
Textbook for 394C: Algorithms for Computational Biology
Tandy Warnow, University of Texas at Austin

This textbook is a draft, and should not be distributed. Much of what is in this textbook
appeared verbatim in another text for the LSA (Linguistics Society of America) course for computa-
tional phylogenetics for linguistics, which was co-authored by Don Ringe, Johanna Nichols, and Tandy
Warnow. Copyright is owned by Tandy Warnow.

Table of Contents

1. Introduction
1.1 Algorithms and Problems
1.2 Stochastic models of evolution
1.3 Statistical aspects of algorithms
1.4 Evaluating algorithms using simulations and real data

2. Trees
2.1 Rooted trees
2.2 Unrooted trees
2.3 Consensus trees
2.4 When trees are compatible
2.5 Measures of accuracy in estimated trees
2.6 Rogue taxa
2.7 Induced subtrees

3. Constructing trees from subtrees
3.1 Constructing trees from rooted triples
3.2 Constructing trees from quartet subtrees
3.3 General subtrees

4. Constructing trees from qualitative characters
4.1 Introduction
4.2 Constructing rooted treesfrom directed binary characters
4.3 Constructing unrooted trees from compatible binary characters
4.4 General issues in constructing trees from characters
4.5 Binary encoding of multi-state characters
4.6 Informative and uninformative characters

5. Constructing trees from distances
5.1 Step 1: computing distances
5.2 Step 2: computing a tree from a distance matrix

6. Statistical methods
6.1 Introduction to Markov models of evolution
6.2 Calculating the probability of a site pattern
6.3 Calculating the likelihood of a tree 6.4 Bayesian methods
6.5 Maximum likelihood methods

7. Other estimation issues

8. Reticulate evolution
8.1 Introduction
8.2 Phylogenetic networks in linguistics
8.3 Phylogenetic networks in biology

9. Reconciling gene trees

1 Introduction

This document includes the basic material needed to understand computational methods for estimating
phylogenetic trees in biology and linguistics, and to read the literature critically.

1.1 Algorithms and Problems

Algorithms, running time, NP-hardness, heuristics.

1.2 Stochastic models of evolution

Cavender-Farris, Jukes-Cantor, and the General Time Reversible Markov Model. The no-common-
mechanism model and rates-across-sites. Identifiability.

1.3 Statistical aspects of algorithms

Statistical consistency, and sequence length requirements.

1.4 Evaluating algorithms using simulations and real data

2 Trees

Trees are graphs, with vertices (also known as “nodes”) and edges. In the context in which we will
consider them, they represent evolutionary histories, and may be called “phylogenies”, “phylogenetic
trees”, or “evolutionary trees”. Sometimes trees are drawn rooted, although (as we shall see) most meth-
ods for estimating evolutionary trees produce unrooted trees. This section is devoted to understanding
the terminology regarding trees, learning how to move between rooted and unrooted versions of the
same tree, how to determine whether two trees are the same or different, etc. This will turn out to be
important in understanding how trees are constructed from character data.

2.1 Rooted Trees

We begin with a discussion of rooted trees. For a rooted tree T with leaf set S, we draw the tree with
the root r on top, on the bottom, on the left, or on the right – implicitly giving the edges an orientation
(usually away from the root, towards the leaves). In this document, we’ll draw them as rooted at the
top.

Even so, there are many ways of drawing trees, and in particular of representing the branching
process within a tree. For example, in a rooted tree, a node may have more than two children, in
which case it is called a “polytomy”. The representation of a polytomy can vary between different
graphical representations. In Figure 2.1, we show two equivalent representations of the same branching
process. One of these (on the left) is standard in computer science, and the other (on the right) is often
found within biological systematics. Note that in Figure 2.1(b), the horizontal lines do not necessarily
correspond to edges.

202 textbook: additional trees, 7-24-09

 a b c d e f g h
 a b c d e f g h

 (a) (b)

Fig. 1. Two ways of drawing the same tree

Graphical representations of trees sometimes include branch lengths, to help suggest relative rates
of change and/or actual amounts of elapsed time. The “topology” of the tree is independent of the
branch lengths, however, and is generally speaking the primary interest of the systematist.

Newick Notation for rooted trees The first task is to be able to represent trees using Newick (??)
format: ((a, b), (c, d)) represents the rooted tree with four leaves, a, b, c, d, with a and b siblings on the
left side of the root, and c and d siblings on the right side of the root.

The same tree could have been written ((c, d), (a, b)), or ((b, a), (d, c)), etc. Thus, the graphical
representation is somewhat flexible – swapping siblings doesn’t change the tree “topology”.

The second fundamental task is to be able to recognize when two rooted trees are the same. Thus,
when you don’t consider branch lengths, the trees given in Figures 3 through 5 are different drawings
of the same basic tree.

More trees for textbook: produced July 21, 2009
(section numbers refer to sections of July 14-15 drafts) (trees on separate pages)

3.1.1

 a b c d

Fig. 2. Tree ((a,b),(c,d))

 c

 a b d e

 Fig. 3. Tree (((a,b),c),(d,e))

 c a b d e

Fig. 4. Another drawing of the tree in Figure 3

 c d

 a b e

Fig. 5. Yet another drawing of the tree in Figure 3

The clade representation of a rooted tree. One way to determine if two rooted trees are the same
or different is to write down their clades, where a clade in a tree is a maximal set of leaves that all have
the same most recent common ancestor. To generate all the clades in a rooted tree, look at each node
in turn, and write down the leaves below that node.

Thus, for the tree T = ((a, b), (c, (d, e)), the set of clades of the tree T , denoted Clades(T), is given
by {{a}, {b}, {c}, {d}, {e}, {a, b}, {d, e}, {c, d, e}, {a, b, c, d, e}}.

To determine if two trees are the same, you can write down the set of clades for the two trees, and
see if the sets are identical. If they are not, then the two trees are different. Otherwise, they are the
same.

Note that the set of clades of a tree always includes the singleton sets (consisting of {x}, for each
taxon x), as well as the set of all the taxa. These clades are called the “trivial” clades, since they appear
in every tree, and the other clades are called “non-trivial clades”.

Constructing a rooted tree from its set of clades We now show how to compute a tree from its
set of clades. To do this, we draw the “Hasse Diagram” for the “poset” (partially ordered set) defined
by the clades, ordered by inclusion. That is, make a graph, with all the clades (including the trivial
clades, including the full set of taxa) as nodes in the graph. Draw a directed edge from a node x to a
different node y if x ⊂ y. Since containment is transitive, if x ⊂ y and y ⊂ z, then x ⊂ z. Hence, if we
have directed edges from x to y, and from y to z, then we know that x ⊂ z, and so can remove the
directed edge from x to z without loss of information. This is the basis of the Hasse Diagram: you take
the graphical representation of a partially ordered set, and you remove directed edges that are implied
by transitivity. Furthermore, if we begin with the set of clades of a tree, then the resultant graph is the
tree itself. Thus, constructing the Hasse Diagram for a set of clades of a tree produces the tree itself
(provided that we include all the clades, not just the non-trivial clades).

Note that the output of this algorithm may or may not be a tree. However, when the input contains
a set that contains all the taxa, then the directed graph (“digraph”) that is created will at least be
connected, which is rooted at the node for the set containing all the taxa. That root node will have
outdegree 0 (that means there will be no edge leaving the root node). If, in addition, the input is a set
of clades for a tree, then every node other than the root will have outdegree 1. Finally, if the graph is
connected and every node other than the root has outdegree 1, then the graph is a tree.

Compatible sets of clades One question that you might be given is: is the following set of subsets of
a taxon set the set of clades in a tree? Here’s a simple way to determine the answer: apply the algorithm
above, and see if you get a tree! For example, if we try this on {{a, b}, {b, e}, {c, d}}, we do not get a
tree. Therefore, this set of subsets is not the set of clades of any tree. When the set of subsets is the set
of clades of a tree, we say that the set of subsets is compatible, and otherwise we say it is not compatible.

Observation: When a set A of subsets is compatible, then for any two subsets X and Y in A, either X
and Y are disjoint or one contains the other.

Difficulties in rooting trees Although evolutionary trees are rooted, estimations of evolutionary
trees are almost always unrooted, for a variety of reasons. In particular, unless the taxa (languages,
genes, species, whatever) evolve under a strong clock, rooting trees requires additional information. The
typical technique is to use an “outgroup” (a taxon which is not as closely related to the remaining taxa
as they are to each other). The outgroup taxon is added to the set of taxa and an unrooted tree is
estimated on the enlarged set. This unrooted tree is then rooted by “picking up” the unrooted tree at
the outgroup. See Figure 6, where we added a fly to a group of mammals. If you root the tree at the fly,

LSA 202 textbook: Tree drawings

3.1.5

 fly chimp

 cow human

Fig. 6. Tree on some mammals with fly as the outgroup

you obtain the rooted tree (cow, (chimp, human)), showing that chimp and human have a more recent
common ancestor than cow has to either human or chimp.

The problem with this technique is subtle: while it is generally easy to pick outgroups, the less
closely related they are to the remaining taxa, the less accurately they are placed in the tree. That
is, very distantly related taxa tend to fit equally well into many places in the tree, and thus produce
incorrect rootings. See Figure 7, where the outgroup (marked by “outgroup”) attaches into two different
places within the tree on the remaining taxa. Note how the trees on the remaining taxa are different as
rooted trees (when rooted at the outgroup), although identical as unrooted trees.

 Outgroup c

 a b d

 a c

 b outgroup d

Fig. 7. Two trees which differ only in the placement of the outgroup

Furthermore, it is often difficult to distinguish between an outgroup taxon that is closely related to
the ingroup taxa, and a taxon that is, in fact, a member of the same group which branched off early in
the group’s history. For this reason, even the use of outgroups is somewhat difficult.

2.2 Unrooted trees

We now turn to discussions of unrooted trees. We begin with writing down rooted versions of unrooted
trees, and then writing down unrooted versions of rooted trees.

Newick formats for unrooted trees First, the Newick format that is used to represent a rooted
tree is also used to represent its unrooted version. In other words, every unrooted tree will have several
Newick representations, for each of the ways of rooting the unrooted tree. Since phylogeny estimation
methods almost universally produce unrooted trees, although the output of a phylogeny estimation
procedure may be given in a rooted form, the particular location of the root is irrelevant and should be
ignored.

Now that you know how to draw unrooted versions of rooted trees, we will do the reverse. You can
generate rooted trees from an unrooted tree by picking up the tree at any edge, or at any node. You
can even pick up the tree at one of its leaves, but then the tree is rooted at one of its own taxa – which
we generally don’t do (in that case, we’d root it at the edge leading to that leaf instead, thus keeping
the leaf set the same). Suppose we consider the unrooted tree given in Figure 8, which has four leaves:
a, b, c, d, where a and b are siblings, and c and d are siblings.

3.2.1.
 a c

 b d

Fig. 8. Drawing of the unrooted tree ((a,b), (c,d))

This tree has 5 edges and two internal nodes. If we root the tree at one of the internal nodes, we
will get a rooted tree with three children, while rooting the tree at an edge gives a rooted tree in which
all nodes have two children. Such a rooted tree is said to be binary, or bifurcating. Two of the rooted
trees consistent with the unrooted tree given in Figure 8 are provided in Figure 9 and Figure 10.

The bipartitions of an unrooted tree To determine if two unrooted trees are the same, we do
something similar to what we did to determine if two rooted trees are the same. However, since the
trees are unrooted, we cannot write down clades. Instead, we write down “bipartitions”.

The bipartitions of an unrooted tree are formed by taking each edge in turn, and writing down the
two sets of leaves that would be formed by deleting that edge. Note that when the edge is incident to
a leaf, then the bipartition is trivial – it splits the set of leaves into one set with a single leaf, and the
other set with the remaining leaves. These bipartitions are present in all trees with any given leaf set.
Hence, we will focus just on the non-trivial bipartitions.

For the tree in the previous section with four leaves a, b, c and d, there was only one non-trivial
bipartition, splitting a and b on one side from c and d on the other. We denote this bipartition by

 a

 b

 c d

Fig. 9. One rooted version of ((a,b), (c,d)).

 b

 a

 d c

Fig. 10. Another rooted version of ((a,b), (c,d)).

{{a, b}|{c, d}}, or more simply by (ab|cd). Note that we could have denoted this by (cd|ab) or (dc|ab),
etc; the order in which the taxa appear within any one side does not matter, and you can put either
side first. For that matter, we may also omit commas! We will call the set of non-trivial bipartitions
derived in this way the “bipartition encoding” of the tree, and denote it by C(T). (We will also refer
to this as the “character encoding”; see later.)

Comparing trees using their bipartitions It is easy to see that we can write down the set of
bipartitions of any given unrooted tree, and that two unrooted trees are identical if they have the same
set of bipartitions. However, other relationships can also be inferred: for example, we can see when one
tree refines another, by comparing their bipartitions. That is, if T and T ′ are two trees on the same
leaf set, then T is said to refine T ′ if T ′ can be obtained from T by contracting some edges in T . In
fact, T refines T ′ if and only if C(T ′) ⊆ C(T). (Note that using this definition, each tree refines itself,
and is also a contraction of itself, since we can choose to contract no edges.)

Constructing T from C(T), and more Sometimes we are given a set A of bipartitions, and we are
asked whether these bipartitions could co-exist within a tree (i.e., whether there exists a tree T so that
A ⊆ C(T)). When this is true, the set of bipartitions is said to be compatible, and otherwise the set is
said to be incompatible.

When the set A is compatible, we can compute the tree T that satisfies C(T) = A as follows. First,
pick any leaf (call it “r”) in the set to function as a root. This has the result of turning the unrooted
tree into a rooted tree, and therefore turns the bipartitions into clades. How does this happen? For each
bipartition, we write down the subset which does not contain r, and denote it as a clade. The set of
clades that is produced in this fashion is then used to construct the rooted tree, using the technique
given above. Note that the tree we compute in this way does not include r (and will also not include
any leaf that appears on the same side as r in every bipartition). Therefore, at the end, we add the leaf
r and all the other leaves that always appear with r, as the root to the entire tree, and then we redraw
it as an unrooted tree. Note that some of these trees may not be binary.

Example of this technique: We provide an example of this technique on the following input:

A = {(123|456789), (12345|6789), (12|3456789), (89|1234567)).

First, we decide to root the tree at leaf 1. We note that 1 and 2 are always on the same side of every
bipartition, and so we are actually rooting the tree at both 1 and 2. The set of clades we derive is

Clades(T) = {{4, 5, 6, 7, 8, 9}, {6, 7, 8, 9}, {3, 4, 5, 6, 7, 8, 9}, {8, 9}}.

The Hasse Diagram we obtain for this set is given by (3,(4,5,(6,7,(8,9)))), and has the graphical
representation given in Figure 11. If we then add leaves 1 and 2 as the root, we obtain the rooted tree
given in Figure 12. We then unroot this tree, to obtain the tree given in Figure 13.

Now that we have constructed this unrooted tree, we then check that it has the requisite bipartitions.
Yes, indeed.

2.3 Consensus trees

When two or more trees are given on the same leaf set, we may also be interested in computing consensus
trees. In general, these consensus methods are applied to unrooted trees (and we will define them in
that context), but they can be modified so as to be applicable to rooted trees as well.

Although there are many consensus tree methods, we will focus on the ones that are the most
frequently used in practice:

3.2.4

 { 3, 4 5, 6, 7, 8, 9]

 3

 { 4, 5, 6, 7, 8, 9]

 4 5

 { 6, 7, 8 , 9 }

 6 7

 { 8, 9 }

 8 9

Fig. 11. Hasse Diagram.

 1 2

 3

 4 5

 6 7

 8 9

Fig. 12. Rooted tree on taxa 1, 2, ..., 9.

 1

 9

 2 3 4 5 6 7 8

Fig. 13. Unrooted tree on 1...9, obtained by unrooting the tree in Figure 12.

– Strict Consensus
– Majority Consensus
– Greedy Consensus

To construct the strict consensus, we write down the bipartitions that appear in every tree in the input
(the “profile”). The tree which has exactly that set of bipartitions is the “strict consensus”. Note that
the strict consensus is a contraction of every tree in the input (though if all the trees are identical, then
it will be equal to them all).

To construct the majority consensus, we write down the bipartitions that appear in more than half
the trees in the profile. The tree that has exactly those bipartitions is called the “majority consensus”
(note that we mean strict majority).

Observation: The majority consensus is either equal to the strict consensus, or it refines the strict
consensus, since it has every bipartition that appears in the strict consensus.

To construct the greedy consensus, we order the bipartitions by the frequency with which they
appear in the profile. We then start with the majority consensus, and then “add” bipartitions, one by
one, to the tree we’ve computed so far. We stop either when we construct a fully resolved tree (because
no additional bipartitions can be added), or because we examine the entire list. Note that the order in
which we list the bipartitions will determine the greedy consensus – so that this particular consensus is
not uniquely defined for a given profile of trees. On the other hand, the strict consensus and majority
consensus do not depend upon the ordering, and are uniquely defined by the profile of trees.

Observation: The greedy consensus is either equal to the majority consensus or it refines it, since it has
every bipartition that appears in the majority consensus.

Example: We give three different trees on the same leaf set:

– T1 given by C(T1) = {(12|3456), (123|456), (1234|56)}
– T2 given by C(T2) = {(12|3456), (123|456), (1235|46)}
– T3 given by C(T3) = {(12|3456), (126|345), (1236|45)}

The bipartitions are:

– (12|3456), which appears three times
– (123|456), which appears twice
– (1234|56), which appears once
– (1235|46), which appears once
– (1236|45), which appears once
– (126|345), which appears once

Using the definition of the consensus trees, we see that the strict consensus has only one bipartition,
(12|3456), and the majority consensus has two bipartitions, (123|456) and (12|3456). The greedy consen-
sus will depend upon the ordering of the remaining four bipartitions. There are 24=6! possible ordering
of these bipartitions, but we will only show the results for three of these.

– Ordering 1: (1234|56), (1235|46), (1236|45), (126|345). For this ordering, we see that we can add
(1234|56) to the set we have so far, (12|3456), (123|456), to obtain a fully resolved tree. Note that
this is equal to T1.

– Ordering 2: (126|345), (1236|45), (1234|56), (1235|46). For this ordering we see that we cannot add
the bipartition (126|345) to the set we have so far. However, we can add (1236|45), to obtain a fully
resolved tree.

– Ordering 3: (126|345), (1235|46), (1234|56), (1236|45). For this ordering, we cannot add (126|345),
but we can add the next bipartition, (1235|46). When we add this, we obtain a fully resolved tree
which is equal to T2.

2.4 When trees are compatible

Finally, we may be interested in combining the input trees into a single tree on the entire set of taxa,
without using consensus methods. For example, when the set of trees has a common refinement, we
would like to find that common refinement. In this case, we say that the trees are compatible, and we call
the common refinement tree the compatibility tree. As an example, the following trees are compatible:

– T1 given by C(T1) = {(abc|defg)}, and shown in Figure 14.
– T2 given by C(T2) = {(abcd|efg), (abcde|fg)}, and shown in Figure 15.

We can see they are compatible, because the tree in Figure 16 is a common refinement of each of
the trees. However, there are other common refinements of these two trees; for example, see the tree in
Figure 17.

Now consider the strict consensus of all the common refinements of trees T1 and T2. What does it
look like? What bipartitions must it have? This minimal common refinement of these two trees is called
the compatibility tree, and its character encoding is identical to the union of the character encodings of
the two trees! Thus, we can construct that minimal common refinement by computing the tree whose
character encoding is that union, using the algorithm given in the previous sections.

More generally, to see if a set of trees is compatible, we write down their bipartition sets, and then
we apply the algorithm for constructing trees from bipartitions to the union of these sets. This will
produce the compatibility tree, if it exists. If it fails to construct a tree, it proves that the set is not
compatible.

Theorem: A set T = {T1, T2, . . . , Tk} of trees on the same leaf set is compatible if and only if the set
∪iC(Ti) is compatible.

Linguistic examples In linguistic analyses, different sets of characters may yield different trees, but if
all the analyses are correct, then the differences should be only in terms of which edges are resolved,
and which are not. That is, the resultant trees should be compatible.

 a d

 e

 b f
 c g

 T1

Fig. 14. Tree T1

 a

 b g
 c

 d e f

Fig. 15. Tree T2

 b

 g

 c a d e f

Fig. 16. Tree that is compatible with T1 and T2

 a

 g

 c b d e f

Fig. 17. Another common refinement of T1 and T2

2.5 Measures of accuracy in estimated trees

The context in which we will be interested in trees is where we are estimating trees from data, but are
hoping to come “close” to the true tree. Since the true tree is unknown, determining how close we have
come is often difficult. However, for the purposes of this section, we will presume that the true tree is
known, so that we can compare estimated trees to the true tree.

Let us presume that the tree T0 on leaf set S is the true tree, and that another tree T is an estimated
tree for the same leaf set. There are several techniques that have been used to quantify errors in T with
respect to T0, of which the dominant ones are these:

False Negatives (FN): The false negatives are those edges in T0 inducing bipartitions that do not
appear in C(T); this is also called the “missing branch” or “missing edge” rate. The false negative
rate is the fraction of the total number of non-trivial bipartitions that are missing, or |C(T0)−C(T)|

|C(T0)| .
False Positives (FP): The false positives in a tree T with respect to the tree T0 are those edges in T

that induce bipartitions that do not appear in C(T0). The false positive rate is the fraction of the
total number of non-trivial bipartitions in T that are false positives, or |C(T)−C(T0)|

|C(T)| .
Robinson-Foulds (RF): The most typically used error metric is the sum of the number of false

positives and false negatives, and is called the Robinson-Foulds distance. This distance ranges from
0 (so the trees are identical) to at most 2n−6, where n is the number of leaves in each tree. To turn
this into an error rate, that number is divided by 2n− 6 (see below for a discussion about this).

Comments: A few comments are worth making here. First, most typically, evolutionary trees are pre-
sumed to be binary, so that all internal nodes have three neighbors (or, if rooted, then every internal
node has two children). In this case, the number of internal edges in the tree is n−3, and false negative
error rates are produced by dividing by n− 3. When both the estimated and true trees are binary, then
false negative and false positive rates are equal, and these also equal the Robinson-Foulds distance.
The main advantage in splitting the error rate into two parts (false negative and false positive) is that
many estimated trees are not binary. In this case, when the true tree is presumed to be binary, the false
positive error rate will be less than the false negative error rate. Note also that the reverse can happen
– the false negative error rate could be smaller than the false positive error rate – when the true tree
is not binary. Also note that because Robinson-Foulds distances are normalized by dividing by 2n− 6,
they are not equal to the average of the false negative and false positive error rates. Also, the RF rate
of a star tree (one with no internal nodes) is 50%, which is the same as the RF rate for a completely
resolved tree that has half of its edges correct. Using the RF rate has been criticized because of this
phenomenon, since it tends to favor unresolved trees.

Finally, the following can be established:

Observation: Let T be the true tree, and T1 and T2 be two estimated trees for the same leaf set. If T1

is a refinement of T2, then the False Negative rate of T1 will be less than or equal to that of T2, and
the False Positive rate of T1 will be at least that of T2.

This observation will turn out to be important in understanding the relationship between the error
rates of consensus trees, and how they compare to the error rates of the trees on which they are based.

2.6 Rogue taxa

Sometimes two trees are very different primarily (or even exclusively) in terms of how one leaf is placed.
For example, in the evolutionary trees estimated for the Indo-European (IE) family of languages, Ringe
et al. have noted that Albanian tends to “float” within the IE tree, fitting equally well into several
places. (Such a taxon is called a “rogue taxon” in the biological literature.) Similarly, but for different

reasons, Germanic can place differently within the IE tree, depending upon the choice of phylogenetic
reconstruction method and whether lexical data alone or morphological and phonological characters are
used.

2.7 Induced subtrees

A comparison of two trees that differ only in terms of the placement of Albanian would best be done
not through the use of FN and FP rates, but through other measures. To enable these more fine-
tuned comparisons, we define the notion of “induced subtrees”. Later on we will talk about phylogeny
reconstruction methods that operate by combining subtrees together, and there the concept of induced
subtrees will also be helpful.

Suppose you have a tree T (rooted or unrooted), and a subset of the leaf set that is of particular
interest to you, and you wish to know what T tells you about that subset. For example, T could be on
a, b, c, d, e, f , but you are only interested in the relationship between the taxa a, b, c, d. To understand
what T tells you about a, b, c, d, you do the following: delete the other leaves and their incident edges,
and then suppress nodes of degree two. If A is the subset of interest, then we denote by T |A, the subtree
of T induced by the set A. See Figure 18 for a tree and one of its induced subtrees.

 f d

 a e c

 b g h i

 T

 a c

 b d

 T | {a, b, c, d}

Fig. 18. Tree T and the subtree it induces on a, b, c, d

3 Constructing trees from subtrees

3.1 Constructing rooted trees from rooted triples

Here we present an algorithm for constructing a rooted tree from its set of “rooted triples”, where by
“rooted triple” we mean a rooted three-leaf tree. We indicate the rooted triple on a, b, c in which a and
b are more closely related by ((a, b), c) (or any of its equivalents).

Algorithm 1 for constructing trees from rooted triples To construct a tree from its set X of rooted
triples, you can do the following:

– If the number of taxa in X is less than 3, just return the tree in X. Else:
• Find a sibling pair a, b (that is, a pair of taxa that are always grouped together in any triple

that involves them both). If no such pair exists, return “No tree”. Else, continue
• Remove all rooted triples that include a from the set X
• Recursively compute a tree on the reduced set X ′ of rooted triples
• Insert a into the tree by making it sibling to b.

Here we give an example of this algorithm. Suppose our input set X has rooted triples

– ((a, b), c),
– (a, (c, d)),
– ((a, b), d), and
– (b, (c, d)).

We note that a and b are siblings, since any triple that involves them both puts them together. We
remove all triples involving a from the set, and obtain set X ′ with only one rooted triple: (b, (c, d)). We
return this tree as the solution on {b, c, d}, and we insert a by making it a sibling to b. This gives us
the tree ((a, b), (c, d)).

Note that this algorithm allows you to determine if a set of rooted triples are consistent with a tree,
and to construct the tree when it is. However, it only works reliably when the set contains at least one
tree on every three taxa. (Note that if the set contains two or more trees on any three leaves, then no
tree is consistent with the input.) For other cases, where - for example - the set X might not contain a
tree on all triples of taxa, another algorithm is needed.

Algorithm 2 for constructing trees from rooted triples . This second algorithm was developed by Aho,
Sagiv, Szymanski, and Ullman in the context of relational databases. It’s widely known in phylogenetics,
though!

– Group the set of taxa into disjoint sets, by putting two leaves a and b in the same set if there is a
rooted triple that puts them together. Compute the transitive closure of this relationship.

– If this produces one equivalence class, reject - no tree is possible. Otherwise, recurse on each subset,
to compute a rooted tree on each subset.

– Make the roots of these subtrees all children of a root, and return the final tree.

3.2 Constructing trees from quartet subtrees

Just as rooted trees are defined by their rooted triples, an unrooted tree is defined by its unrooted
quartet trees. For example, the tree given by (1, (2, (3, (4, 5)))) is defined by the set of quartet trees
{(12|34), (12|35), (12|45), (13|45), (23|45)}. It is also easy, algorithmically, to compute a tree T from the
set Q(T) of quartet subtrees. We call this the All Quartets Method.

All Quartets Method .
The input to this method is a set Q of quartet trees, with exactly one tree on every four leaves from

a set S. We will assume that |S| ≥ 4, since otherwise there are no quartets. We will also assume that
every tree in Q is binary (fully resolved).

– If |S| = 4, then return the tree in Q. Else, find a pair of taxa i, j which are always grouped together
in any quartet that includes both i and j. Remove i.

– Step 2: Recursively compute a tree T ′ on S − {i}.
– Step 3: Insert i next to j in T ′.

We show how to apply this algorithm on the input given above. Note that taxa 1 and 2 are always
grouped together in all the quartets that contain them both, but so also are 4 and 5. On the other
hand, no other pair of taxa are always grouped together. If we remove taxon 1, we are left with the
single quartet on 2, 3, 4, 5. The tree on that set is (23|45). We then reintroduce the leaf for 1 as sibling
to 2, and obtain the tree given by (1, (2, (3, (4, 5)))).

Note that the All Quartets Method suggests an algorithm for constructing trees: compute the tree
on every quartet, and then combine them together. If all quartets are correctly computed, the resultant
tree will be correct. However, in practice, not all quartet trees are likely to be correctly computed, and
so methods for constructing trees from quartet subtrees need to be able to handle some errors in the
input trees.

Finding trees that satisfy a maximum number of the input quartet trees is an NP-hard problem.
Furthermore, reducing the set of quartet trees so that only the high-confidence ones remain does not
enable a polynomial time algorithm: testing compatibility of quartet trees (i.e., determining if they are
all realizable within a single tree) is also NP-hard. The obvious optimization problem is to find a tree
that satisfies a maximum number of quartet trees, but this is also NP-hard. Heuristics for this problem
have also been developed. See the Quartet Puzzling algorithm of Strimmer and von Haeseler, Weight
Optimization by Ranwez and Gascuel, and the Quartet Max Cut algorithm by Snir and Rao.

3.3 General supertree methods

The general context is that the input (“source”) trees can be of arbitrary size (i.e., not all quartets,
and not all triplets), and the objective is to put together the smaller trees into a tree on the entire set
of taxa. As before, determining if all the subtrees are compatible (that is, if there is a tree on the entire
set of taxa which agrees with all the smaller trees) is an NP-hard problem. Optimization problems in
this area are therefore also NP-hard.

Heuristics for this problem are nevertheless in use, and include MRP – matrix representation with
parsimony. Here, each source tree is replaced by its binary matrix (one binary character for each internal
edge in the tree) with ? used for taxa that do not appear in the source tree, and the binary matrices
are then concatenated into one large “partial binary” matrix (entries drawn from 0, 1, ?). This matrix
is then analyzed under maximum parsimony. The motivation for this method is that if all the source
trees are compatible, then there will be a perfect phylogeny for the concatenated matrix, and maximum
parsimony (if run exactly) will return all the compatible supertrees.

4 Constructing trees from qualitative characters

4.1 Introduction

We now turn to issues that relate to estimating trees from data. In essence, there is really one primary
type of data used to construct trees – characters. An example of a character in biology might be
the nucleotide (A, C, T, or G) that appears in a particular location within a gene, the number of legs
(any positive integer), or whether the organism has hair (a boolean variable). In linguistics we find
similar variety in characters; for example, it could be the cognate class for a semantic slot, whether or
not a language has undergone a sound change, the particular way the language handles some aspect
of its morphology, or the presence or absence of some typological features. In each of these cases,
characters divide the dataset into different pieces, and the taxa (species or languages) within each piece
are equivalent with respect to that character – they share the same state.

Mathematically, most models for the evolution of characters down trees assume that character state
changes occur due to substitution. When the substitution process produces a state that already appears
anywhere else in the tree, this is said to be homoplastic evolution (or, more simply, homoplasy).
Back-mutation (reversal to a previous state) or parallel evolution (appearance of a state in two
separate lineages) are the two types of homoplasy. When all substitutions create new states that do
not appear anywhere in the tree, the evolution is said to be homoplasy-free. Furthermore, when the
tree fits the character data so that no character evolves with any homoplasy, then the tree is called a
perfect phylogeny.

Sometimes new states arise without replacement of the current state, so that a taxon exhibits two
states (or more) at once. This is called polymorphism. Polymorphism in linguistic data occurs quite
frequently – for example, when there are two or more words for the same basic meaning (examples
include ‘big’ and ‘large’, or ‘rock’ and ‘stone’). Long term polymorphism for linguistic characters does
not seem to be tolerated well, so that over time, there are losses of character states, reducing the
polymorphism load. Polymorphism in biology, however, can be quite commonplace, especially when
considering different alleles for the same gene.

Finally, not all evolution is treelike, so that some characters can evolve with reticulation. For example,
in linguistics, words can be borrowed (i.e., transmitted) between lineages. This can be frequent for lexical
characters under some circumstances, perhaps also frequent for phonological characters, but unlikely for
morphological features. In biology, horizontal gene transfer is common in some organisms (e.g., bacteria),
and hybridization (whereby two species come together to make a new species) is also frequent for some
organisms.

Molecular characters in biology are derived from alignments of nucleotide or amino acid sequences,
and thus have a maximum number of possible “states” (four for DNA or RNA, and 20 for aminoacids).
In linguistics, the number of possible states is two for presence/absence types of characters, but is
otherwise unbounded. This is one of the implicit differences between linguistic characters and biological
characters. Within a particular dataset, however, a character will exhibit only a finite number of states.
When only two states are exhibited, the character is said to be binary. Some characters (for example,
presence/absence characters) are explicitly always binary.

Finally, for some characters, there is an implicit and clear directionality of the evolutionary process.
For example, presence/absence characters based upon sound changes (phonological characters) typically
have an ancestral state (the absence of the sound change) and a derived state (the presence of the sound
change).

Methods for estimating trees Methods for reconstructing trees from characters come in several variants.
The most popular ones in linguistic phylogenetics are maximum compatibility (and its weighted variant)
and maximum parsimony. These are two optimization problems that are closely related, and often have
the same optimal solutions. However, methods based upon statistical models of evolution, and hence

involving calculations of the likelihood, are also favored by some researchers. Finally, methods that first
transform the character data input into distance matrices are also popular; these are called “distance-
based” methods. We cover maximum compatibility and maximum parsimony in this section, and cover
distance-based methods and methods based upon likelihood (both Maximum Likelihood and Bayesian
methods) in later sections. Finally, these methods all produce trees, but reticulations (borrowing or
creolization) can also occur. We will therefore include a chapter on estimating reticulate evolutionary
histories.

Suppose we have n taxa, s1, s2, . . . , sn described by k characters, c1, c2, . . . , ck. This input is typically
provided in matrix format, with the taxa occupying rows and different characters occupying the columns.
In this case, the entry Mij is the state of the taxon si for character cj . We can also represent this input
by just giving the k-tuple representation for each taxon.

4.2 Constructing rooted trees from directed binary characters

Constructing trees from characters can be very simple or very complicated. We begin with the very
simple situation: binary characters that evolve without any homoplasy. To make it even simpler, we’ll
assume that the characters are given with an orientation, so that the ancestral state is known. We call
these “directed binary characters”.

Many of the linguistic trees have been constructed using directed binary characters that evolve
without homoplasy. In this case, you can identify the derived state for each character, and since the
evolution is without homoplasy, the languages that exhibit the derived state must form a clade in the
true tree. Therefore, the problem becomes quite simple: given a set of clades in a tree, construct the
tree. This is a problem we solved in the previous section! Note that this produces a rooted tree, with
the root having the ancestral state for all the characters.

4.3 Constructing unrooted trees from compatible binary characters

The problem becomes slightly harder when we are given binary characters without information on the
ancestral state. However, this case also has an easy solution, as we will show. We treat one taxon as
the root, and let its state for each character be the ancestral state of that character. This makes the
problem equivalent to constructing a rooted tree (on the remaining taxa) from clades. Once that rooted
tree is constructed, we add the taxon that represented the root to the tree, and then unroot the tree.

In the case where the characters evolve without homoplasy (and so are compatible on a tree), whether
the characters are directed or not, the minimum tree that fits the character evolution assumptions is
unique, and can be computed in polynomial time. Here, by minimum we mean that we seek a tree in
which no edge can be contracted while still having the property that all the characters are compatible.
This minimal tree may not be binary, however, since the tree that is computed will only have edges on
which the binary characters change. More generally, what this means is that if you use only a subset of
the available characters, the tree you obtain may not be fully resolved. Importantly, this means that the
interpretation of polytomies (nodes of high degree) in trees estimated using this technique is that they
are likely due to incomplete information (not all the characters are used, or perhaps are not available).

Note that the algorithms can be used in two ways: to construct a tree for which the characters evolve
without homoplasy, or to determine that no such tree exists!

Finally, note that these algorithms require that all taxa exhibit states for all the characters – that
is, it is not possible to apply the algorithms when some character data are missing. Therefore, when
the state of some characters for some taxa is unknown, you cannot use these algorithms.

We now turn to some examples.

Example: Suppose that the input is given by

– A = (1, 0, 0, 0, 1)
– B = (1, 0, 0, 0, 0)
– C = (1, 0, 0, 1, 0)
– D = (0, 0, 0, 0, 0)
– E = (0, 1, 0, 0, 0)
– F = (0, 1, 1, 0, 0)

In this case, there are two non-trivial characters (defined by the first and second positions), but the
third through fifth positions define trivial characters. When we apply this algorithm, we pick one taxon
as the root. Since the choice of root doesn’t matter, we’ll pick A as the root. The clades under this
rooting are: {D,E, F} (for the first character), and {E,F} (for the second character). Also, under this
rooting, A,B and C are identical (since we only consider the non-trivial characters). The tree we obtain
for the remaining taxa, using the algorithm on clades, is (D, (E,F)). Adding in A,B,C as the root, we
obtain the unrooted tree (A,B,C, (D, (E,F))).

Comments: Many comments are worth making now. First, note that when the dataset consists of binary
characters that evolve without homoplasy a unique minimal tree will exist, but it may not be binary.
That is, it may not be fully resolved. Only those edges of the true tree on which changes occur will be
reconstructed. Therefore, if you take only a subset of the characters and apply the algorithm, you may
construct an incompletely resolved tree. In this case, the proper interpretation of the polytomies is that
you lack information sufficient to resolve the tree.

4.4 General issues in constructing trees from characters

Until this point, our discussion has assumed that all taxa exhibit states for all characters in the input
matrix, and that all the characters are compatible and binary (exhibit two states). Under these assump-
tions, it is easy (polynomial time, and easy to do by hand) to construct trees: we use the algorithm
for constructing trees from compatible bipartitions, and use the tree that results. However, can we
apply the simple algorithm when these assumptions do not hold? That is, when the input consists of
characters that are binary (for example, presence/absence), but we are missing some information? Or
when the input is non-binary? Or when the input is incompatible?

Missing data issues We begin with the complication when not all taxa exhibit states for all the
characters. A natural approach to take is find out if it is possible to assign values for the missing entries
in the character matrix so as to make the input compatible. See, for example, the following input, where
“?” means that the state is unknown.

– A = (0, 0, 0)
– B = (0, 1, 1)
– C = (1, ?, 1)
– D = (1, 0, ?)
– E = (?, 0, 0)

This input does admit assignments of states to the missing values, so as to produce a compatible
data matrix:

– A = (0, 0, 0)
– B = (0, 1, 1)

– C = (1, 0, 1)
– D = (1, 0, 1)
– E = (0, 0, 0)

We know this is compatible, because the tree given by (A, (E, (B, (C,D)))) is compatible with these
characters (i.e., it is a perfect phylogeny).

By contrast, there is no way to set the values for the missing entries in the following matrix, in order
to produce a tree on which all the characters are compatible:

– A = (0, 0, ?)
– B = (0, 1, 0)
– C = (1, 0, 0)
– D = (1, ?, 1)
– E = (?, 1, 1)

Figuring out that these characters are incompatible, no matter how you set the missing data, is
not that trivial. But as there are only three missing values, you can try all 23 = 8 possibilities. More
generally, however, answering whether an input with missing data admits a perfect phylogeny is NP-
hard, even when only two states otherwise appear. The computational method for solving this problem
involves a mathematical transformation of the input matrix so that there are no missing entries. Instead,
every question mark is replaced with a new state that does not appear in the dataset for any other
language. Thus, the initial data matrix might only have two states (presence/absence, or 0/1), but the
transformed data matrix could have many more states. For example, if we apply this technique to the
input given above, we obtain:

– A = (0, 0, 2)
– B = (0, 1, 0)
– C = (1, 0, 0)
– D = (1, 2, 1)
– E = (2, 1, 1)

Now, if we begin with an input M with missing entries, and do this transformation, we obtain a new
input M ′. Note that a perfect phylogeny exists for M if and only if a perfect phylogeny exists for M ′.
Unfortunately, while determining if a perfect phylogeny exists for binary characters is easy (and can be
constructed in polynomial time), determining if a perfect phylogeny exists for multi-state characters is
computationally harder: no longer polynomial time, and not easy to do by hand.

Constructing trees from compatible multi-state characters The previous section was all about
binary characters, typically based upon presence/absence of some feature. We also primarily focused on
characters that evolve without homoplasy (back-mutation or parallel evolution). But what about other
types of characters? Lexical characters and morphological characters are likely to have more than two
states in many language families, for example. How do we construct trees from multi-state characters?

We begin with the assumption that the characters evolve without homoplasy. In this case, algorithms
to find the trees on which all the characters evolve without any homoplasy do exist, but they are
computationally more expensive – no longer polynomial, as in the case of binary characters. Also, it is
no longer the case that there is a unique minimal tree which is consistent with the input!

Before we go into how to construct trees from multi-state characters, we address the “simpler” issue
of testing whether a multi-state character is “compatible” on a tree (meaning, it could have evolved
without any homoplasy on the tree).

Testing compatibility of a character on a tree To do this, we wish to set states of the character
for the internal nodes of the tree in such a way that for each state of the character, the nodes of the tree
that exhibit that state are connected. When this is the case, the character is said to be compatible
with the tree. Testing whether a character is compatible on a tree is straightforward, and can be done
by eye.

For a given internal node v in the tree, if it lies on a path between two leaves having the same
state x, we assign state x to node v. If this assignment doesn’t have any conflicts – that is, as long
as we don’t try to assign two different states to the same node, then the character can evolve without
any homoplasy on the tree. Otherwise, we either have to posit homoplasy (back mutation or parallel
evolution) or polymorphism – the presence of two or more states at some node.

It is evident that not all linguistic characters evolve without homoplasy, and so when a character is
incompatible with a tree, the linguist must determine the best explanation: is it likely that the character
evolved with homoplasy, perhaps with borrowing, or is the problem perhaps that the tree is incorrect?
Answering this depends upon linguistic judgments!

Constructing trees from incompatible characters: Maximum compatibility Algorithms for
constructing trees under the assumption that all the characters are compatible will fail when any
character evolves with homoplasy. While characters are rarely likely to evolve without homoplasy in
biological datasets, the assumption of homoplasy-free is more realistic in linguistics, for a number of
reasons. However, not all linguistic characters are homoplasy-free! For example, sound changes (and
typological features) can be so natural that they appear in many lineages, and so evolve with a lot
of parallel evolution. Lexical characters can evolve with borrowing (and hence not be compatible on
the underlying genetic tree), and thus require networks (rather than trees) to properly represent their
history. Finally, semantic shift can result in lexical characters that are not compatible with the genetic
tree.

Therefore, when given a set of binary characters for a linguistic group, if the algorithm for homoplasy-
free evolution does not produce a tree, the linguist’s task is to come up with a reasonable explanation
for the character evolution, and identify the characters most likely to have evolved with homoplasy.
Removing those characters, and reapplying the algorithm, can be used to good advantage.

The process of identifying and removing problematic characters, and then repeating the phylogenetic
analysis makes sense from a linguistic point of view, but presents several challenges. First, sometimes
the dataset is large, making this process a potentially very long one. Second, the identification of
problematic characters in itself involves a great deal of expertise, and unless the identification of these
characters is based upon solid linguistic grounds, the removal of problematic characters may simply
lead to reinforcement of the linguist’s biases.

Automated techniques to identify and remove characters from datasets so as to produce compatible
sets of characters do exist, however, and are the subject of this next section.

We begin with the definition of the maximum compatibility problem. Recall that a character c is
said to be compatible on a tree T if it is possible to define the character states at the internal nodes
so that for all states of c, the set of nodes exhibiting that state is connected. An equivalent definition
is that if c exhibits r states on the tree T , then there are exactly r − 1 edges of the tree T on which c
changes state.

The maximum compatibility problem is then as follows:

Maximum Compatibility

Input: Character matrix M with n rows and k columns (so that Mij is the state of taxon si for
character cj)

Output: Tree T on the leaf set S = {s1, s2, . . . , sn} on which the number of characters in C =
{c1, c2, . . . , ck} that are compatible is maximized.

Related to this search problem is the problem of determining the number of characters that are
compatible on a given tree (i.e., scoring a tree with respect to compatibility).

Computing the compatibility score of a tree

Input: Character matrix M with n rows and k columns (so that Mij is the state of taxon si for
character cj), and a tree T with leaves labelled by the different species, s1, s2, . . . , sn.

Output: The number of characters that are compatible on T .

This problem is polynomial, since (as we showed in the previous section), determining if a character
is compatible on a tree can be done quite simply. Hence, scoring a given tree under compatibility is
polynomial.

On the other hand, finding the tree with the largest compatibility score is more computationally
challenging. If we use an exhaustive search technique, scoring each of the possible solutions in turn,
this would take time O(t(n)nk), where n is the number of taxa, k is the number of characters, and t(n)
is the number of binary trees on n leaves (t(n) = (2n − 5) · (2n − 7) · 3.) The reason we only need to
examine binary trees, is that optimal solutions to maximum compatibility are obtained at the binary
trees (i.e., if a non-binary tree could be any optimal solution, each of its refinements will also be an
optimal solution).

We now look at computing solutions to maximum compatibility. On the input below, all the char-
acters are compatible, and the solution would be the tree T on which all the characters are compatible.

– A = (0, 0, 0)
– B = (0, 0, 3)
– C = (1, 1, 0)
– D = (1, 1, 1)
– E = (2, 1, 0)
– F = (2, 2, 4)

One tree on which these characters are all compatible is given by (A, (B, (E, (F, (C,D))))).
On the next example, however, the set of characters is not compatible, and the best solution(s)

would have only two characters that are compatible.

– A = (0, 1, 0)
– B = (0, 0, 0)
– C = (1, 0, 0)
– D = (1, 1, 1)

Note that the third character is compatible on every tree, but the first two characters are incompatible
with each other. Therefore, any tree can have at most one of these first two characters compatible with
it. One of those trees is given by ((A,B), (C,D)), and the other is ((A,D), (B,C)). The third possible
unrooted tree on these taxa is ((A,C), (B,D)), which is incompatible with both these characters.

We now consider this problem for linguistic phylogenetics. In this case, the use of maximum com-
patibility is motivated by the idea that properly selected and coded characters ought to be compatible
on the true tree, assuming there is a true tree (as opposed to a network in which taxa evolve with
borrowing as well as with genetic descent). This idea follows from the selection of characters that are
unlikely to evolve with homoplasy. And while all characters can exhibit homoplasy, especially if there
are mistakes in character encoding (that is, the assignment of character states), some characters are
less likely than others. Thus, maximum weighted compatibility is also a relevant optimization problem
in linguistic phylogenetics:

Maximum weighted compatibility

Input: Matrix M as above, but with characters given with positive weights, c1, c2, . . . , ck.
Output: Tree T on the set of taxa so as to maximize the sum of the weights of the compatible characters

on T .

It is clear that the assessment of the relative probability of homoplasy involves a great deal of
linguistic expertise and, of course, personal opinion. Thus, assigning weights to characters is best done
by a linguist skilled in the language family. (Assigning states to taxa for different characters also takes
linguistic expertise, for that matter!)

As with Maximum Compatibility, weighted maximum compatibility is optimized on binary trees.
Thus, any heuristic for solving weighted maximum compatibility need only examine completely resolved
trees.

Finding a solution to maximum compatibility (whether weighted or unweighted) is hard, because the
problem is NP-hard. Thus, solutions that are guaranteed to solve the problem optimally use techniques
like branch-and-bound or exhaustive search. Unfortunately, no software exists for solving this problem
in an automated fashion. Instead, solutions to this problem are obtained by first finding solutions to
maximum parsimony (discussed below), and then scoring each of the trees with respect to the maximum
compatibility criterion. This approach works reasonably because the two problems are very similar, so
that optimal solutions to one problem are often near-optimal solutions to the other. Furthermore, while
effective software for maximum compatibility does not really exist, there are many very effective software
packages for maximum parsimony, due to its frequency of use in biological phylogenetics. In the next
section, we define the maximum parsimony problem, and discuss software used to solve this problem.

Maximum Parsimony Maximum parsimony is an optimization problem in which a tree is sought for
an input character matrix (the same type of input as is provided to maximum compatibility), for which
the total number of character state changes is minimized. We begin this discussion by making a precise
statement of what is meant by the number of state changes of a character on a tree.

For those characters that evolve without any homoplasy, it is easy to assign states on the tree so
that the character changes state the minimum number of times. And, in fact, if the character exhibits r
states on the dataset, then it will change state exactly r− 1 times if it evolves without homoplasy (and
otherwise it will change state more than r − 1 times). Determining the minimum number of times the
character must change state is a polynomial time problem, but not an easy one to do by hand. We will
return to this another time! However, on small enough trees, it can be done by eye if you are careful.

Recall the discussion of this issue given in the introduction. First, if a character is defined for all
nodes in a tree, then this means that every node of the tree is given a state for that character. In this
case, the number of state changes for that character on the tree is simply the number of edges on which
the character changes state, and is easily computed. However, if the character is only defined on the
leaves, we will want to compute the best state assignment to the internal nodes so as to minimize the
total number of state changes for the character. This problem is easily done by inspection for small trees,
and can even be done efficiently (meaning in polynomial time) on large trees – although the technique
is then best done using software rather than by eye. Thus, when the tree T and character matrix M
are given, it is possible to compute the number of character state changes on T for the matrix M in
polynomial time. This minimum total number of changes of a character matrix M on a tree T is called
the length of the tree, and also the parsimony score. Thus, maximizing parsimony means producing the
minimum parsimony score. Somewhat confusing terminology, eh?

Finding the best tree T for a given character matrix M is the maximum parsimony problem, i.e.:

Maximum parsimony

Input: Matrix M with n rows and k columns, where Mij denotes the state of taxon si for character
cj .

Output: Tree T on leaf set {s1, s2, . . . , sn} with the smallest total number of changes for character set
{c1, c2, . . . , ck}.

While maximum parsimony is polynomial time if the tree is given, the problem is NP-hard when the
tree is not known and must be found. Furthermore, exhaustive search or branch-and-bound solutions are
limited to small datasets. Fortunately, effective search heuristics exist which enable reasonable analyses
on large datasets (with hundreds or even thousands of taxa). These heuristics are not guaranteed to
solve the optimization problem exactly, but seem to produce trees that are close in score and topology
to the optimal solution, in reasonable timeframes (i.e., hours rather than months).

Like Maximum Compatibility, Maximum Parsimony is optimized on binary trees, and heuristics for
solving maximum parsimony need only examine completely resolved trees. Even so, these heuristics are
computationally expensive, taking (in some cases) many days of analysis to come to what can only be
guaranteed to be local optima.

Scoring trees using Maximum Parsimony When the tree is given, you can compute the score under
maximum parsimony in polynomial time. The algorithm also allows you to compute an assignment of
states for each character to each node in the tree, in such a way that you produce the smallest number
of changes.

The simplest form of the algorithm operates as follows (here we assume the input tree is unrooted
and binary; modifying the algorithm for non-binary trees is slightly more complicated): The algorithm
is applied to each character independently.

– Root the tree on an edge, thus producing a rooted binary tree.
– If x is a leaf, let A(x) denote the state at the leaf x for the given character.
– Starting at the nodes v which have only leaves as children, and moving up the tree (towards the

root), do the following:
• If v has children w and x, and if A(w) ∩ A(x) 6= ∅, then set A(v) = A(w) ∩ A(x). Else, set
A(v) = A(w) ∪A(x).

– When you reach the root, r, pick an arbitrary state in A(r) to be its state. Then traverse the tree
downwards towards the leaves, picking states for each node, as follows:
• If the parent of node y has been assigned a state that is within A(y), then set the state for y to

the same state as was assigned to its parent. Otherwise, pick an arbitrary element in A(y) to
be its state.

At the end of this two-phase process (one up the tree, and one down), you will have assigned states
to each node in the tree. Note that in the upwards phase, some nodes will be assigned definite states,
but others may be given more than one possible state. When A(v) has only one element in it, then v′

assigned under maximum parsimony is uniquely determined. This will be relevant to issues involving
estimation of the properties of ancestral taxa, using maximum parsimony.

4.5 Binary encoding of multi-state characters

One of the ways that some researchers have tried to estimate trees from multi-state characters is by
doing a “binary encoding” of the character. This results in a replacement of the original multi-state
character matrix by a binary character matrix, which can then be analyzed using techniques that require
inputs to be binary. The advantage of this is that it enables the use of technologies that cannot be run
on multi-state characters. However, there are definite disadvantages, which will be discussed later.

The technique is as follows. Suppose you have a character which exhibits r states on a set S of
taxa. You replace that single r-state character by r binary characters, one for each state. Then, the
character for the state i will indicate whether the language has that state or not. For example, consider
a three-state character C defined on set {L1, L2, ..., L6}, so that {L1, L2} have state 1, {L3, L4} have
state 2, and {L5, L6} have state 3. The binary encoding of this three state character would produce
three binary characters. The character for state 1 would split the taxa into two sets: those having
state 1 (i.e., {L1, L2}) and those not having state 1 (i.e., {L3, L4, L5, L6}. Note that the evolution of
character C might have very different properties than the evolution of the binary characters derived
from C. For example, this character C is compatible on the tree ((L1, L2), (L3, (L4, (L5, L6)))), but not
all its derived characters are. Also, C will change state on some edges of the tree but not all its derived
characters will.

4.6 Informative and uninformative characters

In terms of solving maximum parsimony, or analyzing the properties of the maximum parsimony as a
method, it is helpful to evaluate when a character has an impact on the tree that will be returned. In
other words, if your input matrix M (where Mi,j is the state of the taxon si for character j) is given
as input, you would like to know whether removing some specific character (say character x) has any
impact on the tree that is returned. Since removing a character amounts to removing one column in the
matrix, this would be the same as saying “If we define matrix M-x to be the matrix obtained by taking
M and removing column x, when is it guaranteed that MP(M-x) returns the same optimal tree (or set
of optimal trees) as MP(M)?” A character that has no impact on tree estimation is called “parsimony
uninformative”, and is formally defined as follows:

Definition of Parsimony Uninformative. Let x be a character defined on set S of species. Then x is
parsimony uninformative if, for all matrices M for S the set of optimal parsimony trees on M is identical
to the set of optimal parsimony trees on M + x, where M + x denotes the matrix obtained by adding
column x.

As a consequence, the set of optimal parsimony trees will not change by removing a parsimony unin-
formative site from any alignment. All other characters are called “parsimony informative”. Removing
parsimony uninformative characters can result in a speed-up in the search for optimal trees (especially
if there are many such characters).

The same property can be asked about any phylogeny estimation method, obviously, and so we can
ask whether a character is “compatibility-informative”.

It is not hard to see the following:

Lemma 1. A character is parsimony-informative and “compatibility-informative” if and only if it has
at least two “big states”, where a state is “big” if it has at least two taxa in it.

5 Distance-based methods

We now turn to a discussion of phylogeny estimation from distances. That is, the input is a matrix of
pairwise distances for the set of taxa, and the algorithm computes a tree (often with branch lengths,
and sometimes with a root) using the input distance matrix. While these methods are based upon
distances, almost all of the techniques used to compute distances between taxa begin with the same
character data used in character-based estimations. Thus, distance-based methods are in a fundamental
sense also character based.

5.1 Step 1: computing distances

The first step in a distance-based method is producing the pairwise distance matrix. In linguistics,
these distances are typically based upon word lists, where the distance between two taxa is just the
number of words that they are not cognate for. In this setting, two languages have distance 0 if they
share cognates for all the semantic slots in the word lists. These distances are often normalized by the
number of semantic slots in the word list, to produce distances that lie between 0 and 1. The resultant
distance is called the normalized Hamming distance, or the p-distance. Alternatively, the pairwise
distance between languages can be based upon an edit distance between the written or spoken forms
of a word. In this scenario, two words that are cognate can still contribute to the distance between two
languages, and there is no need to determine cognacy.

In biology, while uncorrected distances (i.e., p-distances) are also sometimes used, more typically
these distances are corrected with respect to an assumed stochastic model of evolution. These “cor-
rected” distances attempt to account for hidden changes (e.g., if you observe A in one string, and C in
another, it is possible that more than one substitution occurred in that position in the history between
those two strings).

The output of this first step is a matrix of pairwise distances. This matrix will be 0 on the diagonal
and symmetric, but may not satisfy the triangle inequality (that is, it may be that for some triple
of taxa, si, sj and sk, we have d(si, sj) + d(sj , sk) < d(si, sk)). In fact, with the corrected distances
calculated under the various stochastic models of evolution, the assumption of the triangle inequality
will generally not hold.

5.2 Step 2: computing a tree from a distance matrix

There are many methods used to construct trees from distance matrices. Here we describe a few.

UPGMA The standard approach used in linguistics is a variant of UPGMA, which stands for “Un-
weighted Pair Grouping Method of Agglomeration”. In this kind of method, the tree is constructed by
picking the pair of taxa that have the smallest distance, and making them siblings. One of them is then
removed (or else both are removed and replaced by a new taxon), and the process is repeated. This
technique produces a rooted tree, but the root can be ignored.

We begin with an example of UPGMA, applied to a case where the distances obey a strong clock.
Figure 19 gives an ultrametric matrix, and Figure 20 gives the rooted tree realizing that matrix.

Other distance-based methods Not all distances obey a strong clock, and UPGMA can fail when
the input matrix is not sufficiently clocklike. Consider, for example, the tree given in Figure 21. This
tree has lengths on each edge, and thus defines a distance between every pair of leaves obtained by
adding up the lengths of each edge. Note that the pair that minimizes the distance is L1, L2, but that
these are not siblings! Thus, when UPGMA is applied to the matrix for this tree, it will produce the
wrong tree.

5.2.1

 B C D

A 2 16 16

B 16 16

C 10

D

Fig. 19. Ultrametric matrix

 7 3

 1 1 5 5

 a b c d

Fig. 20. Tree realizing the ultrametric matrix from Figure 19

 L1 L2
 1 1
 1

 5 5

 L3 L4

5.2.2.

 L2 L3 L4

L1 3 6 7

L2 7 6

L3 11

L4

Fig. 21. Additive matrix and its edge-weighted tree

When a distance matrix Mi,j fits an edge-weighted tree T exactly, in that the distance Mx,y equals
the path distance (sum of edge weights) in the tree T exactly, the matrix is said to be additive.
Furthermore, given any additive matrix, there is a unique tree (if no zero-length edges are permitted)
which fits the matrix exactly. A rather beautiful theorem can be stated about additive matrices:

The Four Point Condition A nxn matrix A is additive if and only if for all four indices i, j, k, l, the
median and largest of the following three values are the same:

– Ai,j +Ak,l

– Ai,k +Aj,l

– Ai,l +Aj,k

One direction of the proof of this theorem is easy–if the matrix is additive, then there is a tree T
with positive edge weights w realizing the additive matrix. In that case, given the four indices, i, j, k, l,
you can assume (without loss of generality) that the tree has an edge separating i, j from k, l. In that
case, Aij +Ak,l is smaller than the other two sums, and these other two sums have the same total score.

Given this characterization of additive matrices, it is easy to see that a tree can be produced from
its additive matrix (and we present one such below). Note, also, that additive distance matrices do not
have to reflect a clock – therefore, it is possible to construct trees using distance-based methods even
when taxa do not evolve in a clocklike fashion.

However, what about estimating trees from distance matrices that are not additive? Here we show
a method that can always estimate a tree on four-leaf datasets, whether or not the matrix is additive.
It is based upon the Four-Point Condition, and so will be guaranteed to return the correct tree when
the matrix is additive for that tree.

Estimating four-leaf trees: The Four-Point Method Given four taxa, A,B,C, and D, and given the
distance matrix M on the four taxa, group the taxa into two sets of two taxa each, so as to minimize the
pairwise sum. That is, compare M(A,B) +M(C,D),M(A,C) +M(B,D), and M(A,D) +M(B,C). If
M(A,B)+M(C,D) is minimum among these three pairwise sums, then return the tree ((A,B), (C,D)).
(Similarly for the other results.)

Estimating larger trees Among the methods that construct trees from distances, neighbor joining and
FastME are among the more accurate (in the sense that the trees they produce are closer to the true
trees than most other distance based methods). Furthermore, even when the evolution is somewhat
clocklike, using methods like neighbor joining and FastME tends to produce better (more accurate)
trees than using UPGMA. However, when the assumption of clocklike evolution is dropped, locating
the root is very difficult. For this reason, distance-based methods generally do not produce rooted trees,
but rather just unrooted trees. Finally, when the matrix is “close enough” (in a precisely quantified
manner) to additive, then estimations of the tree can still be guaranteed to be correct, but estimations
of the branch lengths will not be guaranteed to be correct.

The Naive Quartet Method We now describe a very simple algorithm for estimating trees. It is so simple,
it can be applied by hand! It uses the Four Point Method to compute trees on every four taxa, and
then combines the trees into a tree on the full set of taxa using the All Quartets Method described in
Subsection 3.2.

It is actually easy to see that if the matrix M is additive the Four Point Method will be correct on
every four taxa, and so the quartet trees that are produced will be correct. Combining quartet trees
into a tree on the full dataset is then straightforward (see the section on computing trees from quartet
trees). However, here too if the input matrix is not additive, then some quartet trees can be incorrect,
and the combination of these quartet trees into a tree on the full set of taxa can be problematic.

6 Statistical methods of phylogeny estimation

Phylogeny estimation is often posed as a statistical inference problem, where the taxa evolve down
a tree via a probabilistic process. Statistical estimation methods take advantage of what is known
(or hypothesized) about that probabilistic process in order to produce an estimate of the evolutionary
history. That estimate can include a range of hypotheses – starting with the underlying tree, and perhaps
also the location of the root, the time at the internal diversification events, the rates of evolution on each
branch of the tree, etc. When we consider phylogeny reconstruction methods as statistical estimation
methods, many statistical performance issues arise. For example: is the method guaranteed to construct
the true tree (with high probability) if there is enough data? How much data does the method need to
obtain the true tree with high probability? Is the method still relatively accurate if the assumptions of
the model do not apply to the data that are used to estimate the tree?

In order to understand these questions, we will begin with some simpler problems that can also be
posed as statistical estimation problems.

6.1 Introduction to Markov models of evolution

Markov models of evolution form the basis of most computational methods of analysis used in phylo-
genetics, and can be used to describe how qualitative characters with any number of states evolve. The
simplest of these are for two states, reflecting the presence or absence of a trait. But more commonly,
these models are used for nucleotide or amino-acid sequences, and so have 4 or 20 states, depending on
the type of data. They can also be used (less commonly) for codon models, in which case they have 64
states.

The mathematics for these models is similar, independent of the number of states. So, we’ll start by
discussing a simple model for two states, the Cavender-Farris model.

Cavender-Farris model Under the Cavender-Farris model, the probability of absent or present is the
same at the root, and that this can change on the edges of the tree. To govern the changes, we associate
a parameter p(e) to every edge e in the tree, where p(e) denotes the probability of changing state (from
absent to present, or vice-versa). The model also requires that 0 < p(e) < 0.5.

Note that this model only describes how a single state evolves. Therefore, to extend this model so
that it is applicable to analyses of many two-state characters, we need to specify how different characters
can differ in their evolutionary parameters. In the simplest form, the assumption is that all characters
have exactly the same parameter values, and that the evolve independently. This is generally called the
i.i.d. (identical and independently distributed) assumption.

Four-state models Because there are four nucleotides, A,C,T, and G, 4-state Markov models are used
to describe nucleotide sequence evolution. The Jukes-Cantor model is the 4-state version of Cavender-
Farris, with 0 < p(e) < 0.25 defined for every edge, and all nucleotide substitutions have equal probabil-
ity. Other more general 4-state models, such as the General Time Reversible model, are more commonly
used.

Statistical Identifiability Statistical identifiability is an important concept related to Markov models.
We say that a parameter (such as the tree topology) of the Markov model is identifiable if, given the
probability distribution of each character of the patterns of states at the leaves of the tree, are sufficient
to determine that parameter. Thus, some parameters of a model can be identifiable while others may
not be. For the case of Cavender-Farris and Jukes-Cantor, for example, the unrooted tree topology is
identifiable, the substitution probabilities are identifiable, but the location of the root is not.

Statistical Consistency Statistical consistency is another important concept, but is a property of a
method rather than a model. Thus, a phylogeny reconstruction method is a statistically consistent
estimator of a model parameter (such as the tree topology) if, for all model trees in that model, the
error of the estimated value for the parameter decreases to zero as the number of samples obtained
from the model increases.

A simple example of this that is not phylogenetic is estimating the bias in a coin, i.e., the probability
that a random coin flip will come up heads. If the coin is fair, then this probability is 0.5; however,
since the coin may be biased one way or the other, it can be of interest to estimate this probability
by doing many random coin flips. Suppose the true probability for a given coin is q, and so we do not
require that q = 0.5. If we toss the coin many times, and then take the number of times a head shows
up and divide by the number of coin tosses, we get an estimate q̂ of q. Note that our estimate can have
some error, and so ε = |̂(q)− q| 6= 0. This estimator is statistically consistent if ε→ 0 as the number of
tosses increases.

In the context of phylogeny estimation, the parameter of interest could be the underlying unrooted
tree topology. To define what we mean by statistical consistency, we need to quantify the error in the
estimator. A typical way of quantifying the error in a tree estimator is the Robinson-Foulds distance,
which is the number of edges in the estimated tree or the true tree that are not in both trees, where
each edge is identified by the bipartition it induces on the leaf set. Thus, the Robinson-Foulds (RF)
distance ranges from 0 to 2n− 6, where n is the number of leaves in the tree. When the RF distance is
0, the two trees are identical topologically.

Of course, not all methods have the guarantee of producing the correct tree with high probability
when given a sufficiently large number of characters, but some methods do. Interestingly, maximum
parsimony and maximum compatibility do not have this guarantee, nor does UPGMA (the agglomer-
ative clustering method used in lexicostatistics). However, Bayesian methods and maximum likelihood
methods do, and so do some polynomial time distance-based methods.

6.2 Calculating the probability of a site pattern

A question we can ask here is how a model tree (for example, a Cavender-Farris model) defines a
probability distribution on sequences. Suppose we are given a CF model tree and a single bit (0 or 1) at
each leaf. We would like to know how to define the probability of this “site pattern”, using the model
tree substitution probability parameters.

The simplest (albeit computationally most expensive) way to do this calculation is to compute
the probability of each pattern for each way of setting the states at the internal nodes (including the
root), and then sum over all those probabilities. For a given assignment of states to internal nodes, the
probability of the data is easy to calculate! First the probability of the root having state 0 is 0.5, and
similarly the probability of being state 1 is also 0.5. Then on any edge e on which there is a change of
state, the probability is p(e), and edges on which there is no change of state the probability is 1− p(e).
These probabilities are all multiplied together, since they are independent.

This is a brute-force calculation, and so will take O(n2n) time, where there are n leaves in the tree
(if each multiplication is counted as having unit cost). To do this more efficiently, we can use a simple
dynamic programming algorithm, quite similar to the algorithm used for maximum parsimony.

Note that where the tree is rooted has no impact on the result of the calculation, since the model is
time-reversible.

6.3 Calculating the probability of a set of sequences

If we assume that all sites evolve independently and identically, then the probability of a set of sequences
of length greater than 1 is just the product, over all sites, of the probability of the pattern for that site.

This simple observation allows us to define the likelihood of a model tree as the probability of the data
being generated by that model tree.

6.4 Bayesian methods

Bayesian methods, by definition, are based upon explicit parametric models of evolution. They are
also “likelihood-based” in that they calculate likelihoods of trees based upon that explicit parametric
mathematical model of evolution. They differ from maximum likelihood methods in that they do not
attempt to estimate the parameters of the evolutionary model in order to maximize the probability of
producing the data. Instead, they perform a “random walk” through model tree space (where the tree
and the associated parameters of evolution are provided), by computing the probability of producing
the observed character data for each model tree it visits, and then accepting the new model tree if the
probability is larger. If the probability is smaller, then the new model tree may be accepted with some
non-zero probability (but less than 1). Bayesian methods thus have to operate for a very long time,
doing many proposals, until “stationarity” is reached. When the MCMC chain reaches stationarity,
a sample of the model trees it visits is then taken, and the summary statistics of that sample are
calculated. These give estimates of the support for the various parameters of the evolutionary process.
Mostly, however, these summary statistics are used to estimate support for the different branches of
the estimated tree(s).

Of fundamental importance, then, is the specific parameterized statistical model underlying the
Bayesian method. To date, almost all of the Bayesian methods used in linguistic phylogenetics assume
binary characters, based upon “presence/absence” of a feature, and assume that all the binary characters
evolve identically and independently (see, for example, the papers by Gray and Atkinson). To make
these methods applicable to linguistics, the naturally multi-state character datasets are modified so that
they are binary character matrices. As we discussed in Section 4.5, these binary characters behave quite
differently than the multi-state characters. For example, the multi-state characters may be homoplasy-
free, but the binary characters will not generally be homoplasy-free. Clearly, the binary characters
derived from multi-state characters do not evolve independently, nor are they likely to evolve under
the same model. Thus, these Bayesian methods are based upon models that are clearly somewhat
problematic for linguistic analyses.

6.5 Maximum Likelihood methods

Maximum likelihood methods are similar to Bayesian methods in that they are based upon parametric
models of evolution, and compute likelihood scores. They differ in that they also seek to find optimal
parameter settings, so that the likelihood is maximized. Thus, maximum likelihood is an optimization
problem, while Bayesian estimation is not.

7 Other phylogenetic estimation issues

7.1 Inferring ancestral states

A fundamental problem of great interest is estimating the characteristics of the ancestral taxa.
In linguistics, these ancestral taxa are typically called proto-languages, and various approaches have

been used to estimate the properties of these proto-languages. However, standard approaches are not
reliable. For example, assuming that if a state is shared by more than half the known languages, it will
be shared by the language at the root, is not accurate. Knowing the tree, however, can help with these
estimations. For example, in the Indo-European tree, under the assumption that Anatolian is the first
child of Proto-Indo-European (PIE), then the only estimations that can be reliably made are for those
characters for which some Anatolian has one state and some other non-Anatolian language also has that
state. Then that state must also be exhibited at the root, unless the character evolved homoplastically.

7.2 Locating the root

Note that when the characters are directed, it is possible to narrow down the location for the root –
sometimes quite precisely. Here we show some examples where this can be done. Suppose the tree is
given by (A, (B, (C, (D,E)))), and the characters on these languages are given by:

– A = (0, 0, 0)
– B = (0, 1, 0)
– C = (0, 0, 1)
– D = (1, 0, 1)
– E = (1, 0, 1)

If we assume that 0 is the ancestral state, and 1 the derived state, and there is no homoplasy in these
characters, then there are only two edges in the tree which could contain the root.

7.3 Estimating dates at internal nodes

Sometimes researchers are particularly interested in estimating dates at internal nodes of the tree. To
do this, the first step involves estimating a tree and its branch lengths, two tasks that are relatively
reasonably well addressed. The second step involves combining those branch length estimations with
dates at certain nodes of the estimated tree provided by external evidence.

8 Reticulate evolution

8.1 Introduction

Reticulate evolution covers any history which is not purely tree-like. In biology, this is typically from
horizontal gene transfer (HGT) or hybrid speciation; in linguistics, this is typically from loan words,
or other types of borrowing between languages that come into contact. The specific models of these
transmissions differ between these two contexts, and the algorithms for estimating these reticulate
histories (represented by phylogenetic networks instead of trees) differ accordingly.

8.2 Reticulation in linguistics

Languages frequently “borrow” lexemes from other languages, and these borrowings can be undetectable
under some circumstances. Similarly, other characteristics can be transmitted “horizontally”. For these
reasons, a tree model is not always the most appropriate model for the evolutionary process.

8.3 Reticulation in biology

