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Today

• Review of material from Jan 31
• Calculating pattern probabilities
• Why maximum parsimony and UPGMA

are not statistically consistent
• Maximum Likelihood
• Phylogenetic Estimation Software



Simplest model of binary character
evolution: Cavender-Farris

• For each edge e, there is a probability
p(e) of the property “changing state”
(going from 0 to 1, or vice-versa), with
0<p(e)<0.5 (to ensure that CF trees are
identifiable).

• Every position evolves under the same
process, independently of the others.



Cavender-Farris pattern
probabilities

• Let x and y denote nodes in the tree,
and pxy denote the probability that x and
y exhibit different states.

• Theorem: Let pi be the substitution
probability for edge ei, and let x and y
be connected by path e1e2e3…ek. Then

1-2pxy = (1-2p1)(1-2p2)…(1-2pk)



And then take logarithms

• The theorem gave us:
1-2pxy = (1-2p1)(1-2p2)…(1-2pk)

• If we take logarithms, we obtain 
ln(1-2pxy) = ln(1-2p1) + ln(1-2p2)+…+ln(1-2pk)

• Since these probabilities lie between 0 and 0.5, these
logarithms are all negative.  So let’s multiply by -1 to
get positive numbers.



Branch Lengths

• Let w(e) = -1/2 ln(1-2p(e)), where p(e) is the
probability of change on edge e.

• By the previous theorem, Dxy = -1/2 ln(1-2pxy) defines
an additive matrix.

• We can estimate Dxy using
dxy= -1/2 ln(1-2H(x,y)/k), 

where H(x,y) is the Hamming distance and k is the
sequence length

• This is a statistically consistent distance estimator for
the CF model.



CF model, again

• Instead of defining a CF model tree using
substitution probabilities, p(e), we give 
w(e) = expected number of times the site will
change on edge e, under a Poisson random
process.

• In this case, p(e) is the probability of an odd
number of changes on edge e.

• It is not that hard to show that 
w(e) = -1/2 ln(1-2p(e))



Rates-across-sites

• Most models allow for sites to vary
somewhat, but restrict this variability to “rates”
of evolution (so some sites evolve faster,
some evolve slower)

• These rates are used to scale the branch
lengths w(e) up or down (they do NOT scale
the substitution probabilities)

• Typically these rates are drawn from some
nice distribution (like a gamma distribution), to
ensure identifiability of the tree from the data



DNA substitution models

• Every edge has a substitution probability
• The model also allows 4x4 substitution

matrices on the edges:
– Simplest model: Jukes-Cantor (JC) assumes that

all substitutions are equiprobable
– General Time Reversible (GTR) Model: one 4x4

substitution matrix for all edges
– General Markov (GM) model: different 4x4

matrices allowed on each edge



Jukes-Cantor DNA model
• Character states are A,C,T,G (nucleotides).
• All substitutions have equal probability.
• On each edge e, there is a value p(e) indicating the

probability of change from one nucleotide to another
on the edge, with 0<p(e)<0.75 (to ensure that JC
trees are identifiable).

• The state (nucleotide) at the root is random (all
nucleotides occur with equal probability).

• All the positions in the sequence evolve identically
and independently.



Tree Estimation

• Distance-based methods can be
statistically consistent, if (a) statistically
consistent distance estimator is used,
and (b) the tree estimation technique
has some error tolerance

• Maximum parsimony can be statistically
inconsistent

• UPGMA can be statistically inconsistent



Maximum Parsimony

• Parsimony-informative sites on 4-leaf
trees

• Parsimony informative sites more
generally: at least two “big states”

• The Felsenstein Zone tree



Computing the probability of
the data

• Given a model tree (with all the parameters
set) and character data at the leaves, you can
compute the probability of the data.

• Small trees can be done by hand.

• Large examples are computationally intensive
- but still polynomial time (using an
algorithmic trick).



Cavender-Farris model
calculations

• Consider an unrooted tree with topology
((a,b),(c,d)) with p(e)=0.1 for all edges.

• What is the probability of all leaves
having state 0?

We show the brute-force technique.



Brute-force calculation
Let E and F be the two internal nodes in the tree

((A,B),(C,D)).

Then Pr(A=B=C=D=0) =
• Pr(A=B=C=D=0|E=F=0) +
• Pr(A=B=C=D=0|E=1, F=0) +
• Pr(A=B=C=D=0|E=0, F=1) +
• Pr(A=B=C=D=0|E=F=1)

The notation “Pr(X|Y)” denotes the probability of X given Y.



Calculation, cont.

Technique:
• Set one leaf to be the root
• Set the internal nodes to have some specific

assignment of states (e.g., all 1)
• Compute the probability of that specific

pattern
• Add up all the values you get, across all the

ways of assigning states to internal nodes



Calculation, cont.

Calculating Pr(A=B=C=D=0|E=F=0)

• There are 5 edges, and thus no change on any edge.
• Since p(e)=0.1, then the probability of no change is

0.9.  So the probability of this pattern, given that the
root is a particular leaf and has state 0, is (0.9)5.

• Then we multiply by 0.5 (the probability of the root A
having state 0).

• So the probability is (0.5)x(0.9)5.



Calculation, cont.

Calculating Pr(A=B=C=D=0|E=F=1)

• There is a change on every edge except the internal
edge.

• Since p(e)=0.1, the probability of no change is 0.9.
So the probability of this pattern, given that the root is
a particular leaf and has state 0, is (0.1)4(0.9).

• Then we multiply by 0.5 (the probability of the root A
having state 0).

• So the probability is (0.5)x(0.1)4x(0.9).



Calculating Pattern
Probabilities

• The brute-force calculation uses
exponential time

• Dynamic Programming makes it
possible to do this in polynomial time



Fixed-tree maximum
parsimony

• Input: tree topology T with leaves
labelled by sequences of same length

• Output: optimal assignment of
sequences to internal nodes to
minimize the parsimony score



Recall DP algorithm for
maximum parsimony

Cost(v,a) = min cost of the subtree Tv, given
that we label v by letter a.

Questions:
How to initialize?
How to order the subproblems?
Where is the answer?
What is the running time?



DP algorithm for calculating
CF pattern probabilities

Calculate:  W(v,a) = Prob(Sv|label(v)=a), the
probability of the sequences at the leaves of
the subtree Tv, given label(v) = a.

Questions:
How to initialize?
How to order the subproblems?
Where is the answer?
What is the running time?



DP algorithm, continued

• Note: the input is a CF model tree, so
substitution probabilities on the edges
are part of the input

• The running time is polynomial
• You can root the tree on any edge



CF maximum likelihood for
fixed tree

• Input: tree topology T and sequences at
the leaves of T

• Output: substitution probabilities θ so
that Pr(S|(T,θ)) is maximized

The DP algorithm does not solve this



Maximum Likelihood

• Input: sequence data S
• Output: the model tree (tree T and

substitution parameters θ) such that
Pr(S|(T,θ)) is maximized.

NP-hard.
Important in practice.
Good heuristics!
But what does it mean?



Maximum likelihood under
Cavender-Farris

• Given a set S of binary sequences, find the
Cavender-Farris model tree (tree topology and edge
parameters) that maximizes the probability of
producing the input data S.

ML, if solved exactly, is statistically consistent under
Cavender-Farris (and under the DNA sequence
models, and more complex models as well).

The problem is that ML is hard to solve.



“Solving ML”

• Technique 1: compute the probability of the
data under each model tree, and return the
best solution.

• Problem: Exponentially many trees on n
sequences, and uncountably infinite number
of ways of setting the parameters on each of
these trees!



“Solving ML”

• Technique 2: For each of the tree topologies,
find the best parameter settings.

• Problem: Exponentially many trees on n
sequences, and calculating the best setting of
the parameters on any given tree is hard!

Even so, there are hill-climbing heuristics
for both of these calculations (finding
parameter settings, and finding trees).



Bayesian MCMC analyses
• Algorithm is a random walk through space of all possible

model trees (trees with substitution matrices on edges, etc.).
• From your current model tree, you perturb the tree topology and

numerical parameters to obtain a new model tree.
• Compute the probability of the data (character states at the

leaves) for the new model tree.
– If the probability increases, accept the new model tree.
– If the probability is lower, then accept with some probability (that

depends upon the algorithm design and the new probability).
• Run for a long time…



Bayesian MCMC estimation
After the random walk has been run for a very long time…
• Gather a random sample of the trees you visit
• Return:

– Statistics about the random sample (e.g., how many trees
have a particular bipartition), OR

– Consensus tree of the random sample, OR
– The tree that is visited most frequently

Bayesian methods, if run long enough, are statistically consistent
methods (the tree that appears the most often will be the true
tree with high probability).

MrBayes is standard software for Bayesian analyses in biology.



Summary for CF (and GTR)

• Maximum Likelihood is statistically consistent if
solved exactly

• Bayesian MCMC methods, if run long enough
• Distance-based methods (like Neighbor Joining and

the Naïve Quartet Method)
But not maximum parsimony, not maximum

compatibility, and not UPGMA



Software

• MrBayes is the most popular Bayesian methods (but
there are others)

• RAxML is the most popular software for ML
estimation on large datasets, but other software may
be almost as accurate and faster (in particular
FastTree)

• Protein sequence data presents additional
challenges, due to model selection

• Issues: running time, memory, and models…R
(General Time Reversible) model



Phylogeny estimation
statistical issues

• Is the phylogeny estimation method
statistically consistent under the given model?

• How much data does the method need need
to produce a correct tree?

• Is the method robust to model violations?
• Is the character evolution model

reasonable?


