Simultaneous alignment and tree reconstruction

Collaborative grant: Texas, Nebraska, Georgia, Kansas Penn State University, Huston-Tillotson, NJIT, and the Smithsonian Institution

Project Components

- Algorithms and Software
- Simulations
- Outreach to ATOL and the scientific community
- Undergraduate training

Personnel

- Tandy Warnow (UT-Austin)
- Mark Holder (Kansas)
- Jim Leebens-Mack (UGA)
- Randy Linder (UT-Austin)
- Etsuko Moriyama (UNL)
- Michael Braun (Smithsonian)
- Webb Miller (PSU)
- Usman Roshan (NJIT)
- Postdocs: Derrick Zwickl (NESCENT)
- PhD Students: Cory Strope (UNL), Serita Nelesen (UT-Austin), Kevin Liu (UT-Austin), Sindhu Raghavan (UT-Austin), Michael McKain (UGA)
- Undergraduates: from Huston-Tillotson and the University of Georgia

Step 1: Gather data

- S1 = AGGCTATCACCTGACCTCCA
- S2 = TAGCTATCACGACCGC
- S3 = TAGCTGACCGC
- S4 = TCACGACCGACA

Step 2: Multiple Sequence Alignment

- S1 = AGGCTATCACCTGACCTCCA
- S2 = TAGCTATCACGACCGC
- S3 = TAGCTGACCGC
- S4 = TCACGACCGACA

- S1 = -AGGCTATCACCTGACCTCCA
- S2 = TAG-CTATCAC--GACCGC--
- S3 = TAG-CT----GACCGC--
- S4 = ----TCAC -GACCGACA

Step 3: Construct tree

Multiple Sequence Alignment

AGGCTATCACCTGACCTCCA TAGCTATCACGACCGC TAGCTGACCGC -AGGCTATCACCTGACCTCCA TAG-CTATCAC--GACCGC--TAG-CT----GACCGC--

Notes:

1. We insert gaps (dashes) to each sequence to make them "line up".

2. Nucleotides in the same column are presumed to have a common ancestor (i.e., they are "homologous").

Alignment methods

- The standard alignment method for phylogeny is Clustal (or one of its derivatives)
- Others: ProbCons, MAFFT, Muscle, POA, POY, T-Coffee, Di-Align
- On the basis of various tests, ProbCons, Mafft, and Muscle are generally considered the "best".

Basic Questions

- Using simulations: Does improving the alignment lead to an improved phylogeny?
- Using Tree of Life (real) datasets:
 - How much does changing the alignment method change the resultant alignments?
 - How much does changing the alignment method change the estimated tree?
 - What gap patterns do we see on hand-curated alignments, and what biological processes created them?

Basic Questions

- Using simulations: Does improving the alignment lead to an improved phylogeny?
- Using Tree of Life (real) datasets:
 - How much does changing the alignment method change the resultant alignments?
 - How much does changing the alignment method change the estimated tree?
 - What gap patterns do we see on hand-curated alignments, and what biological processes created them?

Simulation study

- Simulate sequence evolution down a tree
- Estimate alignments on each set of sequences
- Compare estimated alignments to the true alignment
- Estimate trees on each alignment
- Compare estimated trees to the true tree

Simulation study

- Simulate sequence evolution down a tree
- Estimate alignments on each set of sequences
- Compare estimated alignments to the true alignment
- Estimate trees on each alignment
- Compare estimated trees to the true tree

indels (insertions and deletions) also occur!

Indels and substitutions at the DNA level

...ACGGTGCAGTTACCA...

Indels and substitutions at the DNA level

Indels and substitutions at the DNA level

...ACCAGTCACCA...

The **true multiple alignment** on a set of homologous sequences is obtained by tracing their evolutionary history, and extending the pairwise alignments on the edges to a multiple alignment on the leaf sequences.

Alignment Error Calculation

- A C A T - G
- CAA-GATG

True alignment

- A C A T G - Est. alignment
- - C A A G A T G

Alignment Error Calculation

- ACAT - G
- CAA-GATG

True alignment

- ACATG -Est. alignment
- - C A A G A T G

75% of the correct pairs are missing!

50% error rate

INFERRED TREE

 S_2

FP

 S_5

Our simulation studies (using ROSE*)

- Amino-acid evolution (Wang et al., unpublished):
 - BaliBase and birth-death model trees, 12 taxa to 100 taxa.
 - Average gap length 3.4.
 - Average identity 23% to 57%.
 - Average gappiness 3% to 60%.
- DNA sequence evolution (Liu et al., unpublished):
 - Birth-death trees, 25 to 500 taxa.
 - Two gap length distributions (short and long).
 - Average p-distance 43% to 63%.
 - Average gappiness 40% to 80%.

*ROSE has limitations!

60

50

40

30

20

10

0

FN Rate of NJ-pw wrt NJ-pw(TrueAln) (%)

FN Rate of Maj-PAMwRatchet(InfAln) wrt True Tree (%)

FN Rate of RAxML wrt RAxML(TrueAln) (%)

Seglen=300, 100 tax3eglen=300, 1 Treediam=1.00 Treediam=2.00 Treediam=3.00 Treediam=4.00 Treediam=1.00 Treediam=2.00 Treediam=3.00 Treediam=4.00 ins/del rate=0.0025 ins/del rate=0.0025 ins/del rate=0.0025 ins/del rate=0.0100 ins/del rate=0

FN Rate of RAxML wrt True Tree (%)

Non-coding DNA evolution

Models 1-4 have "long gaps", and models 5-8 have "short gaps"

Observations

- Phylogenetic tree accuracy is positively correlated with alignment accuracy (measured using SP), but the degree of improvement in tree accuracy is *much smaller*.
- The best two-phase methods are generally (but not always!) obtained by using either ProbCons or MAFFT, followed by Maximum Likelihood.
- However, even the best two-phase methods don't do well enough.

Progress so far

- Experimental evaluation of existing alignment methods (Wang, Leebens-Mack, de Pamphilis and Warnow) - submitted
- Impact of guide trees (Nelesen, Liu, Linder, and Warnow): Pacific Symp. Biocomputing 2008
- Better ways to run POY: Liu, Nelesen, Raghavan, Linder, and Warnow (submitted)
- SATé: new technique for Simultaneous Alignment and Tree Estimation: Liu, Nelesen, Linder and Warnow (in preparation)

SATe:

(Simultaneous Alignment and Tree Estimation)

- Developers: Warnow, Linder, Liu, and Nelesen.
- Technique: search through tree/alignment space (align sequences on each tree by *heuristically estimating ancestral sequences* and compute ML trees on the resultant multiple alignments).
- **SATe** returns the alignment/tree pair that optimizes maximum likelihood under GTR+Gamma+I.

Our method (SATé) vs. other methods

- 100 taxon model trees, GTR+Gamma+gap,
- Long gap models 1-4, short gap models 5-8

Undergraduate Training

- Two institutions involved: UT-Austin partnership with Huston-Tillotson, and the University of Georgia
- Training via:
 - Research projects
 - Summer training with the project members
 - Participation in the project meeting
 - Participation at a conference
 - Lectures by project participants at the collaborating institutions
- Focus group leader(s): Jim Leebens-Mack and Randy Linder

Undergraduate Research Programs at the University of Georgia

Louis Stokes Alliance for STEM Research

University of Texas Collaboration with Huston-Tillotson University

Research projects for undergrads

- Studying the AToL (Assembling the Tree of Life) project datasets:
 - Produce alignments on each dataset, (using existing alignment methods and our new SATe method), and compute trees on each alignment
 - Study differences between alignments and between trees
- Evaluating the simulation software
- Creating a webpage about alignment research
- Others?