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Markov Model of Site Evolution 

Simplest (Jukes-Cantor): 
•  The model tree T is binary and has substitution probabilities p(e) 

on each edge e. 
•  The state at the root is randomly drawn from {A,C,T,G} 

(nucleotides) 
•  If a site (position) changes on an edge, it changes with equal 

probability to each of the remaining states. 
•  The evolutionary process is Markovian. 

More complex models (such as the General Markov model) are also 
considered, often with little change to the theory.   



Quantifying Error 

FN: false negative 
      (missing edge) 
FP: false positive 
      (incorrect edge) 
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Statistical consistency, exponential convergence, and 
absolute fast convergence (afc) 



“Convergence rate” or sequence length requirement 

The sequence length (number of sites) that a 
phylogeny reconstruction method M needs to 
reconstruct the true tree with probability at least 1-ε 
depends on  

•  M (the method) 
•  ε  
•  f = min p(e),  
•  g = max p(e), and 
•  n, the number of leaves 

We fix everything but n.  



Afc methods 
A method M is “absolute fast converging”, or afc,  if 

for all positive f, g, and ε, there is a polynomial p(n) 
s.t. Pr(M(S)=T) > 1- ε, when S is a set of 
sequences generated on T of length at least p(n). 

 

Notes:  
1. The polynomial p(n) will depend upon M, f, g, and ε. 

2. The method M is not “told” the values of f and g. 



Distance-based estimation 



Are distance-based methods statistically consistent? 
And if so, what are their sequence length requirements? 



Theorem (Erdos et al., Atteson): Neighbor joining 
(and some other methods) will return the true tree 
w.h.p. provided sequence lengths are exponential 
in the evolutionary diameter of the tree. 

Sketch of proof:  
•  NJ (and other distance methods) guaranteed 

correct if all entries in the estimated distance matrix 
have sufficiently low error. 

•  Estimations of large distances require long 
sequences to have low error w.h.p. 



Performance on large diameter trees 

 
Simulation study 
based upon fixed 
edge lengths, K2P 
model of evolution, 
sequence lengths 
fixed to 1000 
nucleotides. 

Error rates reflect 
proportion of 
incorrect edges in 
inferred trees. 

 
[Nakhleh et al. ISMB 2001] 
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Designing an afc method 
•  You often don’t need the entire distance 

matrix to get the true tree (think of the 
caterpillar tree) 

•  The problem is you don’t know which entries 
have sufficiently low error, and which ones 
are needed to determine the tree. 

•  But you can guess!   
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Fast converging methods (and related work) 
•  1997: Erdos, Steel, Szekely, and Warnow (ICALP). 
•  1999: Erdos, Steel, Szekely, and Warnow (RSA, TCS); Huson, Nettles 

and Warnow (J. Comp Bio.) 

•  2001: Warnow, St. John, and Moret (SODA); Cryan, Goldberg, and 
Goldberg (SICOMP); Csuros and Kao (SODA); Nakhleh, St. John, 
Roshan, Sun, and Warnow (ISMB) 

•  2002: Csuros (J. Comp. Bio.) 

•  2006: Daskalakis, Mossel, Roch (STOC), Daskalakis, Hill, Jaffe, Mihaescu, 
Mossel, and Rao (RECOMB) 

•  2007: Mossel (IEEE TCBB) 

•  2008: Gronau, Moran and Snir (SODA) 
•  2010: Roch (Science) 

•  2013: Roch (in preparation) 
 

and others 



II: Short Quartet Methods 
•  The first “absolute fast converging” methods 

were based on “short quartets”, which are 
quartet trees formed by taking the nearest 
leaf in each subtree around some edge. 

•  “Nearest” can be based on any branch 
lengths, including just unit branch lengths. 



Short Quartets Define the Tree 
•  Theorem: Let (T,w) be a tree with branch 

lengths, and let Q be the set of short quartet 
trees of T. If T’ is some tree on the same leaf 
set, and Q is a subset of Q(T’), then T=T’. 

•  Proof: Recall that T=T’ iff Q(T)=Q(T’). Then 
we will show that the dyadic closure(Q) = 
Q(T), and the result follows. 



Dyadic Closure 
•  AB|CD + BC|DE defines a tree on A,B,C,D,E, 

and so implies quartets 
– AB|CE 
– AB|DE 
– AC|DE 

•  AB|CD + AB|CE => AB|DE 



The first short quartet method 
Given distance matrix D and threshold q, DO: 
•  Erase all entries in D that are bigger than q. 
•  For all quartets i,j,k,l such that all pairwise 

distances are at most q, use the Four Point Method 
to compute a tree on i,j,k,l.  

•  Compute the Dyadic Closure Q of this set of quartet 
trees. 

•  If no conflicts occur, then Q = Q(T) for some tree; 
compute Tq using the Naïve Quartet Method. Else 
reject q. 



The Short Quartet Method 
•  After you compute Tq for each q in D, see 

which case is true: 
– All threshold values for q are rejected 
– At least one value is not rejected, and all non-

rejected values return the same tree 
– At least two values are not rejected but they 

return different trees 



The Short Quartet Method 
•  The outcome we want is: 

– At least one value is not rejected, and all  
 non-rejected values return the same tree 

•  We can prove that this outcome happens 
with high probability given polynomial length 
sequences, and that it returns the true tree! 

•  In other words, the Dyadic Closure Method is 
absolute fast converging. 



Nice, but 
•  Although the Dyadic Closure method is 

absolute fast converging, it generally has bad 
performance: it returns the true tree or no 
tree, and most often it will return no tree. 

•  So it has good theory but bad performance, 
like the Naïve Quartet Method. 



DCM1: another afc method 
•  DCM: disk-covering method 

•  Idea is to use divide-and-conquer to 
decompose a dataset into subsets, apply 
your favored method to construct trees on 
the subsets, and then combine these trees 
into a tree on the full dataset. 

 
But, the details matter (see Stendhal) 



DCM1-boosting:  
Warnow, St. John, and Moret,  

SODA 2001 

•  The DCM1 phase produces a collection of trees (one for each 
threshold), and the SQS phase picks the “best” tree. 

•  For a given threshold, the base method is used to construct trees 
on small subsets (defined by the threshold) of the taxa. These 
small trees are then combined into a tree on the full set of taxa. 

DCM1 SQS 
Exponentially 
converging 
(base) method 

Absolute fast 
converging 
(DCM1-boosted) 
method 



DCM1-boosting distance-based methods 
[Nakhleh et al. ISMB 2001] 

 
• Theorem 
(Warnow et al., 
SODA 2001): 
DCM1-NJ 
converges to the 
true tree from 
polynomial length 
sequences 
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DCM1-NJ+SQS 
 
•  Theorem 1: For all f,g,ε, there is a polynomial p(n) 

such that given sequences of length at least p(n), 
then with probability at least 1- ε, the DCM1-phase 
produces a set containing the true tree. 

•  Theorem 2: For all f, g, ε, there is a polynomial p(n) 
such that given sequences of length at least p(n), 
then with probability at least 1- ε, if the set contains 
the true tree, then the SQS phase selects the true 
tree. 



DCM1-boosting:  
Warnow, St. John, and Moret,  

SODA 2001 

•  The DCM1 phase produces a collection of trees (one for each threshold), 
and the SQS phase picks the “best” tree. 

•  How to compute a tree for a given threshold:  
–  Handwaving description: erase all the entries in the distance matrix above that 

threshold, and compute a tree from the remaining entries using the “base” 
method. 

–  The real technique uses chordal graph decompositions. 
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Chordal (triangulated) graphs 

•  A graph is chordal iff it has no simple induced cycles of at 
least four vertices.  



More about chordal graphs 
•  If G is not a clique, then for any pair of 

vertices a,b that are not adjacent, the 
minimum vertex separator is a clique 



Chordal graphs 
•  A chordal graph has a perfect elimination 

scheme (an ordering on the vertices so that 
for every vertex, the set of neighbors of the 
vertex that follow it in the ordering form a 
clique). 

•  In fact, any graph that has a perfect 
elimination scheme is chordal! 

•  Hence we can determine if a graph is chordal 
using a greedy algorithm. 



More about chordal graphs 
•  A graph is chordal if and only if it is the 

intersection graph of a set of subtrees of a 
tree. 

•  This theorem is why the Perfect Phylogeny 
Problem and the Triangulating Colored 
Graphs problem are equivalent. 



More about chordal graphs 
•  If D is an additive distance matrix and q is a 

positive number, then the Threshold Graph 
TG(d,q) is chordal, where 
– TG(d,q) has n vertices v1, v2, …, vn 
– and has edges (i,j) if and only if D[i,j] <= q. 



•  Every chordal graph has at most n maximal 
cliques, and the Maxclique decomposition 
can be found in polynomial time.   



DCM1 
Given distance matrix for the species: 
 
1. Define a triangulated (i.e. chordal) graph so that its vertices 

correspond to the input taxa 

2. Compute the max clique decomposition of the graph, thus 
defining a decomposition of the taxa into overlapping 
subsets. 

3. Compute tree on each max clique using the “base method”. 
 
4. Merge the subtrees into a single tree on the full set of taxa. 



DCM1 Decompositions 

DCM1 decomposition :  Compute maximal cliques 

Input: Set S of sequences, distance matrix d, threshold value  

1. Compute threshold graph  
}),(:),{(,),,( qjidjiESVEVGq ≤===

2. Perform minimum weight triangulation (note: if d is an additive matrix, then  
     the threshold graph is provably triangulated). 

}{ ijdq∈
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DCM1-boosting distance-based methods 
[Nakhleh et al. ISMB 2001] 

 
• Theorem (Warnow et 
al., SODA 2001): 
DCM1-NJ converges 
to the true tree from 
polynomial length 
sequences. 

• Many other afc 
methods, but none 
(so far) outperform 
NJ in practice. 
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Summary and Open Questions 
DCM-NJ has better accuracy than NJ 
DCM-boosting of other distance-based method also produces very 

big improvements in accuracy 
Other afc methods have been developed with even better theoretical 

performance 
Roch and collaborators have established a threshold for branch 

lengths, below which logarithmic sequence lengths can suffice for 
accuracy 

Still to be developed: other afc methods with improved empirical 
performance compared to NJ and other methods  

Sebastien Roch recently proved maximum likelihood is afc 



What about more complex models? 
 
These results only apply when sequences evolve under 

these nice substitution-only models.   
What can we say about estimating trees when sequences 

evolve with insertions and deletions (“indels”)? 



Some open questions 
 
•  Are trees identifiable under models including “long 

gaps”?  

•  Why do SATé and DACTAL perform well?  

•  Under standard implementations of ML, gaps are 
treated as missing data: what are the 
consequences?  


