasoning over a vast

space of probability distributions called the belief space. What’s more, it has been shown

that the policy synthesis problem of POMDPs with reachability objectives is undecidable in

general [10,50,57]. To address these challenges, this thesis introduces the notion of a goal-

constrained belief space, which only contains beliefs (probability distributions over states)

89

reachable from the initial belief under desired executions that can achieve the given safe-

reachability objective. In general, this constrained space is much smaller than the original

belief space. Based on this notion, this thesis presents an o✏ine synthesis approach BPS,

which compactly represents the goal-constrained belief space over a bounded horizon using

a set of symbolic constraints, and employs an incremental Satisfiability Modulo Theories

(SMT) solver [19] to e�ciently search for a valid policy over it. BPS is evaluated using a

case study involving a partially observable robotic domain with uncertain obstacles. The

results show that BPS can synthesize policies over large belief spaces with a small number

of SMT solver calls by focusing on the goal-constrained belief space.

The solutions to POMDPs are policies that specify the action to take contingent on an

observation received. A full policy that covers all possible events is generally expensive

to compute. To improve computational e�ciency, this thesis introduces the notion of par-

tial policies that only cover a sampled subset of all possible observations at each step and

approximates full policies. Based on this notion, this thesis presents an online planning ap-

proach OPPS, which constructs a partial policy parameterized by a replanning probability.

In addition, this thesis proves that the probability of the constructed partial policy failing is

bounded by the replanning probability. Therefore, this replanning probability measures the

approximation quality of a partial policy, and OPPS allows users to specify an appropri-

ate bound on the replanning probability to balance e�ciency and correctness. Moreover,

OPPS updates this bound during partial policy construction to quickly detect if the current

partial policy meets the bound and avoid unnecessary computation. OPPS is validated in

several robotic domains, and the results show that OPPS outperforms the o✏ine approach

BPS and can solve problems that are beyond the capabilities of BPS within the time limit.

On the one hand, Safe-reachability objectives provide a strong correctness guarantee of

accomplishing tasks safely. On the other hand, the traditional quantitative objectives o↵er

90

a strong optimality guarantee. For robotic domains that require both correctness and opti-

mality, the POMDP model with both safe-reachability and quantitative objects are natural

formulations. Based on this formulation, this thesis presents a policy synthesis approach

PBPS, which computes good approximate policies that also satisfy the safe-reachability

objective by combining the BPS method for POMDPs with only safe-reachability objec-

tives and policy iteration. To improve e�ciency, PBPS produces approximated policies by

performing the point-based backup [42, 58] on a representative belief subset of all beliefs

that are reachable from initial beliefs under desired executions that can achieve the safe-

reachability objectives. This thesis proves that PBPS maintains validity and guarantees

improved policies at each iteration. Moreover, the error introduced by this approximation

approach PBPS is bounded. PBPS is evaluated in several robotic domains under uncer-

tainty. Both simulation and physical experiments demonstrate that the policies constructed

by PBPS achieve the safe-reachability objective and are of high quality with respect to the

quantitative objective.

6.1 Open Questions

This thesis analyzes an example domain in Section 2.2 to qualitatively demonstrate the dif-

ference between POMDPs with boolean objectives and the traditional quantitative POMDP

formulations. How to determine which POMDP formulation should be used for a particular

domain is still an open question. Analyzing a wide range of situations and performing a

quantitative analysis on the di↵erence between POMDPs with boolean objectives and the

quantitative POMDP formulations is an interesting future topic. Moreover, the theoretical

analysis of the approximation method PBPS for POMDPs with both boolean and quan-

titative objectives reveals that the di↵erence between boolean and quantitative objectives

plays an important role on the optimality guarantee. The quantitative analysis of these two

91

objectives may provide an answer on how to minimize the error due to considering both

objectives at the same time in PBPS.

All the policy synthesis approaches presented in this thesis are restricted to discrete

POMDPs. While many robot applications can be modeled using this discrete represen-

tation, discretization often su↵ers from the “curse of dimensionality”. Investigating how

to deal with continuous POMDPs [1, 33, 64] directly without discretization is a promising

future direction for the work presented in this thesis and its application in robotics.

This thesis focuses on a common boolean objective: safe-reachability. While many

robot tasks can be formulated using safe-reachability objectives, there are settings in robotics

such as patrolling and surveillance that require general temporal properties to specify the

tasks. Investigating how to extend the policy synthesis approaches presented in this thesis

to deal with general temporal properties is another critical ongoing question.

92

Bibliography

[1] H. Bai, D. Hsu, W. S. Lee, and V. A. Ngo, “Monte Carlo value iteration for

continuous-state POMDPs,” in Algorithmic Foundations of Robotics IX: Selected

Contributions of the Ninth International Workshop on the Algorithmic Foundations

of Robotics, D. Hsu, V. Isler, J.-C. Latombe, and M. C. Lin, Eds. Berlin, Heidelberg:

Springer, 2011, pp. 175–191.

[2] J. Bidot, L. Karlsson, F. Lagri↵oul, and A. Sa�otti, “Geometric backtracking for

combined task and motion planning in robotic systems,” Artificial Intelligence, vol.

247, pp. 229–265, 2017.

[3] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu, “Bounded model check-

ing,” Advances in Computers, vol. 58, pp. 117–148, 2003.

[4] N. Bjørner, A. Phan, and L. Fleckenstein, “⌫z - an optimizing SMT solver,” in Pro-

ceedings of the 21st International Conference on Tools and Algorithms for the Con-

struction and Analysis of Systems - Volume 9035. Berlin, Heidelberg: Springer-

Verlag, 2015, pp. 194–199.

[5] R. Bloem, K. Chatterjee, T. A. Henzinger, and B. Jobstmann, “Better quality in syn-

thesis through quantitative objectives,” in Proceedings of the 21st International Con-

ference on Computer Aided Verification, ser. CAV ’09. Berlin, Heidelberg: Springer-

Verlag, 2009, pp. 140–156.

[6] P. Cai, Y. Luo, D. Hsu, and W. S. Lee, “HyP-DESPOT: A hybrid parallel algorithm for

93

online planning under uncertainty,” in Proceedings of Robotics: Science and Systems,

Pittsburgh, Pennsylvania, June 2018.

[7] K. Chatterjee, M. Chmelı́k, R. Gupta, and A. Kanodia, “Qualitative analysis of

POMDPs with temporal logic specifications for robotics applications,” in 2015 IEEE

International Conference on Robotics and Automation (ICRA), May 2015, pp. 325–

330.

[8] K. Chatterjee, M. Chmelı́k, and J. Davies, “A symbolic SAT-based algorithm for

almost-sure reachability with small strategies in POMDPs,” in Proceedings of the

Thirtieth AAAI Conference on Artificial Intelligence, ser. AAAI’16. AAAI Press,

2016, pp. 3225–3232.

[9] K. Chatterjee, M. Chmelı́k, R. Gupta, and A. Kanodia, “Optimal cost almost-sure

reachability in POMDPs,” Artificial Intelligence, vol. 234, no. C, pp. 26–48, May

2016.

[10] K. Chatterjee, M. Chmelı́k, and M. Tracol, “What is decidable about partially observ-

able Markov decision processes with !-regular objectives,” Journal of Computer and

System Sciences, vol. 82, no. 5, pp. 878–911, Aug. 2016.

[11] K. Chatterjee, Z. Komarkova, and J. Kretinsky, “Unifying two views on multiple

mean-payo↵ objectives in Markov decision processes,” in Proceedings of the 2015

30th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), ser. LICS

’15. Washington, DC, USA: IEEE Computer Society, 2015, pp. 244–256.

[12] K. Chatterjee, R. Majumdar, and T. A. Henzinger, “Markov decision processes with

multiple objectives,” in Proceedings of the 23rd Annual Conference on Theoretical

94

Aspects of Computer Science, ser. STACS’06. Berlin, Heidelberg: Springer-Verlag,

2006, pp. 325–336.

[13] S. Chaudhuri, M. Clochard, and A. Solar-Lezama, “Bridging boolean and quantitative

synthesis using smoothed proof search,” in Proceedings of the 41st ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, ser. POPL ’14. New

York, NY, USA: ACM, 2014, pp. 207–220.

[14] C. Courcoubetis and M. Yannakakis, “Markov decision processes and regular events,”

IEEE Transactions on Automatic Control, vol. 43, no. 10, pp. 1399–1418, Oct 1998.

[15] ——, “The complexity of probabilistic verification,” Journal of the ACM, vol. 42,

no. 4, pp. 857–907, July 1995.

[16] N. T. Dantam, S. Chaudhuri, and L. E. Kavraki, “The task-motion kit: An open

source, general-purpose task and motion-planning framework,” IEEE Robotics Au-

tomation Magazine, vol. 25, no. 3, pp. 61–70, Sept 2018.

[17] N. T. Dantam, Z. K. Kingston, S. Chaudhuri, and L. E. Kavraki, “Incremental task and

motion planning: A constraint-based approach,” in Robotics: Science and Systems,

2016.

[18] ——, “An incremental constraint-based framework for task and motion planning,”

International Journal of Robotics Research, 2018.

[19] L. De Moura and N. Bjørner, “Z3: An e�cient SMT solver,” in Proceedings of the

Theory and Practice of Software, 14th International Conference on Tools and Al-

gorithms for the Construction and Analysis of Systems, ser. TACAS’08/ETAPS’08.

Berlin, Heidelberg: Springer-Verlag, 2008, pp. 337–340.

95

[20] X. C. Ding, S. L. Smith, C. Belta, and D. Rus, “MDP optimal control under tempo-

ral logic constraints,” in 2011 50th IEEE Conference on Decision and Control and

European Control Conference, Dec 2011, pp. 532–538.

[21] C. Dornhege, P. Eyerich, T. Keller, S. Trüg, M. Brenner, and B. Nebel, Semantic At-

tachments for Domain-Independent Planning Systems. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2012, pp. 99–115.

[22] R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison, Biological sequence analysis:

probabilistic models of proteins and nucleic acids. Cambridge University Press,

1998.

[23] E. Erdem, K. Haspalamutgil, C. Palaz, V. Patoglu, and T. Uras, “Combining high-level

causal reasoning with low-level geometric reasoning and motion planning for robotic

manipulation,” in 2011 IEEE International Conference on Robotics and Automation

(ICRA), May 2011, pp. 4575–4581.

[24] K. Etessami, M. Kwiatkowska, M. Y. Vardi, and M. Yannakakis, “Multi-objective

model checking of Markov decision processes,” Logical Methods in Computer Sci-

ence, vol. Volume 4, Issue 4, Nov. 2008.

[25] C. Garrett, T. Lozano-Perez, and L. Kaelbling, “Sample-based methods for factored

task and motion planning,” in Proceedings of Robotics: Science and Systems, Cam-

bridge, Massachusetts, July 2017.

[26] C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling, “FFRob: An e�cient heuristic

for task and motion planning,” Algorithmic Foundations of Robotics XI, vol. 107, p.

179, 2015.

96

[27] M. Gharbi, R. Lallement, and R. Alami, “Combining symbolic and geometric plan-

ning to synthesize human-aware plans: toward more e�cient combined search.” in

2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

Sept 2015, pp. 6360–6365.

[28] M. K. Ghosh, “Markov decision processes with multiple costs,” Operations Research

Letters, vol. 9, no. 4, pp. 257–260, July 1990.

[29] D. K. Grady, M. Moll, and L. E. Kavraki, “Extending the applicability of POMDP

solutions to robotic tasks,” IEEE Transactions on Robotics, vol. 31, no. 4, pp. 948–

961, Aug 2015.

[30] S. Gulwani, “Dimensions in program synthesis,” in Proceedings of the 12th Inter-

national ACM SIGPLAN Symposium on Principles and Practice of Declarative Pro-

gramming, ser. PPDP ’10. New York, NY, USA: ACM, 2010, pp. 13–24.

[31] D. Hadfield-Menell, E. Groshev, R. Chitnis, and P. Abbeel, “Modular task and motion

planning in belief space,” in 2015 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), Sept 2015, pp. 4991–4998.

[32] K. He, M. Lahijanian, L. E. Kavraki, and M. Y. Vardi, “Towards manipulation plan-

ning with temporal logic specifications,” in 2015 IEEE International Conference on

Robotics and Automation (ICRA), May 2015, pp. 346–352.

[33] J. Hoey and P. Poupart, “Solving POMDPs with continuous or large discrete observa-

tion spaces,” in Proceedings of the 19th International Joint Conference on Artificial

Intelligence, ser. IJCAI’05. San Francisco, CA, USA: Morgan Kaufmann Publishers

Inc., 2005, pp. 1332–1338.

97

[34] P. Hou, W. Yeoh, and P. Varakantham, “Solving risk-sensitive POMDPs with and

without cost observations,” in Proceedings of the Thirtieth AAAI Conference on Arti-

ficial Intelligence, ser. AAAI’16. AAAI Press, 2016, pp. 3138–3144.

[35] J. D. Isom, S. P. Meyn, and R. D. Braatz, “Piecewise linear dynamic programming for

constrained POMDPs,” in Proceedings of the 23rd National Conference on Artificial

Intelligence, ser. AAAI’08. AAAI Press, 2008, pp. 291–296.

[36] S. Ji, R. Parr, H. Li, X. Liao, and L. Carin, “Point-based policy iteration,” in AAAI.

AAAI Press, 2007, pp. 1243–1249.

[37] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and acting in partially

observable stochastic domains,” Artificial Intelligence, vol. 101, no. 1-2, pp. 99–134,

May 1998.

[38] L. P. Kaelbling and T. Lozano-Pérez, “Integrated task and motion planning in belief

space,” International Journal of Robotics Research, vol. 32, no. 9-10, pp. 1194–1227,

Aug. 2013.

[39] ——, “Implicit belief-space pre-images for hierarchical planning and execution,” in

2016 IEEE International Conference on Robotics and Automation (ICRA), May 2016,

pp. 5455–5462.

[40] D. Kim, J. Lee, K.-E. Kim, and P. Poupart, “Point-based value iteration for con-

strained POMDPs,” in Proceedings of the Twenty-Second International Joint Confer-

ence on Artificial Intelligence, ser. IJCAI’11. AAAI Press, 2011, pp. 1968–1974.

[41] A. Krontiris and K. Bekris, “Dealing with di�cult instances of object rearrangement,”

in Proceedings of Robotics: Science and Systems, Rome, Italy, July 2015.

98

[42] H. Kurniawati, D. Hsu, and W. S. Lee, “SARSOP: E�cient point-based POMDP

planning by approximating optimally reachable belief spaces,” in Robotics: Science

and Systems, 2008.

[43] J. Křetı́nský and T. Meggendorfer, “Conditional value-at-risk for reachability and

mean payo↵ in Markov decision processes,” in Proceedings of the 33rd Annual

ACM/IEEE Symposium on Logic in Computer Science, ser. LICS ’18. New York,

NY, USA: ACM, 2018, pp. 609–618.

[44] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: Verification of probabilis-

tic real-time systems,” in Proc. 23rd International Conference on Computer Aided

Verification (CAV’11), ser. LNCS, G. Gopalakrishnan and S. Qadeer, Eds., vol. 6806.

Springer, 2011, pp. 585–591.

[45] F. Lagri↵oul and B. Andres, “Combining task and motion planning,” International

Journal of Robotics Research, vol. 35, no. 8, pp. 890–927, July 2016.

[46] M. Lahijanian, S. B. Andersson, and C. Belta, “Control of Markov decision processes

from PCTL specifications,” in Proceedings of the 2011 American Control Conference,

June 2011, pp. 311–316.

[47] ——, “Temporal logic motion planning and control with probabilistic satisfaction

guarantees,” IEEE Transactions on Robotics, vol. 28, no. 2, pp. 396–409, April 2012.

[48] R. Luna, M. Lahijanian, M. Moll, and L. E. Kavraki, “Asymptotically optimal

stochastic motion planning with temporal goals,” in Workshop on the Algorithmic

Foundations of Robotics, Istanbul, Turkey, Mar. 2014.

[49] Y. Luo, H. Bai, D. Hsu, and W. S. Lee, “Importance sampling for online planning

under uncertainty,” in Workshop on Algorithmic Foundations of Robotics, 2016.

99

[50] O. Madani, S. Hanks, and A. Condon, “On the undecidability of probabilistic plan-

ning and related stochastic optimization problems,” Artificial Intelligence, vol. 147,

no. 1-2, pp. 5–34, July 2003.

[51] J. Marecki and P. Varakantham, “Risk-sensitive planning in partially observable envi-

ronments,” in Proceedings of the 9th International Conference on Autonomous Agents

and Multiagent Systems, ser. AAMAS ’10. Richland, SC: International Foundation

for Autonomous Agents and Multiagent Systems, 2010, pp. 1357–1368.

[52] M. Mohri, “Finite-state transducers in language and speech processing,” Computa-

tional Linguistics, vol. 23, no. 2, pp. 269–311, June 1997.

[53] M. Mundhenk, J. Goldsmith, C. Lusena, and E. Allender, “Complexity of finite-

horizon Markov decision process problems,” Journal of the ACM, vol. 47, no. 4, pp.

681–720, July 2000.

[54] S. Nedunuri, S. Prabhu, M. Moll, S. Chaudhuri, and L. E. Kavraki, “SMT-based

synthesis of integrated task and motion plans from plan outlines,” in 2014 IEEE In-

ternational Conference on Robotics and Automation (ICRA), May 2014, pp. 655–662.

[55] S. Nedunuri, Y. Wang, S. Prabhu, M. Moll, S. Chaudhuri, and L. E. Kavraki, “Syn-

thesis of integrated task and motion plans from plan outline using SMT solvers,” Rice

University, Tech. Rep., 2014.

[56] C. Papadimitriou and J. N. Tsitsiklis, “The complexity of Markov decision processes,”

Mathematics of Operations Research, vol. 12, no. 3, pp. 441–450, 1987.

[57] A. Paz, Introduction to Probabilistic Automata. Orlando, FL, USA: Academic Press,

Inc., 1971.

100

[58] J. Pineau, G. Gordon, and S. Thrun, “Point-based value iteration: An anytime algo-

rithm for POMDPs,” in Proceedings of the 18th International Joint Conference on

Artificial Intelligence, ser. IJCAI’03. San Francisco, CA, USA: Morgan Kaufmann

Publishers Inc., 2003, pp. 1025–1030.

[59] R. Platt Jr, R. Tedrake, L. Kaelbling, and T. Lozano-Pérez, “Belief space planning as-

suming maximum likelihood observations,” in Robotics: Science and Systems, 2010.

[60] P. Poupart, K. Kim, and D. Kim, “Closing the gap: Improved bounds on optimal

POMDP solutions,” in Proceedings of the Twenty-First International Conference on

International Conference on Automated Planning and Scheduling, ser. ICAPS’11.

AAAI Press, 2011, pp. 194–201.

[61] P. Poupart, A. Malhotra, P. Pei, K. Kim, B. Goh, and M. Bowling, “Approximate

linear programming for constrained partially observable Markov decision processes,”

in Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, ser.

AAAI’15. AAAI Press, 2015, pp. 3342–3348.

[62] S. Ross, J. Pineau, S. Paquet, and B. Chaib-draa, “Online planning algorithms for

POMDPs,” Journal of Artificial Intelligence Research, vol. 32, no. 1, pp. 663–704,

2008.

[63] P. Santana, S. Thiébaux, and B. Williams, “RAO*: An algorithm for chance-

constrained POMDP’s,” in Proceedings of the Thirtieth AAAI Conference on Artificial

Intelligence, ser. AAAI’16. AAAI Press, 2016, pp. 3308–3314.

[64] K. M. Seiler, H. Kurniawati, and S. P. N. Singh, “An online and approximate solver

for POMDPs with continuous action space,” in ICRA, 2015, pp. 2290–2297.

101

[65] G. Shani, R. I. Brafman, and S. E. Shimony, “Prioritizing point-based POMDP

solvers,” IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernet-

ics), vol. 38, no. 6, pp. 1592–1605, Dec 2008.

[66] G. Shani, J. Pineau, and R. Kaplow, “A survey of point-based POMDP solvers,” Au-

tonomous Agents and Multi-Agent Systems, vol. 27, no. 1, pp. 1–51, July 2013.

[67] R. D. Smallwood and E. J. Sondik, “The optimal control of partially observable

Markov processes over a finite horizon,” Operations Research, vol. 21, no. 5, pp.

1071–1088, 1973.

[68] T. Smith and R. Simmons, “Point-based POMDP algorithms: Improved analysis and

implementation,” in Proceedings of the Twenty-First Conference on Uncertainty in

Artificial Intelligence, ser. UAI’05. Arlington, Virginia, United States: AUAI Press,

2005, pp. 542–549.

[69] A. Somani, N. Ye, D. Hsu, and W. S. Lee, “DESPOT: Online POMDP planning

with regularization,” in Proceedings of the 26th International Conference on Neural

Information Processing Systems, ser. NIPS’13. USA: Curran Associates Inc., 2013,

pp. 1772–1780.

[70] E. J. Sondik, “The optimal control of partially observable Markov processes over the

infinite horizon: Discounted costs,” Oper. Res., vol. 26, no. 2, pp. 282–304, Apr. 1978.

[71] M. T. J. Spaan and N. Vlassis, “A point-based POMDP algorithm for robot planning,”

in 2004 IEEE International Conference on Robotics and Automation (ICRA), vol. 3,

April 2004, pp. 2399–2404 Vol.3.

[72] ——, “Perseus: Randomized point-based value iteration for POMDPs,” Journal of

Artificial Intelligence Research, vol. 24, no. 1, pp. 195–220, Aug. 2005.

102

[73] S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. Russell, and P. Abbeel, “Combined

task and motion planning through an extensible planner-independent interface layer,”

in 2014 IEEE International Conference on Robotics and Automation (ICRA), May

2014, pp. 639–646.

[74] M. Svoreňová, M. Chmelı́k, K. Leahy, H. F. Eniser, K. Chatterjee, I. Černá, and

C. Belta, “Temporal logic motion planning using POMDPs with parity objectives:

Case study paper,” in Proceedings of the 18th International Conference on Hybrid

Systems: Computation and Control, ser. HSCC ’15. New York, NY, USA: ACM,

2015, pp. 233–238.

[75] A. Undurti and J. P. How, “An online algorithm for constrained POMDPs,” in 2010

IEEE International Conference on Robotics and Automation (ICRA), May 2010, pp.

3966–3973.

[76] L. Valiant, “The complexity of enumeration and reliability problems,” SIAM Journal

on Computing, vol. 8, no. 3, pp. 410–421, 1979.

[77] M. Y. Vardi, “Automatic verification of probabilistic concurrent finite state programs,”

in Proceedings of the 26th Annual Symposium on Foundations of Computer Science,

ser. SFCS ’85. Washington, DC, USA: IEEE Computer Society, 1985, pp. 327–338.

[78] Y. Wang, S. Chaudhuri, and L. E. Kavraki, “Bounded policy synthesis for POMDPs

with safe-reachability objectives,” in AAMAS, 2018, pp. 238–246.

[79] ——, “Online partial conditional plan synthesis for POMDPs with safe-reachability

objectives,” in WAFR, 2018, to appear.

[80] Y. Wang, N. T. Dantam, S. Chaudhuri, and L. E. Kavraki, “Task and motion pol-

icy synthesis as liveness games,” in Proceedings of the Twenty-Sixth International

103

Conference on International Conference on Automated Planning and Scheduling, ser.

ICAPS’16. AAAI Press, 2016, pp. 536–540.

[81] D. White, “Multi-objective infinite-horizon discounted Markov decision processes,”

Journal of Mathematical Analysis and Applications, vol. 89, no. 2, pp. 639–647, 1982.

[82] E. M. Wol↵, U. Topcu, and R. M. Murray, “Robust control of uncertain markov deci-

sion processes with temporal logic specifications,” in 2012 IEEE 51st IEEE Confer-

ence on Decision and Control (CDC), Dec 2012, pp. 3372–3379.

	Abstract
	Acknowledgments
	List of Illustrations
	List of Tables
	Introduction
	Overview
	Related Work
	Partially Observable Markov Decision Processes
	Markov Decision Processes
	Task and Motion Planning Under Uncertainty
	Program Verification and Synthesis

	Contributions
	POMDPs with Safe-Reachability Objectives
	POMDPs with Both Safe-Reachability and Quantitative Objectives

	Thesis Structure

	POMDPs with Safe-Reachability Objectives
	Definitions
	POMDPs
	Safe-Reachability Objective
	Policy and Conditional Plan

	Relation to POMDPs with Quantitative Objectives

	Offline Synthesis for POMDPs with Safe-Reachability Objectives
	Problem Formulation
	Goal-Constrained Belief Space
	Problem Statement

	Bounded Policy Synthesis
	Constraint Generation
	Plan Generation
	Policy Generation

	Algorithm Analysis
	Algorithm Complexity
	Observability

	Experiments
	Performance
	Horizon Bound
	Physical Validation

	Discussion

	Online Planning for POMDPs with Safe-Reachability Objectives
	Problem Formulation
	Partial Policy
	Replanning Probability
	Problem Statement

	Online Partial Policy Synthesis
	Partial Policy Synthesis
	Partial Policy Generation

	Experiments
	Performance
	Success Rate
	Gains from Updating Replanning Probability Bound
	Physical Validation
	Tag Domain

	Discussion

	Combining Safe-Reachability and Quantitative Objectives
	Problem Formulation
	Quantitative Objectives
	Problem Statement

	Point-Based Policy Synthesis
	Bounded Policy Synthesis
	Policy Iteration
	Algorithm Analysis

	Experiments
	Results
	Physical Validation

	Discussion

	Conclusions and Future Work
	Open Questions

	Bibliography

