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Phylogenomic Analyses

◮ Input: set of estimated gene alignments and/or trees

◮ Output: species tree



Supertree Methods

◮ If the true gene trees should all be topologically identical to
the true species tree, then supertree methods make sense.

◮ There are many supertree methods (MRP, Robinson-Foulds
Supertrees, Min Flip, etc.). Which ones work well?

◮ We have developed the SuperFine method (Swenson et al.,
Systematic Biology 2012).



Superfine Study
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Figure: Comparison of MinFlip, Robinson-Foulds Supertree (RFS), MRP,
SuperFine, and combined analysis using maximum likelihood (CA-ML) on
simulated 1000-taxon datasets. Running time (c) is given in hours on a
logarithmic scale; for the supertree methods, running time shown includes
the time needed to calculate ML source trees using RAxML.



Extensions of SuperFine

◮ “MRL and SuperFine+MRL: new supertree methods” by
Nguyen, Mirarab, and Warnow, in Journal of Algorithms for
Molecular Biology, 2012.

◮ “Parallelizing SuperFine” by Neves et al., in 27th Symp. on
Applied Computing, Bioinformatics



Species Trees / Gene Trees Discordance

Causes:

◮ Gene duplication and loss

◮ Incomplete lineage sorting (ILS), commonly studied under the
coalescent model

◮ Horizontal gene transfer (HGT), hybridization, recombination,
etc.



Coalescent Model



Multispecies Coalescent Model



Multispecies Coalescent Model



Multispecies Coalescent Model



Questions

◮ Which methods produce the most accurate species trees?
How do these methods scale (in terms of computational
requirements) with the number of taxa?

◮ Can we improve species tree estimations by considering gene
tree estimation error? For example, as in Yu, Warnow,
Nakhleh (RECOMB 2011), by contracting low support edges
in estimated gene trees, or as in BUCKy (Ané et al.), by using
gene tree distributions?

◮ Are there fast methods with accuracy competitive with the
most promising statistical methods (e.g., BUCKy, *BEAST,
BEST)?



Results for estimating species trees under duplication+loss

◮ Optimizing duplication and duplication+loss score: exact
polynomial time algorithm for constrained species tree
estimation

◮ Empirical study: new method several orders of magnitude
faster than iGTP and Duptree, with same scores on most
datasets (for complete gene tree case)

◮ Handling incomplete gene trees presents additional empirical
challenges

Bayzid, Mirarab, and Warnow, in preparation



Results for estimating species trees under ILS

◮ Complete gene trees:
◮ MDC optimization on unrooted, unresolved trees (Yu,

Warnow, and Nakhleh, Recomb 2010) - polynomial time exact
algorithm for constrained species tree estimation

◮ Simulation study (Yang and Warnow, RECOMB-CG 2011) of
BUCKy in comparison to fast methods

◮ Incomplete gene trees
◮ Bayzid and Warnow, J Computational Biology:

◮ MDC optimization: reconciling incomplete rooted binary gene

trees with a species tree, and shows iGTP and Phylonet solve

different problems
◮ Experimental study shows *BEAST much more accurate than

tested fast methods, but computationally too expensive to run

on larger datasets.



Yang and Warnow, RECOMB-CG 2011

Compared BUCKy to fast methods on estimated gene trees that
could differ from the true species tree due to ILS and/or estimation
error.
BUCKy (Ané et al., MBE 2007, and Larget et al., Bioinformatics
2010)

◮ BUCKy-pop/con, takes gene tree distributions as input, uses
concordance factors on quartets to compute the population
tree and concordance factors on clades to compute the
concordance tree.

◮ BUCKy-pop is statistically consistent under ILS.

◮ BUCKy-con is not statistically consistent under ILS.



BUCKy(MrBayes) Analysis

1. MAFFT

2. MrBayes

3. BUCKy
(concordance
and population
tree)



BUCKy(MrBayes) vs. Greedy
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Memory usage:

◮ BUCKy: 34-234 GB

◮ greedy: < 9 MB



Using MrBayes to estimate gene tree distributions

◮ Computational issues:
◮ Long running times
◮ Convergence to stationarity
◮ Large numbers of sampled gene trees makes BUCKy slow and

memory-intensive

◮ Alternatives to “proper” MrBayes analysis
◮ non-converged distributions
◮ sparse MrBayes samples
◮ replacing MrBayes with other methods (e.g., bootstrap trees

using RAxML)



Other methods

◮ GLASS, distance-based (statistically consistent)

◮ Phylonet and iGTP for MDC

◮ iGTP for duplication and duplication/loss

◮ Greedy consensus



Simulation Study



Simulation Study



Simulation Study



Comparing Trees

◮ False Negative: edge in the true tree missing from the
estimated tree

◮ FN rate (missing branch rate): 50%



Methods

1. MAFFT

2. RAxML,
FastTree,
MrBayes

3. BUCKy,
PhyloNet,
iGTP, greedy
consensus,
GLASS



Simulation Parameters

previous studies this study

number of taxa 4-20 17-500

number of genes ≤ 100 25-50

evolution model JC, HKY GTR + Γ + Indels

cause of discord ILS, HGT none, ILS



Results on 17-taxon datasets, all methods
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Results on 17-taxon datasets, representative methods
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Results on 100-taxon datasets, all methods
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Results on 100-taxon datasets, representative methods
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Computational Requirements
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Memory usage:

◮ BUCKy: 34-234 GB

◮ PhyloNet, GLASS, iGTP, greedy: < 9 MB



Incomplete Gene Datasets

◮ In the incomplete gene dataset case, not all taxa are present
in all the gene trees.

◮ Not all methods can be used on incomplete gene datasets
(e.g., BUCKy and greedy cannot be used).

◮ We performed a simulation study to evaluate *BEAST and
fast methods that can be run on incomplete gene datasets.
We explored performance on 11, 17, and 100-taxon datasets.

◮ *BEAST was far from converging on the 100-taxon datasets,
but could run on the others. We show results for 11-taxon
datasets.
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Figure: Average missing branch rates of methods on twenty (20)
11-taxon 10-gene datasets on true alignments. From top to bottom,
number of missing taxa = 2 and 3.



Findings

◮ Accounting for gene tree estimation error improves methods

◮ MrBayes is expensive to run correctly - even on 17-taxon
inputs. Using other methods to estimate the gene tree
distribution does not reduce accuracy for BUCKy very much.

◮ Some fast methods (e.g., Greedy(FT)) have accuracy close to
that of BUCKy-con(MrBayes).

◮ BUCKy-con more accurate than BUCKy-pop

◮ iGTP-duploss more accurate than iGTP-MDC

◮ GLASS fast but not competitive with other methods

◮ *BEAST is very accurate when it can be run well (on the
100-taxon datasets, it produced poor trees, but also failed to
converge).



Observations:
◮ Statistical guarantees are often not predictive of performance

on finite data
◮ Performance on large datasets can be different than on small

datasets
◮ Estimating highly accurate species trees from incomplete gene

trees is difficult
◮ Discrete optimization problems (duplication scores, duploss

scores, MDC scores, etc.) popular, but may not produce good
trees. Statistical methods are often more accurate, but
typically do not run on large datasets.

Open Questions:
◮ Why are Greedy and MRP so accurate?
◮ How do methods perform when gene tree incongruence is due

to other factors than ILS?
◮ Can we develop methods with accuracy close to the accuracy

of the best statistical methods, with much lower
computational costs?
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