MAD User’s Manual

Selim T. Erdogan

March 17, 2009

Contents

1 Information about MAD and this manual 3
1.1 Background of MAD and relevant references 3
1.2 Obtaining MAD and System Requirements 3
1.3 About thismanual 4
1.4 Contacting Us. 4

2 Allowed Input 5
2.1 Comments e 5
2.2 Include statements 5
2.3 Identifiers and keywords L. 6
2.4 Action descriptions 6
2.5 Numeric symbol declarations 6
2.6 Sort declarations 7

2.6.1 Built-in sorts: Boolean, and integer ranges “m..n" 7
2.7 Inclusion declarations L. 7
2.8 Modules 8
2.9 Object declarationso 8
2.10 Action constant declarations 9
2.11 Fluent constant declarations 10
2.12 Variable declarations 11
213 Axioms 11
2.13.1 Termso 12
2.13.2 Formulas 12
2.13.3 Axioms 14
2.14 Import declarations Lo 16
2.14.1 Sort renaming clauses L. 16
2.14.2 Constant renaming clauses 16

3 Building and running MAD 19
3.1 Building thecode oL 19
3.2 Running the program 19

4 Using MAD with CCalc 21

4.1 Running CCalc on MAD action descriptions 21
4.2 TIssues to watch out for when running MAD with CCalc 22
5 Debugging action descriptions 23
5.1 Common errors in formalizing action domains 23
5.2 Typical mistakes when using library modules 24

Chapter 1

Information about MAD
and this manual

1.1 Background of MAD and relevant references

The Modular Action Description language MAD was introduced in [Lifschitz
and Ren, 2006]. It is a descendant of the C+ action language described in
[Giunchiglia et al., 2004] and of the “the Causal Calculator” (CCalc)!. Some
motivation and theoretical background for extending C+ with library modules
can be found in [Erdogan and Lifschitz, 2006] and an early example of MAD
being used can be found in [Erdogan et al., 2007] Recent work in [Lifschitz and
Ren, 2007] has begun to extend the semantics of C+, which will also be inherited
by MAD.

1.2 Obtaining MAD and System Requirements
MAD can be downloaded from its homepage:
http://www.cs.utexas.edu/ "tag/mad/

The software is written in the C programming language. In order to build
MAD from source, one needs a C compiler, a Lex-like lexical analyzer generator,
and a Yacc-like parser generator.

We have tested our software on Unix/Linux-like systems and used the fol-
lowing programs to build MAD from source:

e GCC, the GNU Compiler Collection
e flex, The Fast Lexical Analyzer

e bison, the GNU parser generator

Thttp://www.cs.utexas.edu/ tag/cc/

More specifically, we have successfully tested MAD with the following com-
binations:

e Debian GNU/Linux (sid), gce 4.3.3, flex 2.5.35, bison 2.4.1
e SunOS 5.9, gce 4.2.2, flex 2.5.33, bison 2.0

1.3 About this manual

This manual describes MAD version 0.4.

Things written in typewriter font indicate input that should appear ex-
actly as shown. Things written in italics refer to an element of input which has
already been explained or is about to explained.

1.4 Contacting Us

Please send any questions/comments/bug reports to selim@cs.utexas.edu.

Chapter 2

Allowed Input

A MAD input file contains an action description, along with comments.

2.1 Comments

A comment in the input begins with the character % and lasts until the end of
the line (i.e. until a newline character). Everything in the comment is ignored
by the parser.

2.2 Include statements

An input file may contain one or more “include” statements before the action
description. These statements specify (within quotes) names of other files con-
taining action descriptions. They are treated as if the contents of the included
files appear in place of the include statements. For example, to include a file
named library (located in the same directory) before an action description, we
can write the following:

include "library"
action_description_which_may_refer_to_modules_from_included_file

If the filename specifies just a simple filename, the file is expected to be in
the directory in which the program is executed. If a relative path to a file is
given, this is interpreted as relative to the directory in which the program is
executed.

If the included file does not contain a complete action description, an error
will occur.

Include statements can only appear at the start of a file, and the final include
statement in a file must be followed by an action description.

Include statements may be nested in the sense that a file which is referred
to in an include statement may contain an include statement itself.

2.3 Identifiers and keywords

Identifiers must begin with a letter. The letter may be followed by a combination
of letters, numbers, or “_”. In grep-like regular expression notation, we may
write this as

Identifier: [a-zA-Z] [a-zA-Z0-9_]*

(Note for those familiar with the semantics of MAD: this notation allows
Tinteger to appear in an identifier, though any appearance of a “.” will cause
a syntax error.)

The following words are keywords of the language and may not appear as
identifiers:
include, module, import, is, case, numeric_symbol, sorts, inclusions,
objects, actions, fluents, variables, action, explicitAction,
simple, staticallyDetermined, rigid, axioms, if, after, constraint,
default, exogenous, causes, nonexecutable, always, may, cause,
inertial, exists, forall, true, false, Boolean

2.4 Action descriptions

An action description is composed of a series of four basic components:
e numeric symbol declarations
e sort declarations,
e inclusion declarations,
e modules,

which may be interleaved. These components are described below.

2.5 Numeric symbol declarations

A sort declaration is of the form
numeric_symbol id=int

where id is an identifier and int is an integer.

The purpose of such declarations is to have symbolic names for integers.
Any occurrence of id occurring after the above numeric symbol declaration will
be treated as an occurrence of int.

Identifiers declared as numeric symbols may only occur in places where in-
tegers are allowed.

2.6 Sort declarations

A sort declaration is of the form

sorts
S1 5

Sn s

where 1 < n, and each s; is an identifier or the keyword Boolean.
A sort may not be declared more than once.

2.6.1 Built-in sorts: Boolean, and integer ranges “m..n”

The keyword Boolean is a built-in sort name, declared implicitly. (Later, in the
section about objects, we will see that this built-in sort contains two built-in
objects, true and false.)

An expression of the form “m..n”, where m and n are integers, represents
the set of integers between m and n inclusively. Such integer ranges are built-in
sorts in MAD (with the integers as built-in objects belonging to those sorts)
and they are considered to be declared implicitly.

Declaring Boolean is allowed but a warning is given. Declaring integer ranges
as sorts is prohibited.

Definition: We call the keyword Boolean, integer ranges of the form “m..n”,
and sort names s; declared as above simple sort names.

2.7 Inclusion declarations

An inclusion declaration is of the form

inclusions
1 ;

in ;

where 0 < n, and each ¢; is an inclusion expression, as defined below.
An inclusion expression is of the form

S1 <<82 <<...<<Sn

where (n > 1), s; is a simple sort name other than an integer range, and
S2, ..., Sy are sort names other than Boolean.

The reason that the keyword Boolean or an integer range cannot appear as
a supersort (on the right of <<) is that such an appearance would lead to these

built-in sorts having objects other than their built-in objects.

We may think of the sort and inclusion declarations as forming a forest,
with the sorts as vertices and each << relation standing for an edge from the
right-hand sort to the left-hand sort.

Inclusions leading to cycles in the sort inclusion forest are prohibited. (At-
tempting to make such declarations will cause the system to give an error mes-
sage.)

2.8 Modules

A MAD module is of the form
module module-name ;
module-body

where module-name is an identifier. The module-body consists of an ordered
series of sections, any of which may appear at most once. These are, in order,
object declarations, action constant declarations, fluent constant declarations,
variable declarations, and axioms. In addition, the module-body may contain
any number of import declarations in before or after (but not within) these
sections.

Each module in an action description must have a unique name.

2.9 Object declarations

An object declaration is of the form

objects
o_specy ;

0_specy, ;

where 0 < n, and each o_spec; is an object specification, as defined below.
An object specification is of the form

01y ««vy Oyt SOTT

where 1 < m, each o; is an identifier, possibly followed by a parenthesized
list of arguments, and sort is a sort name other than Boolean. Any arguments
following o; must be a simple sort name.

Example. Here is an example object declaration, assuming sorts Person,
and Object have been declared:

objects
Player(1..10) : Person;
Hat(Person) : Object;

The keywords true and false are built-in objects, of sort Boolean, declared
implicitly in every module. These objects cannot be declared explicitly. Also,
no other objects may be declared to be of sort Boolean.

Integers are also built-in objects, and every integer is considered to be de-
clared implicitly, so that it can be used in formulas, as will be seen below.

We may think of the sort declarations, inclusion declarations, and object
declarations as forming a “sort dependency” forest. The vertices are sorts.
Each object o; specified above adds an edge for every argument it has. The
edge points from sort to the argument. Inclusions of the form “s; << s3” add
edges from s to all of the sorts which s; already points to.

Example. The example object declaration above adds the edges

Person — 1..10

Object — Person

to the sort dependency forest.

Cycles in the sort dependency forest are prohibited. (Attempting to make
any declarations which result in a cycle will cause the system to give an error
message.)

An object may not be declared more than once, except when the re-declaration
is part of an imported module. (See the section on import declarations below.)
The re-declaration must match the original declaration, i.e., the two declarations
must assign the same sort to the object.

2.10 Action constant declarations

An action constant declaration is of the form

actions
C1 5

Cn 5

where 1 < n, and each ¢; is an identifier, possibly followed by a parenthe-
sized list of arguments. An action constant argument is a simple sort name. No
domain is specified when declaring an action because all actions are Boolean-
valued.

Example. Here is an example action constant declaration, assuming sorts
row, column, and color have been declared:

actions
Paint_square(row, column, color);

The arguments of an action constant being declared may not contain the
keyword action. (Otherwise, imagine two actions a(action) and b. When we
ground, we would get b, a(b), a(a(b)), etc., never ending.)

An action constant may not be declared more than once, except when the
re-declaration is part of an imported module. (See the section on import dec-
larations below.) The re-declaration must match the original declaration, i.e.,
the two declarations must assign the same arguments.

2.11 Fluent constant declarations

A fluent constant declaration is of the form

fluents
c_specy ;

c_specy, ;

where 1 < n, and each c_spec; is a fluent constant specification, as defined
below.
A fluent constant specification is of the form

Cly --vy Cm ¢ Kind (domain)

where 1 < m, and each ¢; is an identifier, possibly followed by a parenthesized
list of arguments. A fluent constant argument is a simple sort name or the key-
word action. The kind may be one of the keywords simple, staticallyDetermined,
or rigid, indicating, respectively, a simple fluent, statically determined fluent
or rigid fluent. The domain is a simple sort name.

When declaring simple fluents, statically determined fluents or rigid con-
stants, it is also possible to omit the parenthesized domain, in which case it is
implicitly assumed to be (Boolean).

Example. Here are some example fluent constant declarations assuming
sorts row, column, and color have been declared:

fluents

Game_started: rigid;
Square_color(row, column) : simple(color);

10

A fluent constant may not be declared more than once, except when the
re-declaration is part of an imported module. (See the section on import dec-
larations below.) The re-declaration must match the original declaration, i.e.,
the two declarations must assign the same arguments, the same kind and the
same domain to the fluent constant.

2.12 Variable declarations

A variable declaration is of the form

variables
v_specy ;

V-Specy ;

where 0 < n, and each v_spec; is a variable specification, as defined below.
A variable specification is of the form

Vly oovy Uyt SOTT

where 1 < m, each v; is an identifier, and sort is a simple sort name, the
keyword action or the keyword explicitAction.

A variable may not be declared more than once in the same module.

Each variable is local to the module in which it is declared. To use the same
identifier as a variable in another module, one has to declare it anew in the
latter module (and may declare it as belonging to a different sort).

2.13 Axioms

An axioms section is of the form

axioms
axiom ;

axiom,, ;

where 0 < n, and each axiom; is an axiom, as defined below.

The axiom section of a MAD action description is different from the decla-
ration sections we described above, in that the previous sections serve to declare
identifiers whereas this section uses these identifiers. From now on, whenever we
refer to a constant/object/variable, we mean an identifier which was declared
as such in a prior section of the action description.

Axioms in MAD are like causal laws in C+. They are composed of formulas
and certain keywords such as caused, if, after, etc. We will show the exact

11

forms of acceptable axioms below, but first we need to define what we mean
by a valid formula. Formulas are defined recursively, using terms and logical
connectives. Therefore, to describe what a valid formula is, we need to first
define what a term is.

2.13.1 Terms

A term may be
e a constant (followed by a parenthesized list of arguments if so declared)
e a variable
e an object (followed by a parenthesized list of arguments if so declared)
e an integer

(term)

e term + term
o term * term

The parenthesized list of arguments following a constant/object must match the
arguments listed in the declaration of the constant/object, i,e. the arguments
in the constant/object term must be objects/variables of the sort declared for
the corresponding argument, or a action constant if the corresponding argument
was declared as an action.

Since a constant declaration allows only simple sort names or action as ar-
guments, and object declarations only allow simple sort names as arguments,
we would normally expect no non-action constants to be allowed as arguments
of a constant /object term. However, the system allows such arguments as short-
hand for the value the constant has (at that time instant). In other words, an
argument for a constant/object term may be a constant term, provided that
the latter’s domain matches the sort of the former’s argument declaration. For-
mulas with such shorthand notation are expanded to a certain longhand form.
The exact details will be given after formulas are defined.

The last two items above, expressions for arithmetic operations (addition
and multiplication) may not appear as arguments to constants/objects. Fur-
thermore, each of the terms in these expressions must be “numerical,” meaning
an integer, a constant with an integer range domain, a variable with an integer
range sort, or another validly formed arithmetic expression.

2.13.2 Formulas
A formula is built from terms and connectives in one of the following ways:
1. zero-place connective true

2. zero-place connective false

12

a Boolean constant term
an action variable
sort-name (variable)
Boolean (wvariable)
action (wvariable)

term = term

© 0 N e oA~ W

term !'=term

10. term < term

11. (formula)

12. -formula

13. formula & formula

14. formula | formula

15. formula -> formula
16. formula <-> formula
17. exists wariable formula
18. forall wariable formula

Items (12) through (16) correspond to the usual logical connectives: (in
descending order of precendence) negation, conjunction, disjunction, implication
and equivalence. All of the binary connectives are left-associative.

Quantifiers exists and forall have lower precedence than the logical con-
nectives, so, for example, assuming)1, Q)2 are quantifiers, vy, v, are variables,
and F, G are formulas,

@Q1v1 F connective Qovs G

will be parsed as
Q1v1 (F connective Qav2 G)

and not as
(Q1v1 F) connective (Qav2 G)

TItems (5) is shorthand for a quantified formula

exists new-variable-of-sort wvariable=new-variable-of-sort

and is called a “sort name formula.”! Ttems (6) and (7) are similar — they are
sort name formulas for built-in sort Boolean and for actions.
In items (8) and (9), there are some additional constraints that are checked:

LA sort name formula like (5) corresponds to the English sentence “variable is of sort
sort-name.”

13

e if one of the terms is an action variable or an explicit action variable, then
the other term must be an action variable or an explicit action variable or
a Boolean action constant.

e if both of the terms are constants, they must have the same domain

e if one of the terms is a constant and the other is an object/variable, the
sort of the object /variable must be the same as the domain of the constant.

In item (10), each term must be numerical, meaning an integer, a constant
with an integer range domain, a variable with an integer range sort, or an
arithmetic operator term as given in the definition of a term (addition and
multiplication).

As mentioned above in the description of terms, MAD also allows having con-
stants as arguments to constant terms, even where a non-action sort is expected.
This is shorthand for the value of that constant at the time. For example,

Square_color (row_of (queen), column)

is valid shorthand if the domain of row_of matches the first argument declara-
tion of Square_color. This would be expanded by using a new variable, say r,
from the domain of row_of. The minimal formula F' in which this term appears
would be expanded to

F’ & row_of (queen)=r

where F” is obtained by replacing that occurrence of row_of (queen) by r in F.
Note that such shorthands may be nested too.

IMPORTANT: This shorthand is only allowed in formulas appearing as parts
of axioms, not in terms appearing as parts of import declarations. (We will
describe import declarations below.)

2.13.3 Axioms

An axiom is built from formulas and terms in one of the following ways: (The
parts within square brackets are optional)

1. formula [if formula] [after formulad]
formula causes formula [if formula]
default formula [if formula] [after formula)
exogenous constant [if formula]

inertial fluent-constant [if formula]
constraint formula [after formula)

nonexecutable formula [if formulad]

® N oo W N

always formula

14

9. rigid fluent-constant
10. formula may cause formula [if formula)

Recall, from the paper “Nonmonotonic Causal Theories” [Giunchiglia et al.,
2004], that

e an action formula is a formula with no fluent constants and at least one
action constant,

e a fluent formula is a formula with no action constants.

In items (2) and (10) the first formula has to be an action formula and the
second should be an action formula or a fluent formula.
In item (7) the first formula has to be an action formula.

All of the axioms listed above may be seen as special cases of item (1).2 Let
us rewrite this general form as

F [if G] [after H]

where F,G and H are formulas. An axiom of this form must satisfy the following
conditions in order to be valid:

e F must be such that the axiom is definite, i.e. F' is either

— the zero-place connective false
— a single atomic formula® with at most one constant
— the negation of an atomic formula with exactly one Boolean constant

e if there is no H part and F is a fluent formula, then G must be a fluent
formula

e if there is an H part,

— F and G must be fluent formulas

— F must not contain any statically determined fluents or rigid con-
stants.

e if F' contains a rigid constant, the axiom must not contain any non-rigid
constants.

The axioms listed in this section cover all of the abbreviations from Appendix
B of [Giunchiglia et al., 2004], with the exception of abbreviations (15)-(17)
there, which involve the unless construct.

2The details of how items (2)-(10) may be seen as abbreviations of (1) can be found in
Appendix B of [Giunchiglia et al., 2004].
3Ttems (1)-(4) and (7) in the description of formulas above.

15

2.14 Import declarations

An import declaration is of the form
import module-name ;
sort-renaming-clause; ;

sort-renaming-clause,, ;
constant-renaming-clause; ;

constant-renaming-clause,, ;
where each (n,m > 0).

An import declarations section of a MAD action description is similar to the
axioms section in that all of the identifiers used must have been declared prior
to this section. On the other hand, an import section implicitly declares any
identifiers from the module it imports.

In the following sections on sort and constant renaming clauses, we will refer
to the module being imported as M; and the module importing it as Ms.

2.14.1 Sort renaming clauses

A sort renaming clause is of the form
S1 is 89
where s1 is a sort which has been declared prior to M; and s, is a sort declared
prior to Ms. Neither of these two sorts may be Boolean or an integer range.
(If s were Boolean or an integer range, then any objects declared to be
of sort s1 in M; would become objects of this built-in sort which has all of its
objects predefined.)
A sort may not be renamed more than once in the same import. (i.e. it may
not appear on the left hand side of more than one sort renaming clause.)

2.14.2 Constant renaming clauses

There are two kinds of constant renaming clauses, depending on whether the
constant being renamed is Boolean-valued or not.

Boolean constant renaming clauses

If the constant being renamed is Boolean-valued, a renaming clause is of the
form
c(v1, ..., vy) is boolean-const-renaming-rhs,

or

c(vy, ..., vp) is
case formulay : boolean-const-renaming-rhs, ;

16

case formulag : boolean-const-renaming-rhs;, ;
[default : boolean-const-renaming-rhsy | ;]

where ¢ is a constant of My, vy, ..., v, are variables/objects of Ms or integers,
n > 0, k > 1. Each variable/object must be of the sort declared for the corre-
sponding argument, or a subsort of that sort, and all variables must occur at
most once. Any object appearing as an argument must be “fully instantiated”,
meaning it cannot have any variable arguments itself. Each formula; must
have no constants and should not contain any variables other than v, ..., v,.
The part within square brackets is optional. If not included, it is filled in to
have boolean-const-renaming-rhs; ,; be false.
In this clause boolean-const-renaming-rhs; is one of

e a Boolean constant term

e a-Boolean-constant-term = true
e a-Boolean-constant-term = false
e true = a-Boolean-constant-term
e false = a-Boolean-constant-term
e —a-Boolean-constant-term

e true

e false

The constant term may not have any other constants appearing as shorthand.
(i.e., when viewed as a formula, this term must not be expandable to one in
which more than one constant occurs.)

Nonboolean constant renaming clauses

If the constant being renamed is not Boolean-valued, a renaming clause is
of the form
c(vy, ..., vy) is nonboolean-const-renaming-rhs,

or

c(vy,y .y vy) is
case formulay : nonboolean-const-renaming-rhs, ;

case formulay : nonboolean-const-renaming-rhs;, ;
default : nonboolean-const-renaming-rhs; i ;

17

where ¢ is a constant of My, vq,...,v, are variables of My, n > 0, k > 1.
Each variable must be of the sort declared for the corresponding argument (It
cannot be a variable of a subsort of the argument declaration), and all variables
must occur at most once. Each formula; must have no constants and should
not contain any variables other than vy, ..., v,.

In this clause nonboolean-const-renaming-rhs, is one of

e a constant term with the same domain as ¢

e an object which belongs to the domain of ¢

Additional constraints on constant renaming clauses
There are also some additional constraints depending on the kind of constant
appearing on the left hand side of the is keyword:

e if it’s an action constant, any constant on the right hand side of is must
be an action constant.

e if it’s a statically determined fluent constant, any constant on the right
hand side of is must be a fluent constant.

e if it’s a simple fluent constant, any constant on the right hand side of is
must be a simple fluent constant.

e if it’s a rigid constant, any constant on the right hand side of is must be
a rigid constant.

The same constant may not be renamed more than once in the same import
declaration.

18

Chapter 3

Building and running MAD

3.1 Building the code

As mentioned in the first chapter, we used the tools gce, flex and bison on
Unix/Linux systems.! Once you have these installed, to build the program
from source, simply run the command make at the shell prompt. This will
produce an executable named mparse.

3.2 Running the program

mparse is a program which parses its MAD input and processes the import
statements, building internal data structures corresponding to each module in
the input, finally printing these processed modules to an output file.

The programs expects to be called as follows:

mparse [—1i] input_file, input_file, ... input_file, [—o output_file]

If no output file is specified, the output is written to a file named mparse . output.

When more than one input file is specified, mparse treats them as if they
were all concatenated in one big file. The optional switches -i and -o may
occur in any place in the command line, not just at the beginning or the end.
However, the —o switch must be followed by an output file.

By default, mparse automatically generates the CCalc input file correspond-
ing to the final module in the MAD action description.

IMPORTANT: CCalc doesn’t allow identifiers to have free capitalization, so
the output of mparse will turn all letters in identifiers into their lower-case form.
The program will print a warning message if two identifiers become the same
when converted to lower-case.

LIf you want to replace gcc, flex, or bison with other software that accomplishes the same
job, you will need to change the makefile.

19

If the program is called with the -i (interactive) option, then after parsing,
instead of directly generating CCalc code, the user is asked to choose among
different options to view the resulting modules:

1. Print modules parsed: prints the data structures built for all of the mod-
ules, with the import statements processed.

2. Print last module: prints only the data structures built for the last module
in the MAD description, with the axioms ground.

3. Print last module as CCalc input: like the preceding option, but prints
the module in CCalc format.

4. Quit without printing anything.

20

Chapter 4

Using MAD with CCalc

4.1 Running CCalc on MAD action descriptions

We don’t explain the details of running CCalc in this manual. For that, the
reader is referred to the ccalc homepage:

http://www.cs.utexas.edu/"tag/cc/

As explained in the preceding chapter, the MAD executable mparse can turn
a given MAD action description into a CCalc input file, albeit with the identifiers
turned into all-lower-case words. Therefore, when writing a CCalc query to be
used with the given file, one must write all identifiers as all-lower-case.

In the course of developing an action description, it is often the case that a
user first runs mparse on a MAD description, prepares a set of CCalc queries,
loads both of them into CCalc and tests them, only to find that he has to go
back to make some changes to the MAD description, and tests with the same
queries. In order not to change any files other than the MAD input file, we
recommend using the CCalc include statement

:= include ’ ccalc-input-filename’ .

at the beginning of files containing queries. This is the approach we have taken
in the examples provided as part of the MAD distribution. Each CCalc query
file, (e.g. bw-queries) begins with a CCalc include statement specifying the
name of the file we expect mparse will generate (e.g. bw.cc). Then, when run-
ning mparse we use the -o option to tell it to generate an output file with this
name (e.g. mparse bw -o bw.cc).

21

4.2 Issues to watch out for when running MAD
with CCalc

e The CCalc file generated by mparse includes a show specification which
hides certain constants from the output. Those hidden are the renamed
constants beginning with an import prefix of the sort “Iinteger.” and
also the constants “Actor” and “Theme” which are declared in the MAD
library. (These will be hidden even if the user declares them himself,
without reference to the library.)

e Make sure that you don’t have similar identifiers with different capital-
ization. In MAD, P2 and p2 are different identifiers because MAD is
case-sensitive. But during the automatic conversion of MAD files into
CCalc input, they’ll both turn into p2. The MAD executable mparse will
give a warning in such cases but will still print out a CCalc input file.
(If one uses such a problematic file with CCale, such errors are very hard
to figure out because CCalc won’t complain even if the same identifier is
declared as both an object and a variable.)

22

Chapter 5

Debugging action
descriptions

5.1 Common errors in formalizing action domains

Often the first attempt to formalize an action domain is not successful and
running CCalc yields no solution. In such cases the first thing to do is to run
two simple queries to check whether the transition system corresponding to the
description has any valid states and transitions.

% Tests whether the transition system has any valid states
:— query

maxstep :: O;

label :: O.

% Tests whether the transition system has any valid transitions
:— query

maxstep :: 1;

label :: 1.

If the first query succeeds but the second fails, this means that even though
there are causally explained states in the transition system, no causally ex-
plained transition exists. This is most often because an action instance has no
cause specifying whether it should be executed or not. Usually we make action
constants exogenous and don’t specify any further cause for them. So a common
mistake is to forget to make an action constant exogenous.

A related mistake occurs when we import another module and define a new
action in terms of one from the imported module. If the old action was declared
to be exogenous we usually won'’t specify that the new one is exogenous too,
because that follows from the two actions being equivalent. However, if the
equivalence does not cover all instances of the new action, then a cause must be
explicitly specified for these other instances. For example, the following action

23

description snippet declares a new sort Container which is a subsort of the
library sort Thing, and a new action PutIn is defined in terms of library action
Mount.

inclusions
Container << Thing;

constants
PutIn(Thing, Container) : action;

variables
x : Thing;
c : Container;

import MOUNT;
Mount (x,c) is
case -Agent(x) : PutIn(x,c);

Here the import statement specifies that the two actions are equivalent only
when their first arguments are not of library sort Agent. (This latter sort is
a subsort of Thing.) So, even though action Mount is exogenous, instances of
PutIn where the first argument is an Agent don’t inherit this property.

5.2 Typical mistakes when using library mod-
ules

e Using module LOCAL for actions which don’t have any Actor or Theme
defined.

e Forgetting to include TOP for domains which have both a concept of sup-
port and a concept of locations involved. Forgetting to define a TopLocation
value for all Things.

24

Bibliography

[Erdogan and Lifschitz, 2006] Selim T. Erdogan and Vladimir Lifschitz. Ac-
tions as special cases. In Proceedings of International Conference on Princi-
ples of Knowledge Representation and Reasoning (KR), pages 377-387, 2006.

[Erdogan et al., 2007] Selim T. Erdogan, Paolo Ferraris, Vladimir Lifschitz, and
Wanwan Ren. Why the monkey needs the box: A serious look at a toy
domain! In Working Notes of the Seventh IJCAI International Workshop on
Nonmonotonic Reasoning, Action and Change, 2007.

[Giunchiglia et al., 2004] Enrico Giunchiglia, Joohyung Lee, Vladimir Lifschitz,
Norman McCain, and Hudson Turner. Nonmonotonic causal theories. Arti-
ficial Intelligence, 153(1-2):49-104, 2004.

[Lifschitz and Ren, 2006] Vladimir Lifschitz and Wanwan Ren. A modular ac-
tion description language. In Proceedings of National Conference on Artificial
Intelligence (AAAI), pages 853-859, 2006.

[Lifschitz and Ren, 2007] Vladimir Lifschitz and Wanwan Ren. The semantics
of variables in action descriptions. In Proceedings of National Conference on
Artificial Intelligence (AAAI), 2007.

Ihttp://www.cs.utexas.edu/ vl/papers/serious.ps .

25

