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Phylogeny Reonstrution
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Appliations� Big genome sequening projets are produing a lot of data,but the data need to be analyzed - and a phylogeny helps withthe analysis.� Evolutionary history relates all organisms and genes, and helpsus understand and predit:{ interations between genes (geneti networks){ drug design{ prediting funtions of genes{ inuenza vaine development{ origins and spread of disease{ origins and and migrations of humans
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Phylogeny reonstrution as a statistial estimation problem

Initially phylogeny reonstrution was based upon maximumparsimony analyses of morphology, or simple distane-basedanalyses of moleular sequenes.However, phylogeny reonstrution hanged dramatially beginningin the 1960's with the introdution of stohasti models ofevolution (Jukes-Cantor, Kimura 2-parameter, HKY, et.).
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Markov models of DNA sequene evolutionA Jukes-Cantor model tree is a pair (T; �) modelling how a singlesite evolves:� T is a rooted binary tree,� � is a funtion mapping edges to real numbers, so that �(e) isthe expeted number of mutations of the site on edge eAssumptions:1. The state at the root of T is drawn from the uniformdistribution.2. The number of times the site hanges on eah edge obeys aPoisson distribution3. If the state at the site hanges, it hanges with equalprobability to the other states.6



Modelling site variation

Almost all proposed models, and all models in use, make the strongassumption of i.i.d. site evolution.(The \rates-aross-sites" assumption usually has the rates drawnfrom a distribution, and so it is still i.i.d..)
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Performane issues� For a biologist: how aurate are the estimations ofevolutionary history? (Mostly studied in simulation)� For a statistiian:{ Is the model identi�able?{ Is a given phylogeny reonstrution method statistiallyonsistent under the model?{ How muh data does a given method need to reonstrut agiven model tree orretly with high probability?The �rst two questions were fairly well understood, but the lastquestion remained largely unanswered until the late 1990's.
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This talk� Mathematial tehniques for bounding the sequene lengthrequirements of phylogeny reonstrution methods.� The �rst methods guaranteed to reonstrut the tree with highprobability from \polynomial" sequene lengths.� More reent methods with the same theory but betterperformane in simulation (lower topologial error).
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Warm-upQuestions:1. Given a oin and � > 0 , ompute Pr[head℄ exatly, withprobability at least 1� � of being orret.2. Given a oin with Pr[head℄ 6= 12 and � > 0, determine whetherPr[head℄ � 12 , with probability at least 1� � of being orret.Solution: both have simple solutions, but Question 1 needs anin�nite number of oin tosses, while Question 2 an be done with a�nite number of oin tosses (the number of oin tosses will dependupon both � and Pr[head℄).
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Tree EstimationQuestions:1. Given sequenes generated by an unknown but �xed JC modeltree (T; �) and � > 0, determine (unrooted) T and � exatly,with probability at least 1� � of being orret.2. Given sequenes generated by an unknown but �xed JC modeltree (T; �) and � > 0, determine (unrooted) T exatly, withprobability at least 1� � of being orret.Solution: both have solutions, but Question 1 needs in�nitesequene length, while Question 2 an be done with �nite sequenelength.We explore the performane of algorithms for Question 2 withrespet to running time and the amount of data they need.

11



A brief history of mathematial phylogenetis� 1960's and on: stohasti models of evolution, with i.i.d.evolution between sites� 1978: Maximum Parsimony and Maximum Compatibility arenot statistially onsistent (Felsenstein)� Mid-1990's and on:{ Proofs of statistial onsisteny for basi methods (neighborjoining and maximum likelihood){ First mathematial analyses bounding the sequene lengthrequirements of di�erent methods{ The Short Quartet Methods (the �rst \fast onverging"methods) (Co-authors Peter Erdos, Laszlo Szekely, andMike Steel){ The Disk-Covering Methods: turning exponentiallyonverging methods into fast onverging methods12



2000 and sine� Work at Berkeley (Mossel et al.) has looked at modelparameters for whih logarithmi sequene length suÆes, andhas also looked at the problem of onstruting forests ratherthan trees� Mike Steel and Laszlo Szekely: \teasing apart" two trees
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Outline� Distane-based phylogeny reonstrution� Skethed proof of statistial onsisteny and exponentialonvergene rate for a simple method� The Dyadi Closure (Short Quartet) method, and a sketh ofthe proof of its polynomial onvergene� The Disk-Covering method, and its properties
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Distane-based Phylogeneti Methods
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Additive matries de�ne treesGiven any additive matrix [Dij ℄ we an onstrut the unrootedversion of T in polynomial time, along with the edge weights w(e)realizing [Dij ℄. Furthermore, (T;w) is unique up to nodes of degreetwo.

S1

S2

S 3

S 4

1

2

1

3

2

POLYTIME
INVERTIBLE

S
S

S

S

S

1

2

3

4

 S  S1 2 3 4

 

   

 6  5

 5  4

 5

  3

0

0

0

0

 S

16



Four Point Condition: [Dij℄ is an additive matrix if and only iffor all i; j; k; l, the median and maximum of the three pairwise sumsare idential:
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The Four Point Method (FPM)The Four Point Method an be used to infer trees on quartets ofleaves from a dissimilarity matrix, [Dij ℄ (a matrix satisfyingDii = 0 and Dij = Dji, but not neessarily satisfying the triangleinequality).Given the dissimilarity matrix [Dij ℄ and four indies i; j; k; l, theFPM return the tree ijjkl suh thatDij +Dkl = minfDij +Dkl; Dik +Djl; Dil +Djkg:
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Naive Quartet Method (NQM)Let [Dij ℄ be a dissimilarity matrix.� For eah quartet i; j; k; l, ompute the subtree on i; j; k; l usingthe Four Point Method.� If all the quartet trees are ompatible, merge them into a singletree. Else return Fail.
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Error Tolerane of NQMTheorem: Let [Aij ℄ be an n� n additive matrix for a tree (T;w)and let f = minfw(e)g.Let [Dij ℄ be an n� n dissimilarity matrix suh thatL1(D;A) < f=2.Then NQM(D) = T .Proof: The smallest pairwise sum stays the smallest, and so theFour Point Method makes no mistakes on any quartet tree.
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Statistial onsistenyA phylogeny reonstrution method � is said to be statistiallyonsistent under the JC model if for all JC model trees (T; �),Pr[�(S) = T ℄! 1 as the sequene length k !1.

Is NQM statistially onsistent under the JC model?
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 ij ijλ{ } {    }d

Statistial onsisteny of distane-based methodsThere are statistially onsistent tehniques for estimatingJukes-Cantor model distanes, as well as for estimating distanesunder other models.
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Sequene length requirementsQuestion: Let � be a phylogeny reonstrution method, (T; �) bea Jukes-Cantor model tree, and � > 0. For what sequene length kwill Pr[�(S) = T ℄ > 1� �, for S a set of sequenes of length kgenerated on (T; �)?Fators a�eting this:� �,� f = min�(e),� g = max�(e),� n, the number of leaves in the tree, and� �.
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JCf;g ontains those JC model trees (T; �) s.t. f � �(e) � g holdsfor all edges e 2 E(T ).� is absolute fast-onverging (af) for the JC model if, for allpositive f; g; ", there is a polynomial p suh that, for all (T; �) inthe JCf;g model, on set S of n sequenes of length at least p(n)generated on T , we havePr[�(S) = T ℄ > 1� ":
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Question: Is NQM af? Are there any af methods?
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Theorem 1: Let (T; �) 2 JCf;g and � > 0 be given. Then there isa onstant C > 0 (that depends on � and f), suh that if thesequene length is at leastC log neO(max�ij)then, Pr[NQM(d) = T ℄ � 1� �, where d is the JC distane matrixomputed on the sequenes.Proof (sketh): The ondition that is needed isPr[L1(d; �) < f=2℄ � 1� �.Comments:� Sine max�ij = O(g � diam(T )), and diam(T ) � n� 1, we saythat NQM is exponentially onverging.� The same ondition holds for neighbor joining (NJ).
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Are there af methods?� To date, none of the standard methods has been shown to beaf for any model.� NJ's performane in simulation is greatly superior to NQM(and almost all other distane methods), but it is not af { amathing lower bound for a speial ase of JC model trees wasproven a few years ago.� The only known upper bound on the sequene lengthrequirement of Maximum Likelihood is larger (Szekely andSteel).
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Problem with NQMThe problem with NQM (and other methods) is that every entryDij must be suÆiently well estimated (i.e. all Dij must satisfyjDij � �ij j < f=2).What if we ould identify the entries in the input matrix [Dij ℄whih have suÆiently small error? Could we onstrut the treefrom that subset of the matrix?Example: The \aterpillar tree" on leaves labelled 1; 2; : : : ; 7 anbe onstruted from 12j34, 23j45, 34j56, 45j67.Conjetures: Perhaps (1) all trees an be onstruted from aproper subset of their quartet trees, and (2) that proper subsetmight be more likely to be aurately onstruted from shortsequenes, and (3) that proper subset might be relatively easy toidentify?
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Theorem 2 (Warnow, Moret, and St John 1999): Let(T; �) 2 JCf;g. De�ne
L(q)1 (D;�) = maxfjDi;j � �i;j j : minf�i;j ; Di;jg � qg:

For every �; Æ > 0, there exists a onstant C suh thatif k � C log neO(q)then Pr[L(q)1 (D;�) < Æ℄ > 1� �:where [Dij ℄ is the JC distane matrix obtained for a set ofsequenes of length k generated on (T; �).This suggest that estimates of small distanes are more auratethan estimates of large distanes.
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Some af methods:� The Short-Quartet methods [Erd�os, Steel, Szekely, andWarnow, ICALP 1997℄� An unnamed method [Cryan, Goldberg and Goldberg, FOCS1998℄� Harmoni Greedy Triplets plus the Four Point Method [Csuros,2002℄� DCMNJ + SQS, and other suh \DCM-boosted" methods[Warnow, St. John, and Moret, SODA 2001℄

Comment: The Short Quartet Methods have the simplest theoryand best onvergene rate, but DCM + SQS has the best empirialperformane.
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Simple idea for onstruting a tree in JCf;g given [Dij ℄� Guess q so that if Dij � q then jDij � �ij j < f=2� For all quartets i; j; k; l suh that all pairwise D-distanes are atmost q, onstrut a quartet tree using the Four Point Method.� Compute a tree (if it exists) whih is onsistent with all thequartet trees.Issues:� If q is too large, then some entries might have too muh error.� If q is too small, then there may be insuÆient overage toreonstrut the tree.� The subtree ompatibility problem is NP-Complete.Question: How small an q be, and still identify the tree?32



Short QuartetsLet [�ij ℄ be the additive matrix for the binary tree (T; �). Let e bean edge in T with subtrees U; V;W; and X o� e.� The short quartets around e are obtained by piking anearest leaf in eah of the four subtrees U; V;W and X. (Therean be more than one around an edge.)� Qshort(T; �) = fshort quartet trees around any edge of Tg.

Theorem: (Erdos et al, 1997) Let (T; �) and (T 0; w) be twotrees on the same leaf set. Suppose Qshort(T; �) � Q(T 0), whereQ(T 0) denotes the set of indued quartet trees of T 0. Then T = T 0.
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How \big" are the short quartets?

Let (T; �) 2 JCf;g.De�ne �-width(T ) to be maxf�ij : i and j in a short quartet of Tg.

Theorem (Erdos et al., 1999):For all trees (T; �) 2 JCf;g; �-width(T) = O(g log n), where T hasn leaves.
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Dyadi Closure

Dyadi Closure rules:� Rule 1: ijjkl and jkjlm imply ijjkm, ijjlm and ikjlm.� Rule 2: ijjkl and ijjlm imply ijjkm.

Given set X of trees on four-leaves, repeatedly apply DyadiClosure rules until no additional trees are obtained. The result isl(X), the dyadi losure of X.
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Computing a tree from its short quartet trees

Theorem 3 (Erdos et al, 1997): Let T be a �xed edge-weightedtree, and let Qshort(T ) denote the set of trees indued by the shortquartets of T . Let Q(T ) denote the set of four-leaf trees in T .If Qshort(T ) � X � Q(T ) then l(X) = Q(T )Corollary 1: T an be reonstruted from Qshort(T ) inpolynomial time.
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The Dyadi Closure MethodLet Qw denote all the trees omputed (using the Four PointMethod) on quartets with maximum D-distane w. Construt treeson all quartets using the Four Point Method.Binary searh on w 2 fDijg (hoping to �nd a w suh thatQshort(T ) � Qw � Q(T ), so that l(Qw) = Q(T )) as follows:� Compute l(Qw).{ If l(Qw) ontains two trees on some quartet, mark w as toobig, and derease w{ If l(Qw) doesn't ontain a tree on some quartet, mark w astoo small, and inrease w{ If l(Qw) is neither too big nor too small, thenl(Qw) = Q(T 0) for some tree T 0, and we an onstrut T 0in polynomial time. 37



Theorem 4 (Erdos et al.): Let (T; �) 2 JCf;g, and let d be adissimilarity matrix given as input to the Dyadi Closure Method.Then the Dyadi Closure Method returns T if

L(d�width(T ))1 (d; �) < f2where the d-width is the maximum d-distane in a short quartet.
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Theorem 4 (Erdos et al, 1997): The Dyadi Closure Method isO(n5 log n) time and fast-onverging for JC tree reonstrution.Furthermore, polylogarithmi length sequenes suÆe for auraywith high probability for random JC trees.

Sketh of proof: The running time is easy. We show that�-width(T ) = O(g � log n) for all trees, so that by Theorem 2, theDyadi Closure Method is fast onverging. Also, random trees have�-width(T ) = O(g � log log n), so that by Theorem 2, the DyadiClosure Method onverges from polylogarithmi length sequenes onrandom trees.
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The performane of the Dyadi Closure Method

� The Dyadi Closure Method has exellent theory (with respetto its sequene length requirement) but does not perform wellin pratie: it only sueeds in returning a tree if all the shortquartets an be aurately reonstruted.� By omparison, NJ is better in simulation on model trees thatlook biologial (unless they are extremely large trees, and wesimulated evolution of short sequenes).� Even so, NJ is not af.These observations led us to develop a di�erent kind of af method,with the objetive of obtaining an empirial improvement whilemaintaining theory.
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af method: DCMNJ+SQS (Warnow et al, SODA 2001)
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Theorem (Warnow et al.) If � is exponentially onvergingunder JC, then DCM�+SQS is absolute fast onverging under JC.Outline of proof:We need to show that for all f; g; and � > 0, there is a polynomialp(n) suh that for all model trees (T; �) 2 JCf;g on n leaves, if weare given a dataset of sequenes of sequene length k � p(n) then� Pr[T 2 fTw : w 2 fDijgg℄ > 1� �� If T 2 fTw : w 2 fDijgg, then Pr[SQS selets T ℄ > 1� �.
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Comments:� The same result holds under the General Markov model.� The empirial performane is dramati� SQS an be replaed by other methods for seleting a \besttree" given a set of trees, with evidently better performane {though without proof of theoretial performane. For example- maximum likelihood an be used. Surprisingly, maximumparsimony has omparable performane to ML.
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Open problems:� New tehniques need to be developed to establish onvergenerates, as learly the mathematial bounds are loose for somemethods (at least on \random" trees). In partiular, what isthe sequene length requirement for Maximum Likelihood?� Why do Maximum Parsimony heuristis do so well?Related work:� Disk-Covering methods have also been developed to speed-upheuristis for hard optimization problems in phylogenetis(maximum likelihood and maximum parsimony, as well asproblems in gene order phylogeny), obtaining speed-ups of upto several orders of magnitude.
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