## CS 394C Algorithms for Computational Biology

Tandy Warnow Spring 2012

#### **Biology: 21st Century Science!**

"When the human genome was sequenced seven years ago, scientists knew that most of the major scientific discoveries of the 21st century would be in biology."

January 1, 2008, guardian.co.uk

#### Genome Sequencing Projects:

#### Started with the Human Genome Project



#### Whole Genome Shotgun Sequencing:

#### Graph Algorithms and Combinatorial Optimization!



Where did humans come from, and how did they move throughout the globe?





 The 1000 Genome Project: using human genetic variation to better treat diseases

# Other Genome Projects! (Neandertals, Wooly Mammoths, and more ordinary creatures...)



#### **Metagenomics:**

#### C. Ventner et al., Exploring the Sargasso Sea:

#### Scientists Discover One Million New Genes in Ocean Microbes



### How did life evolve on earth?



Courtesy of the Tree of Life project

Current methods often use months to estimate trees on 1000 DNA sequences

Our objective: More accurate trees and alignments on 500,000 sequences in under a week

We prove theorems using graph theory and probability theory, and our algorithms are studied on real and simulated data.

## This course

- Fundamental mathematics of phylogeny and alignment estimation
- Applied research problems:
  - Metagenomics
  - Simultaneous estimation of alignments and trees
  - Ultra-large alignment and tree estimation
  - Phylogenomics
  - De novo genome assembly
  - Historical linguistics







## Phylogenetic reconstruction methods

- 1. Polynomial time distance-based methods (e.g., Neighbor-Joining)
- 2. Hill-climbing heuristics for NP-hard optimization criteria (Maximum Parsimony and Maximum Likelihood)



3. Bayesian methods

# The neighbor joining method has high error rates on large trees



# And solving NP-hard optimization problems in phylogenetics is ... *unlikely*

| # of | # of Unrooted            |  |  |
|------|--------------------------|--|--|
| Таха | Trees                    |  |  |
| 4    | 3                        |  |  |
| 5    | 15                       |  |  |
| 6    | 105                      |  |  |
| 7    | 945                      |  |  |
| 8    | 10395                    |  |  |
| 9    | 135135                   |  |  |
| 10   | 2027025                  |  |  |
| 20   | 2.2 x 10 <sup>20</sup>   |  |  |
| 100  | 4.5 x 10 <sup>190</sup>  |  |  |
| 1000 | 2.7 x 10 <sup>2900</sup> |  |  |

# Indels and substitutions at the DNA level

...ACGGTGCAGTTACCA...

# Indels and substitutions at the DNA level



# Indels and substitutions at the DNA level



...ACCAGTCACCA...





The **true multiple alignment** on a set of homologous sequences is obtained by tracing their evolutionary history, and extending the pairwise alignments on the edges to a multiple alignment on the leaf sequences.

## Input: unaligned sequences

- S1 = AGGCTATCACCTGACCTCCA
- S2 = TAGCTATCACGACCGC
- S3 = TAGCTGACCGC
- S4 = TCACGACCGACA

## Phase 1: Multiple Sequence Alignment

- S1 = AGGCTATCACCTGACCTCCA
- S2 = TAGCTATCACGACCGC
- S3 = TAGCTGACCGC
- S4 = TCACGACCGACA

- S1 = -AGGCTATCACCTGACCTCCA
- S2 = TAG-CTATCAC--GACCGC--
- S3 = TAG-CT----GACCGC--
- S4 = ----TCAC -GACCGACA

#### Phase 2: Construct tree

- S1 = AGGCTATCACCTGACCTCCA
- S2 = TAGCTATCACGACCGC
- S3 = TAGCTGACCGC
- S4 = TCACGACCGACA

- S1 = -AGGCTATCACCTGACCTCCA
- S2 = TAG-CTATCAC--GACCGC--
- S3 = TAG-CT----GACCGC--
- S4 = ----TCAC -GACCGACA



# **Simulation Studies**





1000 taxon models, ordered by difficulty (Liu et al., 2009)

## Problems

- Large datasets with high rates of evolution are hard to align accurately, and phylogeny estimation methods produce poor trees when alignments are poor.
- Many phylogeny estimation methods have poor accuracy on large datasets (even if given correct alignments)
- *Potentially useful genes are often discarded* if they are difficult to align.

These issues seriously impact large-scale phylogeny estimation (and Tree of Life projects)

## Major Challenges

- Current phylogenetic datasets contain hundreds to thousands of taxa, with multiple genes.
- Future datasets will be substantially larger (e.g., iPlant plans to construct a tree on 500,000 plant species)
- Current methods have poor accuracy or cannot run on large datasets.

## The Tree of Life



#### **Theoretical Challenges:**

- NP-hard problems
- Model violations

#### **Empirical Challenges:**

- Alignment estimation
- Data insufficient OR too much data
- Heuristics insufficient

### Phylogenetic "boosters" (meta-methods)

Goal: improve accuracy, speed, robustness, or theoretical guarantees of base methods

Examples:

- DCM-boosting for distance-based methods (1999)
- DCM-boosting for heuristics for NP-hard problems (1999)
- SATé-boosting for alignment methods (2009)
- SuperFine-boosting for supertree methods (2011)
- DACTAL-boosting for all phylogeny estimation methods (2011)
- SEPP-boosting for metagenomic analyses (2011)

# Disk-Covering Methods (DCMs) (starting in 1998)



• DCMs "boost" the performance of phylogeny reconstruction methods.



# The neighbor joining method has high error rates on large trees



#### DCM1-boosting distance-based methods [Nakhleh et al. ISMB 2001]



### Other "boosters"

- SATé: Simultaneous Alignment and Tree Estimation (Liu et al., Science 2009, and Liu et al. Systematic Biology, in press)
- DACTAL: Divide-and-Conquer Trees (Almost) without alignments (Nelesen et al., submitted)
- SEPP: SATé-enabled Phylogenetic Placement (Mirarab, Nguyen and Warnow, to appear, PSB 2012)

## SATé Algorithm (Liu et al. Science 2009)

SATé = Simultaneous Alignment and Tree Estimation



#### One SATé iteration (really 32 subsets)



### Results on 1000-taxon datasets



- 24 hour SATé analysis
- Other simultaneous estimation methods cannot run on large datasets



#### Part II: DACTAL (Divide-And-Conquer Trees (Almost) without alignments)

- Input: set S of unaligned sequences
- Output: tree on S (but no alignment)

(Nelesen, Liu, Wang, Linder, and Warnow, submitted)



#### Average of 3 Largest CRW Datasets

CRW: Comparative RNA database,

- Three 16S datasets with 6,323 to 27,643 sequences
- Reference alignments based on secondary structure
- Reference trees are 75% RAxML bootstrap trees
- DACTAL (shown in red) run for 5 iterations starting from FT(Part) FastTree (FT) and RAxML are ML methods



## Observations

- DACTAL gives more accurate trees than all other methods on the largest datasets
- DACTAL is much faster than SATé (and can analyze datasets that SATé cannot)
- DACTAL is robust to starting trees and other algorithmic parameters

## Taxon Identification in Metagenomics

- Input: set of shotgun sequences (very short)
- Output: a tree on the set of sequences, indicating the species identification of each sequence
- Issues: the sequences are not globally alignable, they are very short, and there are millions of them

# **Phylogenetic Placement**

- Input: Backbone alignment and tree on full-length sequences, and a set of query sequences (short fragments)
- Output: Placement of query sequences on backbone tree
- Applications:
  - taxon identification of metagenomic data,
  - phylogenetic analyses of NGS data.

## Align Sequence

- S1 = -AGGCTATCACCTGACCTCCA-AA
- S2 = TAG-CTATCAC--GACCGC--GCA
- S3 = TAG-CT----GACCGC--GCT
- S4 = TAC---TCAC--GACCGACAGCT
- Q1 = TAAAAC



## Align Sequence



S1

S2

S3



## **Place Sequence**



S1 = -AGGCTATCACCTGACCTCCA-AA S2 = TAG-CTATCAC--GACCGC--GCA S3 = TAG-CT----GACCGC--GCT S4 = TAC----TCAC--GACCGACAGCT Q1 = ----T-A--AAAC-----

## HMMER vs. PaPaRa



## Divide-and-conquer with HMMER+pplacer



### SEPP (10%-rule) on simulated data



## **Historical linguistics**

- Languages evolve, just like biological species.
- How can we determine how languages evolve?
- How can we use information on language evolution, to determine how human populations moved across the globe?

## Questions about Indo-European (IE)

- How did the IE family of languages evolve?
- Where is the IE homeland?
- When did Proto-IE "end"?
- What was life like for the speakers of proto-Indo-European (PIE)?

# Estimating the date and homeland of the proto-Indo-Europeans

- Step 1: Estimate the phylogeny
- Step 2: Reconstruct words for proto-Indo-European (and for intermediate proto-languages)
- Step 3: Use archaeological evidence to constrain dates and geographic locations of the proto-languages

#### "Perfect Phylogenetic Network" (Nakhleh et al., Language)



## **Reticulate evolution**

- Not all evolution is tree-like:
  - Horizontal gene transfer
  - Hybrid speciation
- How can we detect reticulate evolution?

## **Course Details**

- Phylogeny and multiple sequence alignment are the basis of almost everything in the course
- The first 1/3 of the class will provide the basics of the material
- The next 2/3 will go into depth into selected topics

## Course details

- There is no textbook; I will provide notes.
- Homeworks: basic material and critical review
  of papers from the scientific literature
- Course project: either a research project (two students per project) or a literature survey (one student per project). The best projects should be submitted for publication in a journal or conference.
- Final exam: comprehensive, take home.

# Grading

- Homework: 20%
- Class participation: 20%
- Final exam: 30%
- Class project: 30%

## **Combined Analysis Methods**

|                       | gene 1     | _              |            |                  | aono 3     |
|-----------------------|------------|----------------|------------|------------------|------------|
| S₁                    | TCTAATGGAA |                |            |                  | yene o     |
| S <sub>2</sub>        | GCTAAGGGAA |                | aene 2     | S <sub>1</sub>   | TATTGATACA |
| $S_3$                 | TCTAAGGGAA |                | 3          | - S <sub>3</sub> | TCTTGATACC |
| $S_4$                 | TCTAACGGAA | $S_4$          | GGTAACCCTC | S <sub>4</sub>   | TAGTGATGCA |
| <b>S</b> <sub>7</sub> | TCTAATGGAC | $S_5$          | GCTAAACCTC | S <sub>7</sub>   | TAGTGATGCA |
| S <sub>8</sub>        | TATAACGGAA | $S_6$          | GGTGACCATC | S,               | CATTCATACC |
|                       |            | S <sub>7</sub> | GCTAAACCTC | 0                |            |

## **Combined Analysis**

#### gene 1 gene 2 gene 3

TCTAATGGAA ?????????TATTGATACAGCTAAGGGAA ???????????????????????TCTAAGGGAA ?????????TCTAACGGAA GGTAACCCTC TAGTGATGCA?????????GCTAAACCTC ??????????????????GGTGACCATC ?????????TCTAATGGAC GCTAAACCTC TAGTGATGCATATAACGGAA ????????CATTCATACC

 $egin{array}{c} S_1 \ S_2 \ S_3 \end{array}$ 

 $S_4$ 

 $S_5$ 

 $S_6$ 

 $S_7$ 

 $S_8$ 



## Two competing approaches

