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Phylogeny Problem
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Triangulated Graphs

• Definition: A graph is triangulated if it has
no simple cycles of size four or more.



This talk: Triangulated graphs
and phylogeny estimation

• The “Triangulating Colored Graphs” problem and
an application to historical linguistics

• Using triangulated graphs to improve the accuracy
and sequence length requirements phylogeny
estimation in biology

• Using triangulated graphs to speed-up heuristics
for NP-hard phylogenetic estimation problems



Part 1: Using triangulated graphs
for historical linguistics



Some useful terminology:
homoplasy
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Perfect Phylogeny

• A phylogeny T for a set S of taxa is a
perfect phylogeny if each state of each
character occupies a subtree (no character
has back-mutations or parallel evolution)



Perfect phylogenies, cont.

• A=(0,0), B=(0,1), C=(1,3), D=(1,2) has a
perfect phylogeny!

• A=(0,0), B=(0,1), C=(1,0), D=(1,1) does not
have a perfect phylogeny!



A perfect phylogeny

• A  =  0  0
• B  =  0  1
• C  =  1  3
• D  =  1  2
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A perfect phylogeny

• A  =  0  0
• B  =  0  1
• C  =  1  3
• D  =  1  2
• E  =  0  3
• F  =   1 3
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The Perfect Phylogeny Problem

• Given a set S of taxa (species, languages,
etc.) determine if a perfect phylogeny T
exists for S.

• The problem of determining whether a
perfect phylogeny exists is NP-hard
(McMorris et al. 1994, Steel 1991).



Triangulated Graphs

• Definition: A graph is triangulated if it has
no simple cycles of size four or more.



Triangulated graphs and trees

• A graph G=(V,E) is triangulated if and only
if there exists a tree T so that G is the
intersection graph of a set of subtrees of T.

– vertices of G correspond to subtrees (f(v) is a
subtree of T)

– (v,w) is an edge in G if and only if f(v) and f(w)
have a non-empty intersection



c-Triangulated Graphs

• A vertex-colored graph is c-triangulated if it
is triangulated, but also properly colored!



Triangulating Colored Graphs:
An Example

A graph that can be c-triangulated



Triangulating Colored Graphs:
An Example

A graph that can be c-triangulated



Triangulating Colored Graphs:
An Example

A graph that cannot be c-triangulated



Triangulating Colored Graphs
(TCG)

Triangulating Colored Graphs: given a vertex-
colored graph G, determine if G can be
c-triangulated.



The PP and TCG Problems

• Buneman’s Theorem:
A perfect phylogeny exists for a set S if and
only if   the associated character state
intersection graph can be c-triangulated.

• The PP and TCG problems are
polynomially equivalent and NP-hard.



A no-instance of Perfect Phylogeny

• A  = 0 0
• B  = 0 1
• C  = 1 0
• D  = 1 1
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An input to perfect phylogeny (left) of four sequences described
by two characters, and its character state intersection graph.  Note 
that the character state intersection graph is 2-colored.



Solving the PP Problem Using
Buneman’s Theorem

 “Yes” Instance of PP:
        c1   c2   c3
  s1  3     2      1
  s2  1     2      2
  s3  1     1      3
  s4  2     1      1
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Some special cases are easy

• Binary character perfect phylogeny solvable in linear time

• r-state characters solvable in polynomial time for each r
(combinatorial algorithm)

• Two character perfect phylogeny solvable in polynomial
time (produces 2-colored graph)

• k-character perfect phylogeny solvable in polynomial time
for each k (produces k-colored graphs -- connections to
Robertson-Seymour graph minor theory)



Phylogenies of Languages

• Languages evolve over time, just as biological species do
(geographic and other separations induce changes that over
time make different dialects incomprehensible -- and new
languages appear)

• The result can be modelled as a rooted tree

• The interesting thing is that many characteristics of
languages evolve without back mutation or parallel
evolution -- so a “perfect phylogeny” is possible!



 Possible Indo-European tree
(Ringe, Warnow and Taylor 2000)



Part 2: Phylogeny estimation in
biology

• Using triangulated graphs to improve the
topological accuracy of distance-based methods

• Using triangulated graphs to speed up heuristics
for NP-hard optimization problems



DNA Sequence Evolution
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1. Heuristics for NP-hard optimization criteria (Maximum
Parsimony and Maximum Likelihood)

Phylogenetic reconstruction methods

Phylogenetic trees

Cost

Global optimum

Local optimum

2. Polynomial time distance-based methods: Neighbor
Joining, FastME, etc.

3.     Bayesian MCMC methods.



Evaluating phylogeny
reconstruction methods

• In simulation: how “topologically” accurate
are trees reconstructed by the method?

• On real data: how good are the “scores”
(typically either maximum parsimony or
maximum likelihood) obtained by the
method, as a function of time?



Distance-based Phylogenetic Methods



Quantifying Error

FN: false negative
      (missing edge)
FP: false positive
      (incorrect edge)

50% error rate

FN

FP



Neighbor joining has poor accuracy on large
diameter model trees

[Nakhleh et al. ISMB 2001]

Simulation study based
upon fixed edge
lengths, K2P model of
evolution, sequence
lengths fixed to 1000
nucleotides.

Error rates reflect
proportion of incorrect
edges in inferred trees.

NJ
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Neighbor Joining’s sequence
length requirement is

exponential!

• Atteson: Let T be a General Markov
model tree defining additive matrix D.
Then Neighbor Joining will reconstruct the
true tree with high probability from
sequences that are of length at least
O(lg n emax Dij).



“Boosting” phylogeny
reconstruction methods

• DCMs “boost” the performance of
phylogeny reconstruction methods.

DCMBase method M DCM-M



Divide-and-conquer for phylogeny
estimation



Graph-theoretic
divide-and-conquer (DCM’s)

• Define a triangulated graph so that its vertices correspond
to the input taxa

• Compute a decomposition of the graph into overlapping
subgraphs, thus defining a decomposition of the taxa into
overlapping subsets.

• Apply the “base method” to each subset of taxa, to
construct a subtree

• Merge the subtrees into a single tree on the full set of taxa.



DCM1 Decompositions

DCM1 decomposition : Compute maximal cliques

Input: Set S of sequences, distance matrix d, threshold value 

1. Compute threshold graph 
}),(:),{(,),,( qjidjiESVEVGq !===

2. Perform minimum weight triangulation (note: if d is an additive matrix, then 
     the threshold graph is provably triangulated).

}{ ijdq!



Improving upon NJ

• Construct trees on a number of smaller
diameter subproblems, and merge the
subtrees into a tree on the full dataset.

• Our approach:
– Phase I: produce O(n2) trees (one for each

diameter)
– Phase II: pick the “best” tree from the set.



DCM1-boosting distance-based methods
[Nakhleh et al. ISMB 2001 and Warnow et al. SODA 2001]

•Theorem:
DCM1-NJ
converges to the
true tree from
polynomial
length sequences

NJ
DCM1-NJ
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What about solving MP and ML?

• Maximum Parsimony (MP) and maximum
likelihood (ML) are the major phylogeny
estimation methods used by systematists.



Maximum Parsimony

• Input: Set S of n aligned sequences of
length k

• Output: A phylogenetic tree T
– leaf-labeled by sequences in S
– additional sequences of length k labeling the

internal nodes of T

such that                      is minimized.!
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Maximum Parsimony:
computational complexity

ACT

ACA

GTT

GTA
ACA GTA

1 2 1

MP score = 4

Finding the optimal MP tree is NP-hard

Optimal labeling can be
computed in linear time O(nk)



Solving NP-hard problems
exactly is … unlikely

• Number of
(unrooted) binary
trees on n leaves is
(2n-5)!!

• If each tree on
1000 taxa could be
analyzed in 0.001
seconds, we would
find the best tree in

      2890 millennia
4.5 x 10190100
2.2 x 102020

2.7 x 1029001000

202702510
1351359
103958
9457
1056
155
34

#trees#leaves



Standard heuristic search

T

T’

Hill-climbingRandom
perturbation



Problems with current techniques for MP
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Shown here is the performance of the TNT software for maximum parsimony on a real
dataset of almost 14,000 sequences.  The required level of accuracy with respect to MP
score is no more than 0.01% error (otherwise high topological error results).
(“Optimal” here means best score to date, using any method for any amount of time.)

Performance of TNT with time



New DCM3 decomposition
Input: Set S of sequences, and guide-tree T

1. We use a new graph (“short subtree graph”) G(S,T))
               Note: G(S,T) is triangulated!
2. Find clique separator in G(S,T) and form subproblems

DCM3 decompositions 
(1) can be obtained in O(n) time
(2) yield small subproblems
(3) can be used iteratively



Iterative-DCM3

T

T’

DCM3Base
method



Rec-I-DCM3 significantly improves performance

Comparison of TNT to Rec-I-DCM3(TNT) on one large dataset
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Summary

• NP-hard optimization problems abound in
phylogeny reconstruction, and in
computational biology in general, and need
very accurate solutions.

• Many real problems have beautiful and
natural combinatorial and graph-theoretic
formulations.
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