
CS 394C
March 19, 2012

Tandy Warnow

2

DNA target sampleDNA target sample
SHEAR & SIZESHEAR & SIZE

End Reads / Mate PairsEnd Reads / Mate Pairs

550bp

10,000bp

Shotgun DNA Sequencing

Not all sequencing technologies produce
mate-pairs.
Different error models
Different read lengths

Basic Challenge

• Given many (millions or billions) of reads,
produce a linear (or perhaps circular) genome

• Issues:
– Coverage
– Errors in reads
– Reads vary from very short (35bp) to quite long

(800bp), and are double-stranded
– Non-uniqueness of solution
– Running time and memory

Simplest scenario

• Reads have no error
• Read are long enough that each

appears exactly once in the genome
• Each read given in the same orientation

(all 5’ to 3’, for example)

De novo vs. comparative
assembly

• De novo assembly means you do everything
from scratch

• Comparative assembly means you have a
“reference” genome. For example, you want
to sequence your own genome, and you have
Craig Venter’s genome already sequenced.
Or you want to sequence a chimp genome
and you have a human already sequenced.

Comparative Assembly

Much easier than de novo!
Basic idea:
• Take the reads and map them onto the

reference genome (allowing for some
small mismatch)

• Collect all overlapping reads, produce a
multiple sequence alignment, and
produce consensus sequence

Comparative Assembly

Fast
Short reads can map to several places

(especially if they have errors)
Needs close reference genome
Repeats are problematic
Can be highly accurate even when reads have

errors

De Novo assembly

• Much easier to do with long reads
• Need very good coverage
• Generally produces fragmented

assemblies
• Necessary when you don’t have a

closely related (and correctly
assembled) reference genome

10

De Novo Assembly paradigms

• Overlap Graph:
overlap-layout-consensus methods
– greedy (TIGR Assembler, phrap, CAP3...)
– graph-based (Celera Assembler, Arachne)

• k-mer graph (especially useful for
assembly from short reads)

Overlap Graph

• Each read is a node
• There is a directed edge from u to v if

the two reads have sufficient overlap
• Objective: Find a Hamiltonian Path (for

linear genomes) or a Hamiltonian
Circuit (for circular genomes)

12

Paths through graphs and
assembly

• Hamiltonian circuit: visit each node
(city) exactly once, returning to the start

A

B D C

E

H
G

I

F

A

B

C

D H

I

F

G
E

Genome

Hamiltonian Path Approach

• Hamiltonian Path is NP-hard (but good
heuristics exist), and can have multiple
solutions

• Dependency on detecting overlap (errors in
reads, overlap length)

• Running time (all-pairs overlap calculation)
• Repeats
• Tends to produce fragmented assemblies

(contigs)

Example
Reads:
• TAATACTTAGG
• TAGGCCA
• GCCAGGAAT
• GAATAAGCCAA
• GCCAATTT
• AATTTGGAAT
• GGAATTAAGGCAC
• AGGCACGTTTA
• CACGTTAGGACCATT
• GGACCATTTAATACGGAT

If minimum overlap is 3, what graph do we get?
If minimum overlap is 4, what graph do we get?
If minimum overlap is 5, what graph do we get?

15

Overlap-layout-consensus
Main entity: read
Relationship between reads: overlap

1
2

3

4
5

6

7
8

9

1 2 3 4 5 6 7 8 9

1 2 3

1 2 3

1 2 3 1
2

3

1 3

2

1
3

2

ACCTGA
ACCTGA
AGCTGA
ACCAGA

16

TIGR Assembler/phrap

Greedy

• Build a rough map of fragment
overlaps

• Pick the largest scoring
overlap

• Merge the two fragments
• Repeat until no more merges

can be done

Challenges for
Overlap-Layout-Consensus

• Computing all-pairs overlap is
computationally expensive, especially for
NGS datasets, which can have millions of
short reads.

• (The Hamiltonian Path part doesn’t help
either)

• This computational challenge is increased for
large genomes (e.g., human)

• Need something faster!

k-mer graph
(aka de Bruijn graph)

• Vertices are k-mers that appear in some read, and
edges defined by overlap of k-1 nucleotides

• Small values of k produce small graphs

• Does not require all-pairs overlap calculation!

• But: loss of information about reads can lead to
“chimeric” contigs, and incorrect assemblies

• Also produces fragmented assemblies (even shorter
contigs)

Eulerian Paths
• An Eulerian path is one that goes through every edge exactly

once

• It is easy to see that if a graph has an Eulerian path, then all but
2 nodes have even degree. The converse is also true, but a bit
harder to prove.

• For directed graphs, the cycle will need to follow the direction of
the edges (also called “arcs”). In this case, a graph has an
Eulerian path if and only if the indegree(v)=outdegree(v) for all
but 2 nodes (x and y), where indegree(x)=outdegree(x)+1, and
indegree(y)=outdegree(y)-1.

de Bruijn Graphs are Eulerian

• If the k-mer set comes from a sequence
and every k-mer appears exactly once
in the sequence,

• then the de Bruijn graph has an
Eulerian path!

de Bruijn Graph

• Create the de Bruijn graph for the following
string, using k=5
– ACATAGGATTCAC

• Find the Eulerian path
• Is the Eulerian path unique?
• Reconstruct the sequence from this path

Using de Bruijn Graphs

Given: set of k-mers from a DNA
sequence

Algorithm:
• Construct the de Bruijn graph
• Find an Eulerian path in the graph
• The path defines a sequence with the

same set of k-mers as the original

Using de Bruijn Graphs

Given: set of k-mers from a set of reads
for a sequence

Algorithm:
• Construct the de Bruijn graph
• Try to find an Eulerian path in the graph

No matter what

• Because of
– Errors in reads
– Repeats
– Insufficient coverage
the overlap graphs and de Bruijn graphs generally

don’t have Hamiltonian paths/circuits or Eulerian
paths/circuits

• This means the first step doesn’t completely
assemble the genome

Reads, Contigs, and Scaffolds

• Reads are what you start with (35bp-
800bp)

• Fragmented assemblies produce
contigs that can be kilobases in length

• Putting contigs together into scaffolds is
the next step

Consensus (15-30Kbp)Consensus (15-30Kbp)

ReadsReads

ContigContigAssembly without pairs resultsAssembly without pairs results
in contigs whose order andin contigs whose order and
orientation are not known.orientation are not known.

??
Pairs, especially groups of corroboratingPairs, especially groups of corroborating
ones, link the contigs into scaffolds whereones, link the contigs into scaffolds where
the size of gaps is well characterized.the size of gaps is well characterized.

2-pair2-pair

Mean & Std.Dev.Mean & Std.Dev.
is knownis known

ScaffoldScaffold

Mate Pairs Give Order & Orientation

27

Handling repeats
1. Repeat detection

– pre-assembly: find fragments that belong to repeats
• statistically (most existing assemblers)
• repeat database (RepeatMasker)

– during assembly: detect "tangles" indicative of repeats
(Pevzner, Tang, Waterman 2001)

– post-assembly: find repetitive regions and potential mis-
assemblies.

• Reputer, RepeatMasker
• "unhappy" mate-pairs (too close, too far, mis-oriented)

2. Repeat resolution
– find DNA fragments belonging to the repeat
– determine correct tiling across the repeat

Repeat Rez I, IIRepeat Rez I, II

Assembly Pipeline

OverlapperOverlapper

UnitigerUnitiger

ScaffolderScaffolder

AA
BB

impliesimplies

AA

BB

TRUE

OROR

AA BB

REPEAT-
INDUCED

Find all overlaps Find all overlaps ≥≥ 40bp allowing 6% mismatch. 40bp allowing 6% mismatch.
Trim & ScreenTrim & Screen

Repeat Rez I, IIRepeat Rez I, II

Assembly Pipeline
Compute all overlap consistent sub-assemblies:Compute all overlap consistent sub-assemblies:

Unitigs (Uniquely Assembled Contig)

OverlapperOverlapper

UnitigerUnitiger

ScaffolderScaffolder

Trim & ScreenTrim & Screen

Repeat Rez I, IIRepeat Rez I, II

Assembly Pipeline

OverlapperOverlapper

UnitigerUnitiger

ScaffolderScaffolder

 Scaffold U-unitigs with confirmed pairs Scaffold U-unitigs with confirmed pairs

Mated reads
Trim & ScreenTrim & Screen

Repeat Rez I, IIRepeat Rez I, II

Assembly Pipeline

OverlapperOverlapper

UnitigerUnitiger

ScaffolderScaffolder

 Fill repeat gaps with doubly anchored positive unitigs Fill repeat gaps with doubly anchored positive unitigs

Unitig>0Unitig>0

Trim & ScreenTrim & Screen

