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Today’s Class

• Phylogeny as statistical estimation
problem

• Stochastic models of evolution
• Distance-based estimation



Phylogeny estimation as a
statistical inverse problem



Estimation of evolutionary trees as a
statistical inverse problem

• We can consider characters as properties
that evolve down trees.

• We observe the character states at the
leaves, but the internal nodes of the tree also
have states.

• The challenge is to estimate the tree from the
properties of the taxa at the leaves.  This is
enabled by characterizing the evolutionary
process as accurately as we can.



Performance criteria
• Running time.
• Space.
• Statistical performance issues (e.g., statistical

consistency and sequence length requirements)
• “Topological accuracy” with respect to the underlying

true tree.  Typically studied in simulation.
• Accuracy with respect to a mathematical score (e.g.

tree length or likelihood score) on real data.



Statistical models

• Simple example: coin tosses.
• Suppose your coin has probability p of

turning up heads, and you want to
estimate p.  How do you do this?



Estimating p

• Toss coin repeatedly
• Let your estimate q be the fraction of the time

you get a head

• Obvious observation: q will approach p as
the number of coin tosses increases

• This algorithm is a statistically consistent
estimator of p.  That is, your error |q-p| goes
to 0 (with high probability) as the number of
coin tosses increases.



Another estimation problem

• Suppose your coin is biased either towards
heads or tails (so that p is not 1/2).

• How do you determine which type of coin you
have?

• Same algorithm, but say “heads” if q>1/2, and
“tails” if q<1/2.  For large enough number of
coin tosses, your answer will be correct
with high probability.



Markov models of character
evolution down trees

• The character might be binary, indicating absence or presence
of some property at each node in the tree.

• The character might be multi-state, taking on one of a specific
set of possible states.  Typical examples in biology: the
nucleotide in a particular position within a multiple sequence
alignment.

• A probabilistic model of character evolution describes a random
process by which a character changes state on each edge of
the tree.  Thus it consists of a tree T and associated parameters
that determine these probabilities.

• The “Markov” property assumes that the state a character
attains at a node v is determined only by the state at the
immediate ancestor of v, and not also by states before then.



Binary characters

• Simplest type of character: presence (1)
or absence (0).

• How do we model the presence or
absence of a property?



Simplest model of binary character
evolution: Cavender-Farris

• For each edge e, there is a probability
p(e) of the property “changing state”
(going from 0 to 1, or vice-versa), with
0<p(e)<0.5 (to ensure that CF trees are
identifiable).

• Every position evolves under the same
process, independently of the others.



Statistical models of evolution

• Instead of directly estimating the tree,
we try to estimate the process itself.

• For example, we try to estimate the
probability that two leaves will have
different states for a random character.



Cavender-Farris pattern
probabilities

• Let x and y denote nodes in the tree,
and pxy denote the probability that x and
y exhibit different states.

• Theorem: Let pi be the substitution
probability for edge ei, and let x and y
be connected by path e1e2e3…ek. Then

1-2pxy = (1-2p1)(1-2p2)…(1-2pk)



And then take logarithms

• The theorem gave us:
1-2pxy = (1-2p1)(1-2p2)…(1-2pk)

• If we take logarithms, we obtain 
ln(1-2pxy) = ln(1-2p1) + ln(1-2p2)+…+ln(1-2pk)

• Since these probabilities lie between 0 and 0.5, these
logarithms are all negative.  So let’s multiply by -1 to
get positive numbers.



An additive matrix!
• Consider a matrix D(x,y) = -ln(1-2pxy)

• This matrix is additive!

• Can we estimate this additive matrix from what we
observe at the leaves of the tree?

• Key issue: how to estimate pxy.

• (Recall how to estimate the probability of a head…)



Distance-based Methods



Estimating CF distances

• Consider 
dij= -1/2 ln(1-2H(i,j)/k), 

where k is the number of characters, and
H(i,j) is the Hamming distance between
sequences si and sj.

• Theorem: as k increases, 
dij converges to Dij = -1/2 ln(1-2pij), 

which is an additive matrix.



CF tree estimation

• Step 1: Compute Hamming distances
• Step 2: Correct the Hamming distances,

using the CF distance calculation
• Step 3: Use distance-based method

(neighbor joining, naïve quartet method,
etc.)



Four Point Method

• Task: Given 4x4 dissimilarity matrix,
compute a tree on four leaves

• Solution: Compute the three pairwise
sums, and take the split ij|kl that gives
the minimum!

• When is this guaranteed accurate?



Error tolerance for FPM

• Suppose every pairwise distance is
estimated well enough (within f/2, for f
the minimum length of any edge).

• Then the Four Point Method returns the
correct tree (i.e., ij+kl remains the
minimum)



Naïve Quartet Method

• Compute the tree on each quartet using
the four-point condition

• Merge them into a tree on the entire set
if they are compatible:
– Find a sibling pair A,B
– Recurse on S-{A}
– If S-{A} has a tree T, insert A into T by

making A a sibling to B, and return the tree



Error tolerance for NQM

• Suppose every pairwise distance is
estimated well enough (within f/2, for f
the minimum length of any edge).

• Then the Four Point Method returns the
correct tree on every quartet.

• And so all quartet trees are compatible,
and NQM returns the true tree.



In other words:

• The NQM method is statistically
consistent methods for estimating
Cavender-Farris trees!

• Plus it is polynomial time!



DNA substitution models

• Every edge has a substitution probability
• The model also allows 4x4 substitution

matrices on the edges:
– Simplest model: Jukes-Cantor (JC) assumes that

all substitutions are equiprobable
– General Time Reversible (GTR) Model: one 4x4

substitution matrix for all edges
– General Markov (GM) model: different 4x4

matrices allowed on each edge



Jukes-Cantor DNA model
• Character states are A,C,T,G (nucleotides).
• All substitutions have equal probability.
• On each edge e, there is a value p(e) indicating the

probability of change from one nucleotide to another
on the edge, with 0<p(e)<0.75 (to ensure that JC
trees are identifiable).

• The state (nucleotide) at the root is random (all
nucleotides occur with equal probability).

• All the positions in the sequence evolve identically
and independently.



Jukes-Cantor distances

• Dij = -3/4 ln(1-4/3 H(i,j)/k)) where k is the
sequence length

• These distances converge to an
additive matrix, just like with 
Cavender-Farris distances



Distance-based Methods



Other statistically consistent methods

• Maximum Likelihood
• Bayesian MCMC methods
• Distance-based methods (like Neighbor Joining and

the Naïve Quartet Method)
But not maximum parsimony, not maximum

compatibility, and not UPGMA (a distance-based
method)



UPGMA

While |S|>2:

find pair x,y of closest taxa;

delete x

Recurse on S-{x}

Insert y as sibling to x

Return tree

a b c d e



UPGMA

a b c d e

Works when
evolution is
“clocklike”



UPGMA

a

b c

d e

Fails to produce
true tree if
evolution
deviates too
much from a
clock!



Better distance-based methods

• Neighbor Joining
• Minimum Evolution
• Weighted Neighbor Joining
• Bio-NJ
• DCM-NJ
• And others



Quantifying Error

FN: false negative
      (missing edge)
FP: false positive
      (incorrect edge)

50% error rate

FN

FP



Neighbor joining has poor performance on large
diameter trees [Nakhleh et al. ISMB 2001]

Simulation study
based upon fixed
edge lengths, K2P
model of evolution,
sequence lengths
fixed to 1000
nucleotides.

Error rates reflect
proportion of
incorrect edges in
inferred trees.
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Statistical Methods of Phylogeny
Estimation

• Many statistical models for biomolecular sequence
evolution (Jukes-Cantor, K2P, HKY, GTR, GM, plus
lots more)

• Maximum Likelihood and Bayesian Estimation are
the two basic statistical approaches to phylogeny
estimation

• MrBayes is the most popular Bayesian methods (but
there are others)

• RAxML and GARLI are the most accurate ML
methods for large datasets, but there are others

• Issues: running time, memory, and models…R
(General Time Reversible) model



Maximum Likelihood

• Input: sequence data S,
• Output: the model tree (tree T and

parameters theta) s.t. Pr(S|T,theta) is
maximized.

NP-hard.
Important in practice.
Good heuristics!
But what does it mean?



Computing the probability of
the data

• Given a model tree (with all the parameters
set) and character data at the leaves, you can
compute the probability of the data.

• Small trees can be done by hand.

• Large examples are computationally intensive
- but still polynomial time (using an
algorithmic trick).



Cavender-Farris model
calculations

• Consider an unrooted tree with topology
((a,b),(c,d)) with p(e)=0.1 for all edges.

• What is the probability of all leaves
having state 0?

We show the brute-force technique.



Brute-force calculation
Let E and F be the two internal nodes in the tree

((A,B),(C,D)).

Then Pr(A=B=C=D=0) =
• Pr(A=B=C=D=0|E=F=0) +
• Pr(A=B=C=D=0|E=1, F=0) +
• Pr(A=B=C=D=0|E=0, F=1) +
• Pr(A=B=C=D=0|E=F=1)

The notation “Pr(X|Y)” denotes the probability of X given Y.



Calculation, cont.

Technique:
• Set one leaf to be the root
• Set the internal nodes to have some specific

assignment of states (e.g., all 1)
• Compute the probability of that specific

pattern
• Add up all the values you get, across all the

ways of assigning states to internal nodes



Calculation, cont.

Calculating Pr(A=B=C=D=0|E=F=0)

• There are 5 edges, and thus no change on any edge.
• Since p(e)=0.1, then the probability of no change is

0.9.  So the probability of this pattern, given that the
root is a particular leaf and has value 0, is (0.9)5.

• Then we multiply by 0.5 (the probability of the root A
having state 0).

• So the probability is (0.5)x (0.9)5.



Maximum likelihood under
Cavender-Farris

• Given a set S of binary sequences, find the
Cavender-Farris model tree (tree topology and edge
parameters) that maximizes the probability of
producing the input data S.

ML, if solved exactly, is statistically consistent under
Cavender-Farris (and under the DNA sequence
models, and more complex models as well).

The problem is that ML is hard to solve.



“Solving ML”

• Technique 1: compute the probability of the
data under each model tree, and return the
best solution.

• Problem: Exponentially many trees on n
sequences, and infinitely many ways of
setting the parameters on each of these
trees!



“Solving ML”

• Technique 2: For each of the tree topologies,
find the best parameter settings.

• Problem: Exponentially many trees on n
sequences, and calculating the best setting of
the parameters on any given tree is hard!

Even so, there are hill-climbing heuristics
for both of these calculations (finding
parameter settings, and finding trees).



Bayesian analyses
• Algorithm is a random walk through space of all possible

model trees (trees with substitution matrices on edges, etc.).
• From your current model tree, you perturb the tree topology and

numerical parameters to obtain a new model tree.
• Compute the probability of the data (character states at the

leaves) for the new model tree.
– If the probability increases, accept the new model tree.
– If the probability is lower, then accept with some probability (that

depends upon the algorithm design and the new probability).
• Run for a long time…



Bayesian estimation
After the random walk has been run for a very long time…
• Gather a random sample of the trees you visit
• Return:

– Statistics about the random sample (e.g., how many trees
have a particular bipartition), OR

– Consensus tree of the random sample, OR
– The tree that is visited most frequently

Bayesian methods, if run long enough, are statistically consistent
methods (the tree that appears the most often will be the true
tree with high probability).

MrBayes is standard software for Bayesian analyses in biology.



Phylogeny estimation
statistical issues

• Is the phylogeny estimation method
statistically consistent under the given model?

• How much data does the method need need
to produce a correct tree?

• Is the method robust to model violations?
• Is the character evolution model

reasonable?


