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This paper reports a simulation study comparing and evaluating the perfor-
mance of different linguistic phylogeny reconstruction methods on model data-
sets for which the true trees are known. UPGMA performed least well, then (in 
ascending order) neighbor joining, the method of Gray & Atkinson and finally 
maximum parsimony. Weighting characters greatly improves the accuracy of 
maximum parsimony and maximum compatibility if the characters with high 
weights exhibit low homoplasy.
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1. Introduction

A linguistic phylogeny, or linguistic phylogenetic tree, is a rooted, binary tree (i.e., 
every internal node has two children) describing the evolutionary history for a set 
of related languages (or, in some cases, dialects). Linguistic phylogenies have been 
used to better understand language evolution as well as human migrations. In re-
cent years, many new phylogenies have been proposed for different language fami-
lies, with some of them sparking significant controversy (see Nichols & Warnow 
(2009) for a survey of some recent analyses). Because these phylogenies have 
been estimated using different computational methods and different data (both 
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of different types and of differing scholarly reliability), evaluating them has been 
challenging.

A key concern with proposed linguistic phylogenies has been the quality of 
the data used in the analysis (Eska & Ringe (2004), Nichols & Warnow (2009)). In 
order to address this, Nakhleh et al. (2005b) compared different methods for esti-
mating Indo-European phylogenies, using a highly reliable, curated collection of 
linguistic characters (i.e., traits), including lexical, phonological and morphologi-
cal characters. This study showed that while most methods produce many of the 
well-established subgroups, they differ substantially in important and linguistical-
ly interesting ways. Thus, for example, all methods reproduce the major subgroups 
and also somewhat more contentious groupings such as Greco-Armenian; in addi-
tion, most methods place Tocharian as the second subgroup to split off from Proto 
Indo-European (PIE) after Anatolian. However, other questions — such as where 
to place Germanic — were handled quite differently by the different methods and 
depended upon the data used. In particular, Nakhleh et al. (2005b: 180), observed, 
“[C]ertain posited relationships only show up if morphological and phonological 
characters are included in the analysis”. Thus, Nakhleh et al. (2005b) showed that 
the differing evolutionary hypotheses produced by different methods depended 
not only on the quality of the data, but also on the type of data (e.g., only using 
lexical data as opposed to also including morphological and phonological data) 
and the particular method.

Unfortunately, since the true Indo-European tree is not known, the relative 
accuracy of the various trees (and hence of the phylogeny estimation methods 
used to estimate these trees) could not be established. How, then, is an interested 
researcher to determine whether a particular phylogenetic analysis proposed for a 
given language family is reliable? Or to determine what phylogenetic reconstruc-
tion method to use when given a particular character dataset? Or to determine 
which linguistic characters to use in a new phylogenetic analysis? Or to under-
stand why two phylogenetic analyses might differ?

The difficulty in evaluating methods for estimating phylogenies is not unique 
to linguistics; the same issue occurs in biology, where phylogenies are estimated 
using molecular sequence data, and the true phylogeny cannot be known in full 
detail. For this reason, evaluations of phylogeny estimation methods are primarily 
based on simulation studies, where molecular sequences are evolved down dif-
ferent ‘model trees’, and trees estimated on these sequences are then compared to 
the model tree in order to quantify the error in the estimation. These studies have 
revealed important differences between methods and have strongly influenced the 
phylogenetic analysis protocols used by evolutionary biologists. Although simula-
tion is not a dominant methodology in linguistics, simulation studies have also 
been performed in linguistics to evaluate phylogeny estimation methods (e.g., 
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Embleton (1981, 1986), McMahon & McMahon (2005), Nicholls & Gray (2008), 
Wang & Minett (2005)).

Inspired by the improved understanding of phylogenetic estimation methods 
enabled by simulation studies, we performed a simulation study to compare some 
of the major methods of linguistic phylogeny estimation. Because linguistic char-
acter evolution is not properly modeled by biological evolution models, we used 
the parametric model of linguistic evolution developed in Warnow et al. (2006). 
This model allows for borrowing between lineages and has parameters specifying 
the probabilities of each character changing state on an edge, being borrowed, 
evolving in parallel or mutating back to a previous state (these terms are defined 
in §3.3). We set these parameters to fit the empirical properties observed for lin-
guistic characters defined on Indo-European languages in Nakhleh et al. (2005b). 
We evaluated accuracy on different types of linguistic characters and under dif-
ferent conditions, varying the rates of evolution and the amounts of borrowing 
between lineages. In particular, we varied the simulation protocol to allow us to 
evaluate the consequences of restricting a phylogenetic analysis to lexical charac-
ters only, as well as the consequences of eliminating characters that seem likely to 
have evolved with borrowing, parallel evolution or back-mutation.

The paper is organized as follows. We begin by discussing linguistic charac-
ters, focusing on different types of characters and their properties, in §2. We then 
discuss the simulation study protocol, including the phylogenetic methods we 
compared, the parametric model in Warnow et al. (2006), how we set the parame-
ters for each type of linguistic character and the datasets we generated to study the 
phylogenetic methods, in §3. In §4, we discuss the results, focusing on the relative 
accuracy of different methods, the impact of character selection on accuracy and 
the ramifications of this study for linguistic phylogenetic analysis. The details of 
the mathematical model and phylogenetic methods are provided in the Appendix.

2. Linguistic characters and model assumptions

In this section, we discuss different types and properties of linguistic characters, 
and the conditions under which the major computational methods are guaranteed 
to have good performance. (This material is necessarily cursory; see Nichols & 
Warnow (2009) for deeper discussion.)

2.1 Linguistic characters

Most commonly, phylogenies are based upon analyses of wordlists, where each 
word (semantic slot) is used to partition the languages into cognate classes. This 
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is an example of a more general concept, a ‘character’, which can be defined by 
any linguistic feature. The different forms that a character can take in different 
languages are called the ‘states’ of the character; each language can be described 
by its states for each character. In the current state of the art, linguistic characters 
are of three types: lexical, phonological and morphological. (Syntactic characters 
are not generally used because not enough is known about syntactic change to 
justify confidence for linguistic descent.) For lexical characters, the different states 
are cognate classes, so that two languages exhibit the same state for the lexical 
character if and only if they have cognates for the meaning associated with the 
lexical character. Phonological characters record the occurrence of sound changes 
within the language’s (pre)history; thus a typical phonological character has two 
states, depending on whether or not the sound change (or, more often, constella-
tion of sound changes) has occurred in the development of each language. Most 
morphological characters represent inflectional markers; like lexical characters, 
they are coded by cognation. Thus each character defines an equivalence relation 
on the language family, such that two languages are equivalent if they exhibit the 
same state for the character.

In general, the character states are defined so that it is reasonable to assume 
that if two languages exhibit the same state for the same character, then the shared 
state arose due to common inheritance. However, when borrowing occurs (a very 
common occurrence for lexical characters when different linguistic communities 
come into contact), two languages can share a character state, but their common 
ancestor could have a different state; this violates the assumption that shared states 
are due only to common inheritance. A careful linguist can often detect that a word 
(for example) is a result of contact (i.e., borrowing) rather than genetic descent, 
and code that word as a unique state. However, undetected borrowing can result 
in languages sharing character states that are not due to common inheritance (see 
Ringe et al. (2002); Nakhleh et al. (2005a, b) for examples of both detected and un-
detected borrowing). Other phenomena that can result in shared states not being 
due to common inheritance are parallel development and ‘back-mutation’. Parallel 
development is the more common of the two, with semantic shift being a com-
mon cause of parallel development (e.g., words meaning “human being” shift to 
mean “man”, i.e. “male human being”). Back-mutation is a change of the form a > 
b > a. However, back-mutation can occur only in a very restricted range of cases, 
e.g. acquisition of an inflectional category followed by loss of the same; the Latin 
superlative in the Romance languages is an example.

Some linguistic characters are clearly much more likely to evolve by parallel 
development, borrowing or back-mutation than others. For example, lexical char-
acters are more likely to evolve with borrowing than either morphological or pho-
nological characters, as noted in Sankoff (2002: 652–658). Phonological characters 
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can be either simple or complex; complex phonological characters are those based 
upon a sequence of sound changes, and simple ones are those that represent a 
single sound change. An example of a complex phonological character is the P16 
character in Ringe et al. (2002) — Grimm’s Law, followed by Verner’s Law, fol-
lowed by the shift of stress to initial syllables, followed by raising of unstressed *e 
to *i — a phonological character so complex that it is very unlikely to be repeated 
independently. In contrast, note that simple phonological characters can evolve in 
parallel; an example of this is Grimm’s law, a striking sound change, but something 
very like it happened also in Armenian. Neither simple nor complex phonologi-
cal characters are likely to exhibit back-mutation. Characters that evolve without 
any borrowing, parallel development or back-mutation provide clear information 
about the true history relating the languages, while those that evolve with substan-
tial borrowing or ‘homoplasy’ (that is, parallel evolution or back-mutation) are 
harder to interpret. Thus, not all linguistic characters provide the same quality of 
‘phylogenetic signal’; the type of character (lexical, phonological or morphologi-
cal) impacts the probability of being borrowed, evolving in parallel or exhibiting 
back-mutation.

Characters also differ according to their rates of evolution (how likely they are 
to change state). It is easy to see that a character that never changes on the tree pro-
vides no information about the evolutionary history relating the languages, so that 
rates of evolution can be too slow to be useful. Similarly, characters that change too 
quickly can result in all languages having different states and again not provide any 
information about the evolutionary history; thus, rates of evolution can be too fast 
to be useful. Therefore the rate of evolution also impacts the phylogenetic signal.

Another issue is whether the expected number of times the character changes 
is proportional to time, or the strong lexical clock assumption. When all char-
acters evolve under a strong lexical clock, then even very simple methods (e.g., 
UPGMA, which makes two languages sisters if they share the most features in 
common) will be highly accurate. However, the strong lexical clock assumption 
has been discredited in historical linguistics (e.g., McMahon & McMahon (2006)), 
and so methods should be compared under a range of conditions, including both 
strong and weakened clock assumptions.

Finally, a feature that impacts phylogenetic estimation is the assumption (ex-
plicit in many statistical methods, such as Gray & Atkinson (2003)) that all the 
characters evolve according to a ‘rates-across-sites’ assumption. For example, un-
der the rates-across-sites assumption, if a character evolves at twice the speed of 
another character on one branch of the tree, then it evolves at twice the speed of 
the other character on every branch in the tree. This assumption may not hold, of 
course, since conditions that impact the rate of change for a given character can 
impact different characters differently.
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2.2 Assumptions made by methods

Typically, methods are based upon explicit assumptions about how characters 
evolve and are only guaranteed to perform well when the data being analyzed 
matches the assumptions made by the method. With few exceptions, phylogeny es-
timation methods assume that there is no undetected borrowing between languag-
es, an assumption that may be violated. However, even when there is no undetected 
borrowing between languages, the conditions under which methods are guaran-
teed to be highly accurate are not likely to hold. For example, it is well known that 
UPGMA does well under the strong lexical clock but may not work well when 
the lexical clock assumption is violated. Similarly, the methods of maximum par-
simony, maximum compatibility and the ‘perfect phylogeny’ methods of Ringe 
et al. (e.g., 1995, 2002) are guaranteed to give good results when the characters 
evolve without any homoplasy (parallel development or back-mutation) or bor-
rowing, but may not perform well in the presence of homoplasy or borrowing. Less 
obvious, but equally concerning, is the dependency on the rates-across-sites as-
sumption made by statistical methods (such as Gray & Atkinson (2003)) and other 
assumptions made by these models (discussed in detail in Eska & Ringe (2004), 
Nichols & Warnow (2009)) that are unlikely to hold for linguistic data. Thus, guar-
antees made purely on theoretical grounds are not generally relevant to practice, 
and phylogenetic estimation methods need to be evaluated using other techniques.

Evaluations of phylogenetic estimation methods based upon linguistic bench-
marks (well-established trees for language families) have been made and have 
provided some preliminary insights (see Nichols & Warnow (2009) for a survey 
of many methods on many language families and Nakhleh et al. (2005b) for a 
comparison of methods for Indo-European). However, these benchmark trees are 
typically only partially resolved; that is, not all the branchings are binary, and it is 
not clear that all subgrouping relationships are known with certainty. Therefore, a 
full understanding of the relative reliability of phylogeny estimation methods can-
not be obtained by relying on benchmarks. Simulation studies provide a separate, 
complementary way of exploring accuracy because they provide a ground truth 
(the true tree) to which estimated trees can be compared and accuracy quantified.

3. Simulation study

3.1 Overview

Our study was designed to help us understand how the conditions of the evolu-
tionary process (e.g., the presence of borrowing between lineages, relaxing the 
strong molecular clock, relaxing the strong rates-across-sites assumption and the 
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degree of homoplasy) impact the accuracy of the different phylogeny reconstruc-
tion methods we studied (Gray & Atkinson (2003), weighted and unweighted 
maximum parsimony, weighted maximum compatibility, lexicostatistics and 
neighbor joining; see §3.3). However, we were also interested in seeing if there 
were any clear indications of relative performance between different methods in 
evaluating the consequences of ‘screening datasets’ to remove likely homoplastic 
characters, in using weighting schemes to give higher weight to those characters 
which were considered likely to be more resistant to borrowing and homoplasy 
and in restricting analyses to lexical-only datasets as compared to using lexical and 
morphological characters together.

Some comments on the screening and weighting of characters seem ap-
propriate here. More than a century of work in historical linguistics has shown 
that words of certain meanings are unusually likely to undergo specific shifts in 
meaning, and the lexical characters based on those meanings (‘semantic slots’) are 
therefore unusually likely to exhibit parallel development. Words meaning “hu-
man being” tend to acquire the meaning “man”; words meaning “man” tend to 
acquire the meaning “husband”; a word meaning “cheek”, “chin” or “jaw” is likely 
to acquire either of the other two meanings in that set; demonstratives are likely to 
develop into definite articles and/or third-person pronouns and so on. If there is 
a reasonable suspicion that characters of these kinds exhibit parallel development 
in a particular dataset, it is reasonable to screen those characters out, since shared 
cognates in those meanings are unlikely to reflect shared descent. This can have 
important consequences for the reliability of certain phylogenetic methods, as we 
will demonstrate below.

The weighting of characters is also based on a body of experience widely shared 
by historical linguists. While borrowing of lexemes (vocabulary items) between 
languages is commonplace, the transfer of inflectional morphology or complex 
sound changes between two mutually unintelligible speechforms is clearly far less 
common (Sankoff 2002: 640–641, 658), and there is disagreement about the cir-
cumstances in which it is possible at all. It follows that non-lexical characters are 
more likely to have evolved by descent alone and thus provide better evidence for 
the true tree. This can be quantified by weighting phonological and morphologi-
cal characters more heavily than lexical characters, and weighting can also have a 
significant impact on the performance of different phylogenetic methods.

We performed the simulation study using the parametric model of language 
evolution provided in Warnow et al. (2006). This model permits borrowing be-
tween languages, modeling this as ‘contact’ edges added to an underlying genetic 
tree, thus producing a ‘phylogenetic network’ (Nakhleh et al. (2005a)). Character 
evolution then proceeds from the root down to the leaves of the phylogenetic 
network, and the model allows parallel evolution and back-mutation. Finally, the 
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model assumes independence between the characters but does not constrain the 
characters to evolve identically. The model also provides parameters for which 
values must be set for each character, controlling the deviation from a strong lexi-
cal clock, deviation from the strong rates-across-sites assumption (also known as 
‘heterotachy’), the rate of evolution and the probability of borrowing.

Our study used phylogenetic networks with 30 leaves and with 0 to 3 contact 
edges. To capture the characteristics of a real dataset, such as the Indo-European 
dataset analyzed in Nakhleh et al. (2005b), we evolved from 301 to 360 charac-
ters down the trees, of which 300 were modeled after lexical characters, and the 
remainder were morphological. We set the parameters of the simulation in order 
to produce datasets with different rates of evolution (low, medium and high), dif-
ferent homoplasy levels (low, medium and high), different deviations from a lexi-
cal clock (low, medium and high) and different deviations from the rates-across-
sites assumption (low, medium and high). We divided lexical characters into three 
types according to the rate of evolution, obtaining fast lexical, medium lexical and 
slow lexical characters.

We ran 28 basic experiments, each defined by parameter values that determine 
the rates of evolution, the number of contact events, deviation from the strong 
lexical clock and deviation from the strong rates-across-sites assumption. For each 
experiment, we generated 32 random phylogenetic networks (phylogenetic trees 
with contact edges to permit borrowing between languages) and simulated four 
datasets on each network. All in all we created 3584 datasets.

Each dataset is the result of a run of the simulation process and consists of a 
set of sequences, one for each leaf in the phylogenetic tree or network, where each 
sequence represents the states of the language represented by that leaf for each of 
the characters in the simulation process. This resulting character state matrix is 
used by each reconstruction method to produce an estimated tree, which can then 
be compared with the genetic tree within the model phylogenetic network.

We compared each estimated tree to the genetic tree within the model phy-
logenetic network with respect to its topological accuracy, reporting two types of 
error rates: ‘false negatives’ and ‘false positives’, which we now define. Every edge 
in a tree defines a bipartition of the leaves of the tree and hence can be identified 
with that bipartition. Two trees on the same leaf set can thus be compared on the 
basis of their bipartitions. A bipartition in the genetic tree that is missing from 
the estimated tree is said to be a ‘false negative’, while a bipartition that appears in 
an estimated tree that does not appear in the genetic tree is a ‘false positive’. The 
number of false negatives is bounded by n-3, where there are n leaves, and so the 
‘false negative rate’ (FN rate) is defined to be the number of false negatives divided 
by n-3. Similarly, the false positive rate (FP rate) is the number of false positives 
divided by n-3. Genetic trees are always binary, but estimated trees may not be. 
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However, when estimated trees are binary, then their false negative rates and false 
positive rates are identical. In general, though, we can only assert that the false 
positive rate is never more than the false negative rate. We focus our attention on 
false negative rates but provide information about false positive rates as well.

3.2 Character evolution parameters

Certain parameters of the model are specific to the phylogenetic network but vary 
with the experiments; these include the model phylogenetic network (in particu-
lar the number of contact edges) and the elapsed time on each edge. In addition 
to these network-specific parameters, other parameters can change according to 
the character. These parameter values thus depend upon the character c, and are 
described as follows:

– homoplasy factor(c), which determines the probability of parallel evolution or 
back-mutation,

– character borrowing(c), which determines the probability of being transmit-
ted via borrowing,

– height factor(c), impacting the rate of evolution,
– dlc(c), reflecting the deviation from the lexical clock and
– het(c), reflecting the degree of heterotachy (or deviation from the rates-across-

sites assumption).

Since homoplasy means parallel evolution or back-mutation, a character c for 
which homoplasy factor(c) is low has a low probability of parallel evolution 
or back-mutation, and conversely a character with a high value for homoplasy 
factor(c) has a high probability of parallel evolution and/or back-mutation. 
Similarly, the borrowing(c) value indicates the probability of the character c being 
transmitted on a contact edge, so that characters that are highly resistant to bor-
rowing will have very low values, and characters that can be easily borrowed will 
have high values.

The height factor(c) is a measure of the total amount of evolution; low values 
for height factor(c) mean that the character changes state relatively rarely on the 
tree, and high values mean that it changes state frequently. The value of height 
factor(c) can be seen as the rate of change for the character c. The parameter 
dlc(c), which measures the deviation from a lexical clock, will be 0 when character 
change is proportional to time, and increase as the strong lexical clock assumption 
is relaxed. The parameter het(c), called ‘heterotachy’, measures the deviation from 
the strong ‘rates-across-sites’ assumption, which asserts that each character is a 
multiple of every other character, so that if character c1 evolves twice as quickly as 
character c2 within Germanic, then it will evolve twice as quickly also within Italic, 



© 2013. John Benjamins Publishing Company
All rights reserved

152 François Barbançon, Steven N. Evans, Luay Nakhleh, Don Ringe and Tandy Warnow

within Baltic, within Tocharian etc. Since the rates-across-sites assumption is un-
likely to be valid, values for het(c) greater than 0 here are linguistically reasonable.

We add the following constraints to the parameter system to suppress addi-
tional degrees of freedom unnecessary for the purpose of our experiments:

– We set the parameters dlc(c) and het(c) identically for all characters within 
any one simulation but vary these parameters between different experiments. 
The other parameters have one set value for each of the four character classes 
we consider.

– We use three values for height factor(c), one for slow lexical and morphologi-
cal characters, a somewhat larger one for medium lexical characters and the 
largest one for fast lexical characters.

– The values of homoplasy factor(c) and character borrowing(c) are identical for 
all lexical characters, but are different for morphological characters.

– We do not allow borrowing for morphological characters, so that character 
borrowing(c) is a parameter for lexical characters only.

For each experiment, we set the above parameters partly by targeting measurable 
model conditions such as observed homoplasy and borrowing, as well as other 
considerations such as the number of contact edges, number and type of characters 
analyzed etc. Parameter settings (specifically character borrowing(c) and homo-
plasy factor(c)) are set so that on the low-homoplasy or screened datasets, 1% of 
the lexical characters and none of the morphological characters evolve homoplas-
tically, and 6% of the lexical characters and none of the morphological characters 
evolve with borrowing, while on the moderate-homoplasy or unscreened datasets, 
13% of the lexical and 24% of the morphological characters are homoplastic, and 
7% of the lexical and none of the morphological evolve with borrowing. These set-
tings are approximately equal to those observed in the analyses of screened char-
acters for Indo-European languages in Nakhleh et al. (2005a), and so represent 
a somewhat ‘easy’ model setting. Therefore, before screening, the morphological 
characters are much more likely to be homoplastic than the lexical characters, and 
after screening they are much less likely.

3.3 Phylogeny reconstruction methods

The phylogeny reconstruction methods we study in this paper include most of the 
standard methods used in molecular phylogenetics as well as two newer methods 
proposed explicitly for reconstructing phylogenies on languages.

These six methods are the ones that have been used in most phylogenetic re-
constructions on linguistic datasets: UPGMA is one of the standard lexicostatis-
tics methods, maximum parsimony has been used in several dataset analyses (see 
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for example the analysis of the Bantu language family in Holden (2002)) and the 
Gray & Atkinson method was used to analyze an Indo-European dataset (Gray & 
Atkinson 2003) and the Bantu family (Holden & Gray (2006)). Other phylogenetic 
analyses of IE datasets (Nakhleh et al. (2005a, 2005b); Ringe et al. (2002)) have 
used methods designed to find trees that optimize weighted maximum compat-
ibility (WMC), and these trees were used as candidates for the underlying genetic 
tree of a ‘perfect phylogenetic network’ for IE in Nakhleh et al. (2005a). Thus, 
WMC is included in order to represent a technique that is closely allied to our ap-
proaches. We also include weighted maximum parsimony (WMP) since it is very 
close to WMC, and used in biological systematics. Neighbor joining is included in 
order to provide a method from the biological systematics toolkit.

Some comments should be made about the use of weighting in maximum par-
simony or maximum compatibility. The weights in these methods are supposed 
to reflect the relative resistance to borrowing and homoplasy, with higher weights 
given to characters that are believed to be more resistant to borrowing and homo-
plasy. WMC can be used most effectively after the data have been screened to re-
move clearly homoplastic characters. In our simulation study, we have the weights 
for all lexical characters set to 1 and weights for all morphological characters set to 
50 to reflect the expectation that morphological characters (after screening) will 
have a very low incidence of homoplasy and borrowing, as compared to lexical 
characters. (Nakhleh et al. (2005b) used two weights, 1 and infinity, for their char-
acters, with 1 the default and infinity used for only a subset of the morphological 
and phonological characters that were deemed extremely resistant to homoplasy 
and borrowing. We picked 50 as a proxy for infinity to allow us to explore per-
formance on datasets on which not all characters with high weight will evolve 
without homoplasy.) Thus, WMC and WMP should not be used in this way on un-
screened data. However, we include data showing how WMC and WMP perform 
on unscreened data in order to show the impact of poor estimates of character 
weights on phylogenetic accuracy.

UPGMA. The UPGMA (unweighted pair grouping method of agglomera-
tion) algorithm is a standard lexicostatistics method. In this method, the distance 
between every pair of languages is computed using the number of characters on 
which the two languages are different. Then, the pair x and y of languages that has 
the smallest distance is grouped together as sister languages. The matrix is then 
modified by replacing x and y by a composite language with its distance to each 
of the remaining languages computed as the average of the distances from x and 
y, and then the algorithm recurses on the smaller matrix. This method works well 
when the evolutionary processes obey the lexical clock assumption.

Neighbor joining. NJ, or Neighbor Joining (Saitou & Nei (1987)), is a particu-
lar agglomerative clustering technique used in molecular phylogenetics, which is 
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able to reconstruct accurate phylogenies even when the clock assumption does not 
hold, provided that the method is used with an appropriately defined distance ma-
trix, corrected, using the statistical model of evolution, to account for unseen state 
changes. That is, if a character changes state two or more times between languages 
x and y, the observer can only note whether the two languages are different or 
not for the character, and so the estimated pairwise distance between x and y will 
be generally smaller than the actual number of times the character has changed 
between x and y. Using corrected distances ensures good statistical performance 
(see, for example, Steel (1994) for how to correct distances under a general model 
of molecular sequence evolution). Therefore, we use a statistically-based distance 
estimator (see Appendix) in conjunction with the NJ method.

Maximum parsimony and weighted maximum parsimony. Maximum 
Parsimony, or MP, is an optimization problem that seeks a tree on which a mini-
mum number of character state changes occurs (Foulds & Graham 1982). When 
the characters are weighted, then the objective is to find a tree in which the total 
weighted number of character state changes is minimized. We used heuristics in 
the PAUP* (Swofford 1996) software package to find good (though not provably 
optimal) solutions to these problems (provably optimal solutions cannot currently 
be found except using techniques that can run in exponential time). Since there 
can be many equally good solutions, we computed the average error of the best 
trees found.

As discussed before, we used a weighting scheme where the weight of every 
morphological character is 50 and the weight of every lexical character is 1; this 
weighting scheme reflects the perceived relative resistance of the screened datasets 
analyzed in Nakhleh et al. (2005b) and so reflects the expectation that screened 
morphological characters will be much more resistant to homoplasy and borrow-
ing than screened lexical characters.

Weighted maximum compatibility. When all the characters evolve without 
homoplasy down a tree, then the tree is called a ‘perfect phylogeny’, and each of the 
characters is said to be ‘compatible’ on the tree. Weighted Maximum Compatibility, 
or WMC, is the optimization problem which seeks a tree with the maximum 
weighted compatibility score, which is computed by adding up all the weights of 
the characters that are compatible on the tree. WMC, like WMP, is a hard optimi-
zation problem (technically, an NP-hard problem, which means that in practice 
there are no existing polynomial time methods that are guaranteed to solve this 
problem exactly; see Garey & Johnson (1979)). We try to solve WMC heuristically 
through the use of the WMP (weighted maximum parsimony) analysis — by tak-
ing all the trees which are optimal for WMP, scoring each one under the WMC 
criterion and then returning those trees which are optimal under WMC. Once 
again, we return the average error of the trees found by the WMC search. Since 
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WMC (like MP and WMP) is NP-hard, these solutions are not guaranteed to be 
globally optimal solutions.

Gray & Atkinson’s method (G&A). The method designed by Gray & Atkinson 
(2003, et seq.) operates as follows: first, each multistate character is replaced by 
several binary characters, each representing the presence or absence of a given 
state for that character. These binary characters are then interpreted as restric-
tion sites and analyzed under a rates-across-sites model in the MrBayes software 
(Huelsenbeck & Ronquist 2001). MrBayes uses a Markov chain Monte Carlo 
(MCMC) exploration of tree and parameter space to simulate the Bayesian poste-
rior distribution of the tree and parameter under its model. The run of the Markov 
chain is divided into a burn-in and a stationary phase of equal length. Each phase 
contains 100,000 iterations. During the second, stationary phase, 200 simulated 
values are recorded at regular intervals. We report the majority consensus tree of 
those 200 values.

Software. We used PAUP* (Swofford 1996) for all the phylogeny reconstruc-
tion methods we studied, except for Gray & Atkinson. For our implementation of 
Gray & Atkinson, we used MrBayes.

4. Experimental results

4.1 The model conditions

We ran 28 different basic experiments, each consisting of a model condition (pa-
rameters for the evolutionary process) and the number and type of characters sim-
ulated under each condition. For each of these basic experiments, we produced 
128 datasets. Thus, all in all we created 3584 datasets, each of which was analyzed 
by the six phylogeny reconstruction methods we studied.

The 28 different experiments we ran can be grouped into four sets. In each set 
we used 300 lexical characters, with an equal number of slow, medium and fast-
evolving characters.

– Basic experiment: We fixed the deviation from a lexical clock (dlc) and het-
erotachy (het) parameters to medium but varied the number of contact edges 
from 0–3, the homoplasy level from low to moderate and the rate of evolution 
for the lexical characters from low to high. For each experiment, we generated 
300 lexical and 60 morphological characters. This produced 8 different model 
conditions.

– Experiment 2: The purpose of this experiment was to explore the impact of 
heterotachy (deviation from the rates-across-sites assumption) on phylogeny 
estimation. We set the number of contact edges to 3 and the deviation from the 
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lexical clock to moderate. We set heterotachy to low or high and homoplasy lev-
els to be either low or moderate. For each experiment, we generated 300 lexical 
and 60 morphological characters. This produced 4 different model conditions.

– Experiment 3: The purpose of this experiment was to explore the impact of 
the deviation of the lexical clock on phylogeny estimation. We set the number 
of contact edges to 3 and set the heterotachy to medium. We let the deviation 
from the lexical clock be low or high and the homoplasy level be low or mod-
erate. For each experiment, we generated 300 lexical and 60 morphological 
characters. This produced 4 possible model conditions.

– Experiment 4: The purpose of this experiment was to explore the impact on 
phylogeny estimation of varying the number and types of characters, ranging 
from only lexical to a mix of lexical and morphological. We fixed the deviation 
from the lexical clock and heterotachy to moderate, the homoplasy level to low 
or moderate and the number of contact edges to 0 or 3. We varied the number 
and type of characters in three ways: 300 lexical and 1 morphological, 300 lexi-
cal and 20 morphological or 300 lexical and 60 morphological. This produced 
12 possible model conditions.

4.2 False Positive Rates

We explored performance for both false negative and false positive rates. False 
positive rates are not shown, but can be summarized as follows. UPGMA, NJ, 
MP, WMP and WMC methods produce binary trees, and hence for these meth-
ods their false positive and false negative rates are identical (see §3.1). The G&A 
method uses the majority consensus method to produce its output and hence may 
not produce binary trees. As a result, its false positive rates are lower than its false 
negative rates. In general, false positive rates are quite low for G&A — often below 
1%, but almost always below 5%.

4.3 Impact of homoplasy

We begin by considering the impact of the level of homoplasy on a phyloge-
netic analysis. Recall that we set the parameter values for our ‘low homoplasy’ 
and ‘moderate homoplasy’ datasets to reflect levels observed for these screened 
and unscreened datasets, respectively, in Nakhleh et al. (2005b), and this has the 
consequence that morphological characters are more homoplastic than lexical 
characters for unscreened data but less homoplastic than lexical characters for 
screened data. However, the weighting we use for the weighted parsimony and 
weighted compatibility methods (where morphological characters receive higher 
weight than lexical characters) is identical for both conditions and is therefore not 
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appropriate for unscreened data. In Figure 1 we show the results when the model 
phylogeny is a tree, and in Figure 2 we show the results when the model phylogeny 
is a network with three contact edges. We see that screening improves weighted 
parsimony and weighted compatibility the most, which is not surprising since the 
weighting scheme is inappropriate for the unscreened data. Thus, the improve-
ment in accuracy of the weighted MP and weighted MC methods obtained as a 
result of screening is to be expected.

We also see an improvement in MP’s performance from unscreened to 
screened, and this too is to be expected since maximum parsimony will tend to 
improve as the homoplasy level decreases (in particular, maximum parsimony 
should be accurate when the characters evolve without any homoplasy).
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Figure 1. Impact of homoplasy on accuracy of phylogeny reconstruction methods for 
300 lexical characters and 60 morphological characters evolved down a phylogenetic tree 
under a moderate deviation from a lexical clock (dlc = 0.3) and moderate deviation from 
the rates-across-sites assumption (het = 1.2).
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Figure 2. Impact of homoplasy on accuracy of phylogeny reconstruction methods for 
300 lexical characters and 60 morphological characters evolved down a phylogenetic 
network with three contact edges under a moderate deviation from the lexical clock 
(dlc = 0.3) and moderate deviation from the rates-across-sites assumption (het = 1.2).
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However, there is little change in performance for the other methods between 
screened and unscreened data, indicating that these methods do not benefit as 
much when the homoplasy is reduced by these amounts.

4.4 Impact of deviation from a lexical clock

We now examine the impact of varying the deviation from a lexical clock, 
from almost clock-like behavior (with dlc = 0.15) to a moderate deviation (with 
dlc = 0.45). Figure 3 shows the results on the screened datasets obtained from a 
phylogenetic network with three contact edges, and with moderate deviation from 
the rates-across-sites assumption (het = 1.2); results for other conditions (includ-
ing unscreened datasets) were similar in terms of the impact of this parameter on 
performance. Error rates increase for all methods as the deviation from the lexical 
clock increases, but this is most pronounced for UPGMA and quite slight for the 
other methods.
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Figure 3. Impact of the deviation from a lexical clock on phylogenetic analyses of a 
30-taxon phylogenetic network with three contact edges, from 300 lexical characters and 
60 morphological characters evolved under low levels of homoplasy and with a moderate 
deviation from the rates-across-sites assumption (het = 1.2). We vary the deviation from a 
lexical clock from low (dlc = 0.15) to moderate (dlc = 0.45).

4.5 Impact of heterotachy

Figure 4 shows the effect on phylogenetic analyses of deviating from the rates-
across-sites assumption to various degrees by exploring the difference in accuracy 
obtained as het varies from 0.6 (which is close to the rates-across-sites) to het = 1.8 
(which is further away) on data simulated on a phylogenetic network with three 
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contact edges and low homoplasy; the same trends are observed for other model 
conditions. The rates-across-sites assumption is critical to statistical models that 
attempt to estimate parameters under the assumption that all the sites evolve as 
multiples of each other (i.e., some faster and some slower, but with a constant ratio 
held between all sites). This is a standard assumption in phylogenetic analyses 
enabling distance-based methods to be statistically consistent under suitable con-
ditions, and it also enables dating of internal nodes.

Interestingly, as het increases — i.e., as we relax the rates-across-sites assump-
tion — methods improve in accuracy. One possible explanation for this is that as 
the rates-across-sites assumption is relaxed, the range of rates-of-change exhibited 
by the set of characters on any given edge will also increase (with high probability); 
this, in particular, increases the probability that edges that are quite ‘short’ (i.e., 
edges e for which t(e) is small) will exhibit some changes by some characters, mak-
ing these edges more likely to be inferred by a phylogeny reconstruction method.

4.6 Varying the proportion of lexical and morphological characters

Our next analysis considered the impact of using combined datasets (both mor-
phological and lexical together) versus lexical-only datasets, for low homoplasy 
levels (set to reflect the estimated homoplasy levels in Nakhleh et al. (2005b) for 
the screened datasets). Recall that in our simulations, we set the parameters for 
screened morphological characters so that there is no borrowing (this is true even 
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Figure 4. Impact of heterotachy (deviation from the rates-across-sites assumption) on 
the accuracy of phylogenetic reconstruction methods on data (300 lexical characters and 
60 morphological characters) evolved down a phylogenetic network with three contact 
edges with low homoplasy and with moderate deviation from a lexical clock (dlc = 0.3). 
The bars refer to the different values for het.
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of unscreened morphological characters) and so that they exhibit much less ho-
moplasy than lexical characters. The inclusion of morphological characters into a 
dataset thus reduces the rate of homoplasy and borrowing. We look at three dif-
ferent possibilities: each had 300 lexical but could have 1 morphological, 20 mor-
phological or 60 morphological characters. The analyses show the consequence of 
adding morphological characters to a dataset which is primarily lexical.

In Figure 5, we see the result of this experiment on screened datasets obtained 
by simulating down a phylogenetic network with three contact edges. Note that all 
methods improve with the addition of low homoplasy morphological characters, 
and that the biggest improvements are obtained by WMP and WMC, as expected. 
The results for other model settings for screened data are similar.

4.7 Impact of the number of contact edges

In Figure 6, we show the results of our experiment in which we vary the number 
of contact edges from 0 (for tree-like evolution) to 3 for low homoplasy datasets 
(screened data), with moderate deviation from the lexical clock (dlc = 0.3) and 
moderate deviation from the rates-across-sites assumption (het = 1.2). Most meth-
ods return better estimates of the genetic tree when there is no borrowing (or less 
borrowing) between lineages, as we expect. Two aspects of this study are surpris-
ing, however: the impact of contact edges is relatively small, and UPGMA gets bet-
ter with added contact edges. Understanding why requires further investigation.
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Figure 5. Impact of data selection on the accuracy of phylogenetic reconstructions on 
data evolved down a phylogenetic network with three contact edges, under low homo-
plasy (screened data), moderate deviation from a lexical clock (dlc = 0.3) and moderate 
deviation from the rates-across-sites assumption (het = 1.2).
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4.8 Relative performance of different methods

We turn now to the question of relative performance of different methods. Figures 
7–9 show these comparisons under a number of different model conditions, but 
all show the same relative performance. Thus, if we exclude weighted maximum 
parsimony and weighted maximum compatibility, the relative performance of the 
remaining methods is consistent across all model conditions, with UPGMA the 
worst, NJ the next, Gray & Atkinson next and finally MP.
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Figure 6. Impact of the number of contact edges on phylogenetic reconstructions of a 
phylogenetic network with three contact edges, from 360 characters (300 lexical and 60 
morphological) evolved under low homoplasy, moderate deviation from a lexical clock 
(dlc = 0.3) and moderate deviation from the rates-across-sites assumption (het = 1.2).
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Figure 7. Impact of the number of contact edges on phylogenetic reconstruction meth-
ods for 300 lexical characters and 60 morphological characters, under two levels of ho-
moplasy (moderate on the left and low on the right). All datasets evolve under a moderate 
deviation from a lexical clock (dlc = 0.3) and moderate deviation from the rates-across-
sites assumption (het = 1.2).
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The performance of the remaining methods, WMP and WMC, depends very 
much on the model condition. We see that under low homoplasy conditions (as 
would be expected from screened data), WMP and WMC have accuracy approxi-
mately equal to that of MP, and hence are better than the other methods. However, 
under moderate homoplasy conditions, WMP and WMC tend to have error rates 
that could be as poor as G&A’s.
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Figure 8. Impact of the deviation from the rates-across-sites assumption on phylogenetic 
reconstruction methods, for 300 lexical characters and 60 morphological characters, 
under two levels of homoplasy (moderate on the left and low on the right). All characters 
evolve down a phylogenetic network with three contact edges under a moderate deviation 
from a lexical clock (dlc = 0.3). We vary het, the parameter for deviating from the rates-
across-sites assumption, from low (0.6) to moderate (1.8).
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Figure 9. Impact of deviating from the lexical clock on phylogenetic reconstruction 
methods for 300 lexical characters and 60 morphological characters, under two homo-
plasy levels (moderate on the left and low on the right). All characters evolve down a 
phylogenetic network with three contact edges under a moderate deviation from the 
rates-across-sites assumption (het = 1.2). We vary the deviation from the lexical clock 
from low (dlc = 0.15) to moderate (dlc = 0.45).
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4.9 Summary

Our study showed the following:

– There was a consistent pattern of relative accuracy of phylogenies reconstruct-
ed using these methods, with UPGMA worst, followed by neighbor joining, 
then G&A, then MP. The relative performance of WMP and WMC depended 
upon the amount of homoplasy in the high weight characters and so was ex-
cellent (comparable to that of MP) for the low homoplasy conditions and poor 
for the moderate homoplasy conditions.

– Deviating from the lexical clock made all methods somewhat worse but had 
the biggest impact on UPGMA.

– Deviating from the rates-across-sites assumption (i.e., increasing heterotachy) 
had a small but beneficial effect on all methods.

– The incidence of borrowing between languages generally made reconstruc-
tions less accurate, but not dramatically so; surprisingly, it made UPGMA 
somewhat more accurate.

– The addition of additional morphological characters with low levels of homo-
plasy improved the accuracy of all phylogeny reconstruction methods, and 
especially of WMP and WMC.

4.10 Comparison to Nakhleh et al. (2005b)

A comparison between this study and that of Nakhleh et al. (2005b) is quite inter-
esting. In Nakhleh et al. (2005b), the same methods (with the modification that 
Nakhleh et al. (2005b) used the majority consensus of MP and MC trees instead of 
reporting average error) were compared on sets of highly reliable lexical, phono-
logical and morphological characters compiled for 12 Indo-European languages. 
Because there is no ‘true tree’ yet established for IE, the comparison between the 
methods was limited to two criteria: establishment of known subgroups and the 
incidence of homoplasy in the characters implied by each estimated tree.

UPGMA had the worst accuracy of all methods — it was the only method to 
fail the first criterion, and its trees had the largest number of homoplastic char-
acters of all. A comparison between the other methods showed that they differed 
in the number and type of homoplastic characters and that relative performance 
depended on whether screened or unscreened data were used and whether only 
lexical characters or all three types of characters were used. On the screened full 
dataset, only weighted MP and weighted MC produced trees on which charac-
ters considered resistant to homoplasy were not homoplastic. The performance 
on the screened full dataset also showed NJ produced somewhat greater levels 
of homoplasy than the other methods, and in particular made more characters 
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homoplastic that were considered resistant to homoplasy than the other meth-
ods. Differences on the unscreened datasets were somewhat less extreme (though 
UPGMA was still the worst), and differences when restricted to lexical characters 
were also smaller. Although we do not evaluate methods with respect to the num-
ber of homoplastic characters, these results are consistent with our study and sug-
gest that using the incidence of homoplasy (and the type of character exhibiting 
homoplasy) may be a reasonable proxy for phylogenetic accuracy.

4.11 Studies of phylogenetic estimation methods in biology

Many previous studies have compared many of the methods we studied here, and 
also maximum likelihood (a statistical method like MrBayes), on data-sets that 
evolved under stochastic models of molecular sequence evolution. These studies 
have generally shown that most methods are improved by reductions in homo-
plasy and that MrBayes and maximum likelihood, when based upon the same 
model as that which generated the data, have the best accuracy (see Wang et al. 
(2011)). However, under some model conditions, maximum parsimony (although 
not statistically consistent) can be more accurate than these statistical methods 
(Kolaczkowski & Thornton 2004). The neighbor joining method can also have 
very good accuracy if the sequences are long enough but has poorer accuracy on 
datasets with large numbers of taxa (Nakhleh et al. 2002). UPGMA, by contrast, is 
generally less accurate than neighbor joining (Huelsenbeck & Hillis 1993).

These observations are largely compatible with our own. For example, 
UPGMA had the worst performance, and most methods generally improved 
with lowered rates of homoplasy. One observation in our study that on the face 
of it seems incompatible with earlier results is the poor performance of G&A, the 
only parametric statistical method in our study. However, the model underlying 
the G&A method is for binary characters, and the model that generated the data 
produces multi-state characters. Therefore, the G&A method has to represent the 
multi-state characters as binary characters, but this cannot be done without caus-
ing model misspecification. This helps explain why the G&A method, although 
explicitly based upon a parametric model of evolution, did not give the best results.

This discussion points out the differences between linguistic characters and 
biological characters and the differences in the stochastic models of evolution used 
in these two disciplines. That is, the stochastic models of evolution used to gen-
erate datasets for these biological studies make assumptions that are specifically 
designed for molecular phylogenetics, and not appropriate for linguistic phyloge-
netics. For example, biological models assume that the number of states is fixed for 
all characters (ranging from 2 states for presence/absence characters, to 4 for nu-
cleotide sequence datasets, to 20 for amino-acid models and 64 for codon models), 
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while linguistic characters do not have this constraint. Another major difference, 
which is related to the unbounded number of states for linguistic characters, is the 
probability of homoplasy. That is, careful analyses of linguistic characters, includ-
ing screening for clear evidence of homoplasy and appropriate handling of de-
tected borrowing, produces characters that are unlikely to evolve with homoplasy 
or borrowing. As a result, screened linguistic characters will generally exhibit quite 
low homoplasy levels. While low rates of homoplasy can also exist in molecular 
sequence datasets, homoplasy rates are generally higher, and they are only reliably 
very low when the rate of evolution is also very low. Thus, linguistic characters can 
evolve with low rates of homoplasy while also having moderate to high rates of 
substitution, characteristics that are not found in molecular characters.

In other words, despite the similarities in issues between linguistic and bio-
logical phylogenetics, there are distinct differences in how these characters evolve. 
Therefore, simulation studies based upon stochastic models of biological evolu-
tion will not be directly relevant to phylogenetic estimation of languages, and vice 
versa. In addition, although statistical methods of phylogeny estimation that are 
based upon parametric models are likely to give the best results, unless the models 
on which they are based are reasonably realistic, these methods may not produce 
highly accurate trees. These observations, as a whole, show that linguistic phylog-
eny estimation — and studies of phylogeny estimation methods in linguistics — 
need to be informed by linguistic scholarship.

5. Discussion

Our study examined a few of the major methods for phylogeny estimation, includ-
ing G&A (a Bayesian method), two distance-based methods (NJ and UPGMA), 
maximum parsimony (weighted and unweighted) and weighted maximum com-
patibility. However, we did not test other Bayesian methods recently introduced 
(for example, Nicholls & Gray 2008, Ryder et al. 2011), nor did we address the 
performance of phylogenetic network reconstruction methods (that is, methods 
that can estimate evolutionary histories that include borrowing, and so produce 
graphical models that are not trees, e.g. Nakhleh et al. (2005a), Huson (1998), 
Bandelt & Dress (1992), Bryant & Moulton (2003), Bandelt et al. (1995, 1999, 
2000)). Therefore, this study cannot be used to predict the relative accuracy of 
other methods; however, the range of model conditions we explored allows us to 
evaluate the methods we do study and reveals the potential for simulation studies 
to be highly informative of the conditions under which different methods will re-
construct accurate trees and the types of data that are most useful for phylogenetic 
estimation of language families.
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What does our study imply about the choice of phylogeny reconstruction 
method, or about choice of dataset for a phylogenetic analysis? At a minimum, it 
indicates that phylogenies estimated using the distance-based methods we studied 
(UPGMA and neighbor joining) are much less accurate than phylogenies esti-
mated using the character-based methods we studied (e.g., maximum parsimony, 
maximum compatibility and G&A). Furthermore, although we observed some-
what worse accuracy for G&A than for MP, WMP and WMC, it is possible that 
the G&A method (which uses MrBayes, a Bayesian method that utilizes MCMC 
to explore the space of model trees) might be improved if more MCMC iterations 
were run. Because the G&A analyses were the most computationally intensive, 
and we analyzed several thousand datasets, increasing the number of iterations 
was beyond the scope of this study. However, it is also possible that the two-state 
model in the G&A analysis is the problem, since (as discussed earlier) it requires a 
modification of the data that causes model misspecification (i.e., the data analyzed 
are multi-state, and the G&A analysis first encodes these as binary presence/ab-
sence characters in order to use MrBayes).

One observation is that data selection has an impact on the accuracy of the 
phylogenies that are constructed. In particular, careful screening of datasets so as 
to reduce homoplasy and/or borrowing, and using characters which are more resis-
tant to homoplasy and borrowing (i.e., screened morphological and phonological 
characters), can yield significantly improved results. Furthermore, when screened 
datasets that include morphological characters as well as lexical characters are ana-
lyzed, then the best analyses are clearly obtained by using weighted maximum par-
simony or weighted maximum compatibility, and in these cases the difference in 
performance between these methods and other methods can be quite substantial.

A noteworthy trend is that except for UPGMA, all methods (even neighbor 
joining) were able to reconstruct all but (about) 10% of the edges of the true tree. 
This suggests that on real linguistic datasets, most methods (except for UPGMA) 
will agree on a substantial portion of the tree and probably succeed in reconstruct-
ing the major subgroups. The differences between methods really come down to 
finer details of the phylogenetic analysis. In IE terms, these questions might be: 
where does Germanic lie in the Indo-European family tree, is Italo-Celtic a sub-
group, are Greek and Armenian sisters? These ‘fine details’, in other words, are 
where much of the intense debate lies within the historical linguistics community.

We now briefly touch upon some of the outstanding theoretical questions. 
Currently methods for phylogenetic analysis are fundamentally limited to using 
characters which exhibit at most one state for each language and hence cannot 
be used for ‘polymorphic’ characters, which exhibit two or more states on some 
languages. Polymorphism is, unfortunately, quite common — especially among 
lexical characters. Thus, clearly one of the outstanding problems in linguistic 
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phylogenetics is to develop methods which can utilize polymorphic characters, 
and to do this we need to begin with appropriate models of how polymorphism 
arises. Some simple examples of polymorphism arise from semantic shift, whereby 
two characters with different meaning gradually become indistinguishable within 
one language with respect to meaning, so that the language then has two words 
for the same basic meaning. English examples of this include big and large or rock 
and stone. The model for polymorphism provided in Bonet et al. (1999) explains 
polymorphism as arising only from semantic shift, but no homoplasy is permitted. 
However, polymorphism can also arise from borrowing, through the incorpora-
tion of a loan word into a language, as well as from other processes; in addition, 
we now have good evidence that while morphological characters may generally 
evolve with little (or no) homoplasy, the same is not true for lexical characters. 
Hence, better models for polymorphism still need to be developed.

Another issue that must be addressed comes about because a speech commu-
nity is not comprised of a single individual speaker, but a community of speakers. 
This simple observation has the following consequence: different members of the 
community may differ in the words they use, how they pronounce words, etc. As a 
result, characters can exhibit more than one state in a given community (i.e., poly-
morphism can be present). More generally, a proper modeling of linguistic change 
would benefit by including features that are based upon this observation. In ef-
fect, the basic problem of estimating phylogenies in languages that still confronts 
historical linguistics is that models of linguistic character evolution are too simple 
in that they do not take population effects into consideration. This is obvious in 
polymorphism, but it holds as well for the modeling of all characters.

Mathematical models of evolution that would take these population effects ex-
plicitly into consideration would have to include modifications of the underlying 
graphs (so that vertices and edges in the phylogenies would represent populations 
of speakers, rather than a single individual speaker), as well as of the stochastic 
processes that operate on the characters. As important as this is to historical lin-
guistics, little has yet been done.

For many researchers, the question of estimating dates at internal nodes is 
of central importance. However, from a mathematical point of view, estimating 
dates at internal nodes is extremely difficult without significant constraints on 
the deviation from a lexical clock (the linguistic equivalent of a molecular clock; 
see Evans et al. (2006), McMahon & McMahon (2006)). Relative branch lengths 
(i.e., ratios between branch lengths) might be feasible to estimate, as argued in 
Embleton (1986), although even this problem seems to require constraints on the 
ways in which sites can vary, as shown in Evans & Warnow (2005). Therefore, our 
viewpoint on this matter is that it’s best to limit phylogenetic reconstruction to es-
timating the underlying branching process, rather than also estimating the dates.
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In summary, although some aspects (e.g., times at ancestral nodes) of the evo-
lutionary history of languages may be difficult to estimate, this study shows some of 
the current methods are able to provide reasonable estimates of the genetic tree re-
lating the languages, even in the presence of considerable homoplasy and borrow-
ing. Further improvements might well be obtained through statistical estimation 
techniques, provided they are based upon realistic models of language evolution.
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Résumé

Cet article examine l’efficacité de méthodes de reconstruction d’arbres de familles de langues, en 
comparant les arbres résultants de différentes méthodes aux arbres que l’on connaît déjà. Nous 
mesurons la méthode UPGMA à la moins bonne place avec les moins bons résultats, et par ordre 
croissant les méthodes “Neighbor Joining”, Gray et Atkinson, avec la méthode de parcimonie 
maximale (“Maximum Parsimony”) en meilleure place. Nous observons que si l’on assigne un 
coefficient de pondération aux caractères, les résultats des méthodes de parcimonie maximale et 
de compatibilité maximale (“Maximum Compatibility”) sont améliorés, et ce à condition que les 
caractères avec les plus fortes pondérations fassent preuve d’une homoplasie minimale.

Zusammenfassung

Basierend auf Datensätzen bekannter Stammbäume legt dieser Beitrag eine Modellsimulierung 
vor, die die Leistung verschiedener Sprachstammbaumrekonstruktionsmethoden vergleicht und 
auswertet: UPGMA am Schlechtesten, in aufsteigender Reihenfolge gefolgt von ‘neighbor join-
ing’ der Methode von Gray und Atkinson, und der Methode von Maximalsparsamkeit. Unter 
Anwendung von Charactergewichtung sind Maximalsparsamkeit und Maximalkompatibilität 
viel genauer, vorausgesetzt dass die Charakter größerer Gewichtung wenig Homoplasie zeigen.
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