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Big Data: Hype, or will we
learn something new and
important?

Is it just a matter of 
data management and 
sufficient parallelism?
(or, Are TACC and a good 
programmer enough?)



NSF/NIH Joint Solicitation for Big Data
12-499

Big Data is not just about “size”, but about “complexity”:

Error rates and types, heterogeneous data,
missing data

Methods that have high accuracy on small datasets
may have poor accuracy on “bigdata”.

“Scaling up” of existing methods may not be not
enough!

Requires fundamentally new methods from Computer
Science, Mathematics, and Statistics.



Computational Phylogenetics and
Metagenomics



Enormously hard computational challenges
Current methods do not provide good accuracy on
     large datasets

NSF Program: Assembling the Tree of Life





Phylogenetic-based propagation of functional
annotations within the Gene Ontology consortium

Gaudet P et al. Brief Bioinform 2011;bib.bbr042, Phylogenetic-based propagation
of functional annotations within the Gene Ontology consortium

© The Author(s) 2011. Published by Oxford University Press.



Evolution of Vocal Learning

Erich Jarvis,
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Avian Phylogenomics Project
Erich Jarvis,
HHMI

Guojie Zhang,
BGI

• Approx. 50 species, whole genomes
• 8000+ genes, UCEs
• Gene trees and sequence alignments computed using SATé
• Species tree estimated using maximum likelihood (RAxML) 
• Multi-national team (20+ investigators)

Biggest challenges: 
estimating species tree from incongruent gene trees, 
poor phylogenetic signal in most genes
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1kp (http://www.onekp.com/)

 Transcriptomes of approx. 1200 species
 More than 13,000 gene families (most not

single copy)
 Multi-institutional project (10+ universities)

Challenge: estimating very large gene
alignments and trees (100,000+ sequences)
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U Alberta

Norm Wickett
Northwestern

Jim Leebens-Mack
U Georgia

Naim Matasci
iPlant – U Arizona

Siavash Mirarab, Tandy Warnow,
and Md. S. Bayzid at UT-Austin



DNA Sequence Evolution

AAGACTT

TGGACTTAAGGCCT

-3 mil yrs

-2 mil yrs

-1 mil yrs

today

AGGGCAT TAGCCCT AGCACTT

AAGGCCT TGGACTT

TAGCCCA TAGACTT AGCGCTTAGCACAAAGGGCAT

AGGGCAT TAGCCCT AGCACTT

AAGACTT

TGGACTTAAGGCCT

AGGGCAT TAGCCCT AGCACTT

AAGGCCT TGGACTT

AGCGCTTAGCACAATAGACTTTAGCCCAAGGGCAT



…ACGGTGCAGTTACC-A…

…AC----CAGTCACCTA…

The true multiple alignment
– Reflects historical substitution, insertion, and deletion

events
– Defined using transitive closure of pairwise alignments

computed on edges of the true tree

…ACGGTGCAGTTACCA…

Substitution
Deletion

…ACCAGTCACCTA…

Insertion



AGAT TAGACTT TGCACAA TGCGCTTAGGGCATGA

U V W X Y

U

V W

X

Y



Input: unaligned sequences

S1 = AGGCTATCACCTGACCTCCA
S2 = TAGCTATCACGACCGC
S3 = TAGCTGACCGC
S4 = TCACGACCGACA



Phase 1: Multiple Sequence
Alignment

S1 = -AGGCTATCACCTGACCTCCA
S2 = TAG-CTATCAC--GACCGC--
S3 = TAG-CT-------GACCGC--
S4 = -------TCAC--GACCGACA

S1 = AGGCTATCACCTGACCTCCA
S2 = TAGCTATCACGACCGC
S3 = TAGCTGACCGC
S4 = TCACGACCGACA



Phase 2: Construct tree

S1 = -AGGCTATCACCTGACCTCCA
S2 = TAG-CTATCAC--GACCGC--
S3 = TAG-CT-------GACCGC--
S4 = -------TCAC--GACCGACA

S1 = AGGCTATCACCTGACCTCCA
S2 = TAGCTATCACGACCGC
S3 = TAGCTGACCGC
S4 = TCACGACCGACA

S1

S4

S2

S3



Simulation Studies

S1 S2

S3S4

S1 = -AGGCTATCACCTGACCTCCA
S2 = TAG-CTATCAC--GACCGC--
S3 = TAG-CT-------GACCGC--
S4 = -------TCAC--GACCGACA

S1 = AGGCTATCACCTGACCTCCA
S2 = TAGCTATCACGACCGC
S3 = TAGCTGACCGC
S4 = TCACGACCGACA

S1 = -AGGCTATCACCTGACCTCCA
S2 = TAG-CTATCAC--GACCGC--
S3 = TAG-C--T-----GACCGC--
S4 = T---C-A-CGACCGA----CA

Compare

True tree and
alignment

S1 S4

S3S2

Estimated tree and
alignment

Unaligned
Sequences



1000 taxon models, ordered by difficulty (Liu et al., 2009)



Major Challenges:
large datasets, fragmentary sequences

• Phylogenetic analyses: standard methods have poor
accuracy on even moderately large datasets, and the most
accurate methods are enormously computationally
intensive (weeks or months, high memory requirements).

• Multiple sequence alignment: Few methods can run on
large datasets, and alignment accuracy is generally poor
for large datasets with high rates of evolution.

• Metagenomic analyses: methods for species
classification of short reads have poor sensitivity.  Efficient
high throughput is necessary (millions of reads).

These methods are also impacted by fragmentary data.



• SATé: Simultaneous Alignment and Tree Estimation (Liu et al.,
Science 2009 and Systematic Biology, 2012)

• TIPP: Taxon Identification using SEPP (in preparation, Nguyen et al.)

• UPP: Ultra-large alignment using SEPP (in preparation, Nguyen et al.)
- time permitting

Key algorithm design techniques:

• Statistical estimation methods (Hidden Markov Models, Maximum
Likelihood)

• Data-driven divide-and-conquer to improve the accuracy and
scalability of the “base” method

• Iteration

Today’s Talk



Part 1: SATé

Liu, Nelesen, Raghavan, Linder, and
Warnow, Science 2009, pp. 1561-1564.

Liu et al., Syst Biol 2012, 61(1): 90-106.

Public software distribution (open source)
through the University of Kansas, in
use, world-wide.



SATé Algorithm

Tree

Obtain initial alignment
and estimated ML tree



SATé Algorithm

Tree

Obtain initial alignment
and estimated ML tree

Use tree to
compute new
alignment

Alignment



SATé Algorithm

Estimate ML tree on
new alignment

Tree

Obtain initial alignment
and estimated ML tree

Use tree to
compute new
alignment

Alignment



SATé Algorithm

Estimate ML tree on
new alignment

Tree

Obtain initial alignment
and estimated ML tree

Use tree to
compute new
alignment

Alignment

If new alignment/tree pair has worse ML score, realign using
a different decomposition

Repeat until termination condition (typically, 24 hours)



A

B D

C

Merge
subproblems

Estimate ML tree
on merged
alignment

Decompose based on
input tree

A B

C D

Align
subproblems

A B

C D

ABCD

One SATé iteration (really 32 subsets)

e



1000 taxon models, ordered by difficulty



1000 taxon models, ordered by difficulty

24 hour SATé analysis, on desktop machines

(Similar improvements for biological datasets)



1000 taxon models ranked by difficulty



SATe can be used to “boost”
other alignment methods.

In the Avian project, we used
SATe+PRANK to identify
erroneously annotated
portions of the sequences.

Final gene sequence
alignments were computed
using SATe+MAFFT (largely
due to computational
issues).



SATé
• SATé is more accurate than standard methods on

large datasets with high rates of evolution (both
biological and simulated data), and has been used on
both proteins and nucleotides.

• The current implementation has been tested on
datasets with up to 50,000 sequences.

Open-source downloadable program at:

     http://phylo.bio.ku.edu/software/sate/sate.html



Part II: Metagenomic Taxon
Identification

Objective: classify short reads in a metagenomic
sample



Key technique: SEPP

• SEPP: SATé-enabled Phylogenetic
Placement, by Mirarab, Nguyen, and Warnow

• Pacific Symposium on Biocomputing, 2012
(special session on the Human Microbiome)



Phylogenetic Placement

ACT..TAGA..AAGC...ACATAGA...CTTTAGC...CCAAGG...GCAT

ACCG
CGAG
CGG
GGCT
TAGA
GGGGG
TCGAG
GGCG
GGG
•.
•.
•.
ACCT

Fragmentary sequences
from some gene

Full-length sequences for same
gene, and an alignment and a tree



Step 1: Align each query sequence to
backbone alignment

Step 2: Place each query sequence
into backbone tree, using extended
alignment

Phylogenetic Placement



Align Sequence

S1

S4

S2

S3

S1  = -AGGCTATCACCTGACCTCCA-AA
S2  = TAG-CTATCAC--GACCGC--GCA
S3  = TAG-CT-------GACCGC--GCT
S4  = TAC----TCAC--GACCGACAGCT
Q1  = TAAAAC



Align Sequence

S1

S4

S2

S3

S1  = -AGGCTATCACCTGACCTCCA-AA
S2  = TAG-CTATCAC--GACCGC--GCA
S3  = TAG-CT-------GACCGC--GCT
S4  = TAC----TCAC--GACCGACAGCT
Q1  = -------T-A--AAAC--------



Place Sequence

S1

S4

S2

S3
Q1

S1  = -AGGCTATCACCTGACCTCCA-AA
S2  = TAG-CTATCAC--GACCGC--GCA
S3  = TAG-CT-------GACCGC--GCT
S4  = TAC----TCAC--GACCGACAGCT
Q1  = -------T-A--AAAC--------



Phylogenetic Placement
• Align each query sequence to backbone alignment

– HMMALIGN (Eddy, Bioinformatics 1998)
– PaPaRa (Berger and Stamatakis, Bioinformatics 2011)

• Place each query sequence into backbone tree
– Pplacer (Matsen et al., BMC Bioinformatics, 2011)
– EPA (Berger and Stamatakis, Systematic Biology 2011)

Note: pplacer and EPA use maximum likelihood, and
are reported to have the same accuracy.



HMMER vs. PaPaRa
Alignments

Increasing rate of evolution

0.0



HMMER+pplacer:
1) build one HMM for the entire alignment
2) Align fragment to the HMM, and insert into 

alignment
3) Insert fragment into tree to optimize likelihood



One Hidden Markov Model
for the entire alignment?



Or 2 HMMs?



Or 4 HMMs?



SEPP(10%), based on ~10 HMMs

0.0

0.0

Increasing rate of evolution



TIPP: SEPP + statistics

SEPP has high recall but low precision
(classifies almost everything)

TIPP: dramatically reduces false positive rate
with small reduction in true positive rate, by
considering uncertainty in alignment
(HMMER) and placement (pplacer)



Leave-one-out on 30 marker genes
Illumina Error model 454 Error model



Part III: UPP: Ultra-large
alignment using SEPP

Input: set S of unaligned sequences
Output: alignment and tree on S

• Select random subset X of sequences
• Estimate alignment and tree on X
• Run SEPP to align remaining sequences
• Run favorite tree estimation method on alignment
• UPP(x,y) refers to UPP using backbones of size y

and alignment subsets of size x



      UPP vs. MAFFT:  Running time (hr)

MAFFT-profile cannot run within alotted time (24 hours on
12 processors) on 100,000 sequences

RNASim data generated by Junhyong Kim (Penn)



UPP vs. MAFFT: tree error



        One Million Taxa: Tree Error

Note improvement obtained by using SEPP decomposition



• SATé: co-estimation of alignments and trees

• SEPP: phylogenetic placement of short reads

• TIPP: taxon identification

• UPP: ultra-large alignment

Algorithmic strategies: divide-and-conquer and
iteration to improve the accuracy and scalability of
a base method.

 “Boosters”



Big Data in Biology

• More than just data management and HPC

• Yes, we need TACC -- but we also need new
algorithms

• Important questions can be asked and
(possibly) answered

• Collaboration between biologists and
computer scientists is essential
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Red gene tree ≠ species tree
(green gene tree okay)



1KP - dramatic increase in
available sequence



Evolution of Vocal Learning

Erich Jarvis,
HHMI



SEPP (10%) on Biological Data

For 1 million fragments:

PaPaRa+pplacer: ~133 days

HMMALIGN+pplacer: ~30 days

SEPP 1000/1000:  ~6 days

16S.B.ALL dataset, 13k curated backbone tree, 13k total fragments



Phylogenetic “boosters”
(meta-methods)

Goal: improve accuracy, speed, robustness, or theoretical
guarantees of base methods

Examples:
• DCM-boosting for distance-based methods (1999)
• DCM-boosting for heuristics for NP-hard problems (1999)
• SATé-boosting for alignment methods (2009)
• SuperFine-boosting for supertree methods (2011)
• DACTAL-boosting for all phylogeny estimation methods (2011)
• SEPP-boosting for metagenomic analyses (2013)
• SEPP-boosting for ultra-large alignment estimation (2013)



Algorithmic “Boosters” (DCMs)

• These divide-and-conquer techniques
“boost” the performance of base
methods (for alignment, for tree
estimation, for classification, etc.).

DCMBase method M DCM-M



TIPP: Taxon Identification using SEPP
(30 marker genes, non-leave-out, with 454

sequencing error)





BIG DATA FOR BIOLOGY



                         Whole Genome Assembly

  Graph Algorithms and Combinatorial Optimization!

But:
• Modern Sequencing Technologies create short reads with
    high error rates - need new genome assembly methods
• Metagenome assembly even harder.



       BigData for Biology: Genomics



Biology: 21st Century Science!

“When the human genome was
sequenced seven years ago, scientists
knew that most of the major scientific
discoveries of the 21st century would be
in biology.”

January 1, 2008, guardian.co.uk



The 1000 Genome Project: using
human genetic variation to better
treat diseases

Where did humans come from,
and how did they move
throughout the globe?



Other Genome Projects! (Neanderthals, Woolly
Mammoths, and more ordinary creatures…)



Orangutan Gorilla Chimpanzee Human

From the Tree of the Life Website,
University of Arizona

Phylogeny (evolutionary tree)



Alignment and Phylogeny
Estimation: BigData Problems

• Sequence alignment of many sequences: standard methods do
not provide good accuracy, and many cannot run

• Tree estimation for many sequences: no methods are fast
enough (many cannot be run) - years of analysis

• Species tree estimation from multiple genes: species trees can
differ from gene trees due to incomplete lineage sorting,
hybridization, and horizontal gene transfer (among other
causes)

• Fragmentary sequences due to sequencing technologies
(incomplete assembly)

• Missing data (not all genes in all species)



Alignment and Phylogeny
Estimation: BigData Problems

• Sequence alignment of many sequences: standard methods do
not provide good accuracy, and many cannot run

• Tree estimation for many sequences: no methods are fast
enough (many cannot be run) - years of analysis

• Species tree estimation from multiple genes: species trees can
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• Missing data (not all genes in all species)


