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BigData for Biology: Genomics




Whole Genome Sequencing:

Graph Algorithms and Combinatorial Optimization!
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Other Genome Projects! (Neandertals, Wooly Mammoths, and more
ordinary creatures...)

Neanderthals and humans
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The NIH Human Microbiome Project

25,000 human genes,
1,000,000 bacterial genes
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Where did humans come from, and how did
they move throughout the globe?
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* The 1000 Genome Project: using human genetic
variation to better treat diseases



Phylogeny (evolutionary tree)

Corbisicam

From the Tree of the Life Website,
University of Arizona



Assembling the Tree of Life
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Nature Reviews | Genetics



Goal: Constructing a Tree of Life

* Why do we want to do this?
* What are the computer science challenges?

 What kinds of techniques help us do this well?



Why? Because!

* Evolutionary history relates all organisms and genes, and helps
us understand and predict
— 1interactions between genes (genetic networks)
— drug design
— predicting functions of genes
— influenza vaccine development
— origins and spread of disease

— origins and migrations of humans

“Nothing in biology makes sense except in the light of evolution™
Dobzhansky



Indo-European Language Evolution
(Nakhleh et al.)
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Main Points

 Computer scientists develop algorithms and
software to make it possible for scientists to
get improved accuracy in their analyses.

* These algorithms involve creative strategies,
including divide-and-conquer, iteration, and
randomization.

* Extensive simulations and data analyses are
part of the evaluation process!



DNA Sequence Evolution

AAGACTT -3 mil yrs|
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AGGGCAT TAGCCCT AGCACTT

AGGGCAT TAGCCCA  TAGACTT AGCACAA AGCGCTT today



Phylogeny Problem
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Tree Construction

* Input: Four sequences
— ACT
— ACA
—GTT
— GTA

* Question: what 1s the best tree for this dataset?



Maximum Parsimony

Maximum parsimony:
* |nput: set S of sequences (all of the same length),

e Qutput: a tree T with the sequences at the leaves that
minimizes the total number of changes

This is an optimization problem.
How hard is it to solve this problem exactly?



Maximum parsimony (example)

* Input: Four sequences
— ACT
— ACA
—GTT
— GTA

* Question: which of the three trees has the best
MP scores?



Maximum Parsimony

ACT>—< GTA ACA >—<ACT
GTT ACA GTT

GTA

GTA

ACA::>;Q<ii

ACT GTT



Maximum Parsimony

ACT GTA ACA ACT
>GTT GTA CA A
1
GTT I 2~ACA GTT- 3 3™ GTA
MP score =5 MP score =7
ACA GTA
CA GTA
1 2 1
ACT GTT
MP score =4

Optimal MP tree



Maximum Parsimony: computational
complexity

Optimal labeling can be
computed in linear time O(nk)

ACA /\ GTA
ACA GTA
i 2 i

MP score = 4

ACT GTT

Finding the optimal MP tree is NP-hard



Exhaustive search is... exhausting

#leaves ftrees
e  Number of 4 3
(unrooted) binary 5 15
trees on n leaves is
(2n-5)!! 6 105
e If each tree on 7 945
1000 taxa could be ] 10395
analyzed in 0.001
9 135135
seconds, we would
find the best tree 10 2027025
in 20 2.2 x 1020
2890 millennia 100 45 x 1019
1000 2.7 x 102900




NP-hard problems in Biology

* Optimization problems in biology are almost
all NP-hard, and heuristics may run for months
(or years!!) before finding local optima.

 The challenge here is to find better heuristics,
since exact solutions are very unlikely to ever
be achievable on large datasets.



Polynomial time problems

A problem is polynomial time if it can be solved in time
that runs (at worst) using a polynomial number of
operations, in terms of the input size.

* Examples:
— Are there ten people in this room with the same birthday?

— Are there five people in this room who all like each other?

— Find someone in the room who is friends with the most
number of people in the room.

— Can we divide the people in the room into two sets, so
that no two people in the same set dislike each other?



A polynomial-time graph problem

e 2-colorability: Given graph G = (V,E), determine if we
can assign colors red and blue to the vertices of G so
that no edge connects vertices of the same color.



A polynomial-time graph problem

e 2-colorability: Given graph G = (V,E), determine if we
can assign colors red and blue to the vertices of G so
that no edge connects vertices of the same color.

* Greedy Algorithm. Start with one vertex and make it
red, and then make all its neighbors blue, and keep
going. If you succeed in coloring the graph without
making two nodes of the same color adjacent, the
graph can be 2-colored.



What about this?

e 3-colorability: Given graph G, determine if we
can assign red, blue, and green to the vertices
in G so that no edge connects vertices of the
same color.



 Some decision problems can be solved in
polynomial time:
— Can graph G be 2-colored?
— Does graph G have a Eulerian tour?
 Some decision problems seem to not be
solvable in polynomial time:
— Can graph G be 3-colored?
— Does graph G have a Hamiltonian cycle?



What about this?

e 3-colorability: Given graph G, determine if we
can assign red, blue, and green to the vertices
in G so that no edge connects vertices of the

same color.

* This problem is provably NP-hard. What does
this mean?



P vs. NP, continued

* The “big” question in theoretical computer
science is:

— Is it possible to solve an NP-hard problem
in polynomial time?

* If the answer is “yes’, then all NP-hard
problems can be solved in polynomial time, so
P=NP. This is generally not believed.



Coping with NP-hard problems

Since NP-hard problems may not be solvable in
polynomial time, the options are:

— Solve the problem exactly (but use lots of time on
some inputs)

— Use heuristics which may not solve the problem
exactly (and which might be computationally
expensive, anyway)



DNA Sequence Evolution
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Phylogeny Problem
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Maximum Parsimony is NP-hard

Maximum parsimony:
* Given sequences (all of the same length),

* Find a tree with the sequences at the leaves that
minimizes the total number of changes



NP-hard problems in Biology

* Optimization problems in biology are almost
all NP-hard, and heuristics may run for months
(or years!!) before finding local optima.

 The challenge here is to find better heuristics,
since exact solutions are very unlikely to ever
be achievable on large datasets.



Divide-and-Conquer

* Divide-and-conquer is a basic algorithmic trick
for solving problems!

e Basicidea: divide a dataset into two or more
sets, solve the problem on each set, and then
combine solutions.

 Example: MergeSort to sort a list of k integers!



Divide-and-Conquer

 MergeSort solves the “Sorting Problem”: given a list
of integers, put them into increasing order (smallest
to largest).

* This can be done by recursively dividing the unsorted
list in half, applying MergeSort to each side, and then
merging the right and left back together.



Merge Sort Algorithm

Given a list L with a length k:
 If k==1 - the list is sorted

* Else:
— Merge Sort the left side (0 through k/2)
— Merge Sort the right side (k/2+1 thru k)
— Merge the right side with the left side



Merging two sorted lists

13 11023 54| | 1| 5125|775

Result:
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Result:

M e rgl N g (cont.)

75

23

25

54




Result:
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Divide-and-Conquer for
Tree Estimation

* Basic idea: divide a dataset into two or more
overlapping subsets, construct trees on each
set, and then combine trees!

 Somewhat easy to figure out how to do this
on rooted trees, but a bit harder on unrooted

trees.



DCMs: Divide-and-conquer for improving
phylogeny reconstruction

TR

Y
A



Iteration plus divide-and-conquer

®

Overlapping

subsets

AA
AA A

AA tree for each
/ subset
A tree for the

entre dataset




NP-hard optimization problems:
better accuracy, but slow to find good solutions
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Computer Science Solving Problems
in Biology and Linguistics

Algorithm design using
— Divide-and-conquer
— Iteration
— Heuristic search
— Graph theory
Algorithm analysis using
— Probability Theory
— Graph Theory
Simulations and modelling
Collaborations with biologists and linguists and data analysis

Discoveries about how life evolved on earth (and how languages
evolved, too)



Main Points

 Computer scientists develop algorithms and
software to make it possible for scientists to
get improved accuracy in their analyses.

* These algorithms involve creative strategies,
including divide-and-conquer, iteration, and
randomization.

* Extensive simulations and data analyses are
part of the evaluation process!



Computational Phylogenetics

Current methods can use months to

estimate trees on 1000 DNA sequences

Q Our objective:

More accurate trees and alignments

? J on 500,000 sequences in under a week

@ We prove theorems using graph theory
and probability theory, and our
algorithms are studied on real and

Courtesy of the Tree of Life project

simulated data.



D?Hlon Subititution

..ACGGTGCAGTTACCA...

/ '”29”‘0” ..ACGGTGCAGTTACC-A..
..ACCAGTCACCTA.. ..AC----CAGTCACCTA..

The true multiple alighment

— Reflects historical substitution, insertion, and deletion
events

— Defined using transitive closure of pairwise alignments
computed on edges of the true tree



(Some of) our Methods

* SATé, PASTA, and * Techniques:

UPP: large, very — Divide-and-conquer
large, and ultra-large

. — lteration
multiple sequence — Hidden Markov
alignment Models

e DACTAL and DCM: — Graph Theory

ultra-large tree
estimation



Constructing trees from smaller trees

 Rooted trees: If they agree, it’s easy! (Not so
easy if they disagree)

* Unrooted trees: NP-hard, even if they agree!



Four Boosters

DCM1: improves accuracy of distance-based methods
using divide-and-conquer and chordal graph theory

DACTAL: uses divide-and-conquer plus iteration to get
a very large tree without needing a multiple sequence

alignment

SATé: uses divide-and-conquer plus iteration to co-
estimate the multiple sequence alignment and a tree

UPP: uses divide-and-conquer, randomization, and
Hidden Markov Models to obtain ultra-large
alignments




First example: DCM1

DCM = “Disk Covering Method”

 Theory: Warnow, St. John, and Moret, SODA
2001,

* Practice:Nakhleh et al., ISMB 2001



Performance on large diameter trees

Simulation study based

T upon fixed edge
0.8 | —— NJ . lengths, K2P model of
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DCM1 Decompositions

Input: Distance matrix (distances between species) and threshold q.
Output: Division of the set of species into overlapping subsets.

Technique: Compute maximal cliques 1n a “Triangulated Threshold
Graph™.

Looks like moving a disk across a tree!

TR TR




DCM1-boosting distance-based methods
[Nakhleh et al. ISMB 2001]

S N B | Theorem (Warnow
| — pemint [ et al., SODA

' 2001): DCM1-NJ

- converges to the

- true tree from

~ polynomial length
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Error Rate
=
(@)
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No. Taxa



Second Example: DACTAL

(Divide-And-Conquer Trees (Almost) without alighments)

* |[nput: set S of unaligned sequences
e Qutput: tree on S (but no alignment)

Nelesen, Liu, Wang, Linder, and Warnow, ISMB and
Bioinformatics 2012



Divide-and-Conquer for Alignment

e SATé: uses divide-and-conquer plus iteration
to co-estimate the multiple sequence
alignment and a tree

e UPP: uses divide-and-conquer, randomization,
and Hidden Markov Models to obtain ultra-
large alignments




Example 3: SATe

SATé: Simultaneous Alignment and Tree Estimation

Liu, Nelesen, Raghavan, Linder, and Warnow,
Science, 19 June 2009, pp. 1561-1564.

Liu et al., Systematic Biology 2012

Public software distribution (open source) through
Mark Holder’s group at the University of Kansas
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Re-aligning on a tree

Align
\&bpmblems

Estimate ML /
tree on merged ABCD M'erge sub-
alignments

alignment

Decompose
dataset




SATé Algorithm

Obtain initial alignment and
estimated ML tree




SATé Algorithm

Obtain initial alignment and
estimated ML tree

Use tree to compute
new alignment




SATé Algorithm

Obtain initial alignment and
estimated ML tree

Use tree to compute
Estimate ML tree on new new alignment

alignment




Missing Branch Rate (%)
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(Similar improvements for biological datasets)




Missing Branch Rate (%)
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Example 4: UPP

 UPP: Ultra-large alignments using SEPP

* Authors: Nam Nguyen, Siavash Mirarab, and
Tandy Warnow

Basic idea:

e estimate an alignment on a small random subset
of the sequence dataset

* add all the remaining sequences into the small
alignment (one by one, independently), using
multiple Hidden Markov Models



UPP vs. HMMER vs. MAFFT (alignment error)
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MAFFT-profile alignment strategy not as accurate as
UPP(100,10) or UPP(100,100).



UPP vs. HMMER vs. MAFFT (tree error)
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produce better trees than MAFFT.
Decomposition into a family of HMMs improves resultant trees.
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Four Boosters

DCM1: improves accuracy of distance-based methods
using divide-and-conquer and chordal graph theory

DACTAL: uses divide-and-conquer plus iteration to get
a very large tree without needing a multiple sequence

alignment

SATé: uses divide-and-conquer plus iteration to co-
estimate the multiple sequence alignment and a tree

UPP: uses divide-and-conquer, randomization, and
Hidden Markov Models to obtain ultra-large
alignments




“Boosters”, or “Meta-Methods”

* Meta-methods use divide-and-conquer
and iteration (or other techniques) to
“boost” the performance of base methods
(phylogeny reconstruction, alignment
estimation, etc)

Base method M > - » M*




Summary

e Standard alignment and phylogeny estimation
methods do not provide adequate accuracy
on large datasets.

* When markers tend to yield poor alignments
and trees, don’t throw out the data — get a
better method!



Summary

 Computer scientists develop algorithms and
software to make it possible for scientists to
get improved accuracy in their analyses.

* These algorithms involve creative strategies,
including divide-and-conquer, iteration, and
randomization.

* Extensive simulations and data analyses are
part of the evaluation process!
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DCM1 Decompositions

Input: Set S of sequences, distance matrix d, threshold value g € {dij}

1. Compute threshold graph
Go=(V,E),V =S8,E={(,7):d(,j)=q;

2. Perform minimum weight triangulation (note: if d is an additive matrix, then
the threshold graph is provably triangulated).

DCMI1 decomposition : Compute maximal cliques

NI/




