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How did life evolve on earth?

An international effort toAn international effort to
understand how lifeunderstand how life
evolved on earthevolved on earth

Biomedical applications:Biomedical applications:
drug design, proteindrug design, protein
structurestructure  and functionand function
prediction,prediction,  biodiversity.biodiversity.

• Courtesy of the Tree of Life project



Today’s talk:
some theory, some empirical performance

• When true alignment is known: methods that are
absolute fast-converging (1997 to present)

• Estimating trees in the presence of insertions and
deletions:
– SATé: Liu et al., Science 2009, and Systematic Biology,

in press), and

– DACTAL: Nelesen et al., in preparation



Part 1: Absolute Fast Convergence



DNA Sequence Evolution
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Markov Model of Site Evolution

Simplest (Jukes-Cantor):
• The model tree T is binary and has substitution probabilities p(e)

on each edge e.
• The state at the root is randomly drawn from {A,C,T,G}

(nucleotides)
• If a site (position) changes on an edge, it changes with equal

probability to each of the remaining states.
• The evolutionary process is Markovian.

More complex models (such as the General Markov model) are also
considered, often with little change to the theory.



Quantifying Error

FN: false negative
      (missing edge)
FP: false positive
      (incorrect edge)

50% error rate

FN

FP



Statistical consistency, exponential convergence, and
absolute fast convergence (afc)



“Convergence rate” or sequence length requirement

The sequence length (number of sites) that a
phylogeny reconstruction method M needs to
reconstruct the true tree with probability at least 1-ε
depends on

• M (the method)
• ε
• f = min p(e),
• g = max p(e), and
• n, the number of leaves

We fix everything but n.



Afc methods
A method M is “absolute fast converging”, or afc,  if

for all positive f, g, and ε, there is a polynomial p(n)
s.t. Pr(M(S)=T) > 1- ε, when S is a set of
sequences generated on T of length at least p(n).

Notes:
1. The polynomial p(n) will depend upon M, f, g, and ε.

2. The method M is not “told” the values of f and g.



Distance-based estimation



Are distance-based methods statistically consistent?
And if so, what are their sequence length requirements?



Theorem (Erdos et al., Atteson): Neighbor joining
(and some other methods) will return the true tree
w.h.p. provided sequence lengths are exponential
in the evolutionary diameter of the tree.

Sketch of proof:
• NJ (and other distance methods) guaranteed

correct if all entries in the estimated distance matrix
have sufficiently low error.

• Estimations of large distances require long
sequences to have low error w.h.p.



Performance on large diameter trees

Simulation study
based upon fixed
edge lengths, K2P
model of evolution,
sequence lengths
fixed to 1000
nucleotides.

Error rates reflect
proportion of
incorrect edges in
inferred trees.

[Nakhleh et al. ISMB 2001]
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Designing an afc method
• You often don’t need the entire distance

matrix to get the true tree (think of the
caterpillar tree)

• The problem is you don’t know which entries
have sufficiently low error, and which ones
are needed to determine the tree.

• But you can guess!
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Fast converging methods (and related work)

• 1997: Erdos, Steel, Szekely, and Warnow (ICALP).

• 1999: Erdos, Steel, Szekely, and Warnow (RSA, TCS); Huson, Nettles
and Warnow (J. Comp Bio.)

• 2001: Warnow, St. John, and Moret (SODA); Cryan, Goldberg, and
Goldberg (SICOMP); Csuros and Kao (SODA); Nakhleh, St. John,
Roshan, Sun, and Warnow (ISMB)

• 2002: Csuros (J. Comp. Bio.)

• 2006: Daskalakis, Mossel, Roch (STOC), Daskalakis, Hill, Jaffe, Mihaescu,
Mossel, and Rao (RECOMB)

• 2007: Mossel (IEEE TCBB)

• 2008: Gronau, Moran and Snir (SODA)

• 2010: Roch (Science)

and others



DCM1-boosting:
Warnow, St. John, and Moret,

SODA 2001

• The DCM1 phase produces a collection of trees (one for each
threshold), and the SQS phase picks the “best” tree.

• For a given threshold, the base method is used to construct trees
on small subsets (defined by the threshold) of the taxa. These
small trees are then combined into a tree on the full set of taxa.

DCM1 SQS
Exponentially
converging
(base) method

Absolute fast
converging
(DCM1-boosted)
method



DCM1-boosting distance-based methods
[Nakhleh et al. ISMB 2001]

•Theorem
(Warnow et al.,
SODA 2001):
DCM1-NJ
converges to the
true tree from
polynomial length
sequences

NJ
DCM1-NJ
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DCM1-NJ+SQS

• Theorem 1: For all f,g,ε, there is a polynomial p(n)
such that given sequences of length at least p(n),
then with probability at least 1- ε, the DCM1-phase
produces a set containing the true tree.

• Theorem 2: For all f, g, ε, there is a polynomial p(n)
such that given sequences of length at least p(n),
then with probability at least 1- ε, if the set contains
the true tree, then the SQS phase selects the true
tree.



DCM1-boosting:
Warnow, St. John, and Moret,

SODA 2001

• The DCM1 phase produces a collection of trees (one for each threshold),
and the SQS phase picks the “best” tree.

• How to compute a tree for a given threshold:
– Handwaving description: erase all the entries in the distance matrix above that

threshold, and compute a tree from the remaining entries using the “base”
method.

– The real technique uses chordal graph decompositions.

DCM1 SQS
Exponentially
converging
(base) method

Absolute fast
converging
(DCM1-boosted)
method



Chordal (triangulated) graphs

• A graph is chordal iff it has no simple induced cycles of at
least four vertices.

• Every chordal graph has at most n maximal cliques, and the
Maxclique decomposition can be found in polynomial time.



DCM1
Given distance matrix for the species:

1. Define a triangulated (i.e. chordal) graph so that its vertices
correspond to the input taxa

2. Compute the max clique decomposition of the graph, thus
defining a decomposition of the taxa into overlapping
subsets.

3. Compute tree on each max clique using the “base method”.

4. Merge the subtrees into a single tree on the full set of taxa.



DCM1 Decompositions

DCM1 decomposition : Compute maximal cliques

Input: Set S of sequences, distance matrix d, threshold value 

1. Compute threshold graph 
}),(:),{(,),,( qjidjiESVEVGq !===

2. Perform minimum weight triangulation (note: if d is an additive matrix, then 
     the threshold graph is provably triangulated).

}{ ijdq!
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DCM1-boosting distance-based methods
[Nakhleh et al. ISMB 2001]

• Theorem (Warnow et
al., SODA 2001):
DCM1-NJ converges
to the true tree from
polynomial length
sequences.

• Many other afc
methods, but none
(so far) outperform
NJ in practice.

NJ
DCM1-NJ
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Summary and Open Questions
DCM-NJ has better accuracy than NJ
DCM-boosting of other distance-based method also produces very

big improvements in accuracy
Other afc methods have been developed with even better theoretical

performance
Roch and collaborators have established a threshold for branch

lengths, below which logarithmic sequence lengths can suffice for
accuracy

Still to be developed: other afc methods with improved empirical
performance compared to NJ and other methods

Biggest open problem: sequence length requirement for maximum
likelihood (though see Szekely and Steel’s work)



What about more complex models?

These results only apply when sequences evolve under
these nice substitution-only models.

What can we say about estimating trees when sequences
evolve with insertions and deletions (“indels”)?



Part II: Estimating trees in the presence
of Indels (insertions and deletions)



…ACGGTGCAGTTACC-A…

…AC----CAGTCACCTA…

The true multiple alignment
– Reflects historical substitution, insertion, and deletion

events
– Defined using transitive closure of pairwise alignments

computed on edges of the true tree

…ACGGTGCAGTTACCA…

Substitution
Deletion

…ACCAGTCACCTA…

Insertion



Input: unaligned sequences

S1 = AGGCTATCACCTGACCTCCA
S2 = TAGCTATCACGACCGC
S3 = TAGCTGACCGC
S4 = TCACGACCGACA



Phase 1: Multiple Sequence Alignment

S1 = -AGGCTATCACCTGACCTCCA
S2 = TAG-CTATCAC--GACCGC--
S3 = TAG-CT-------GACCGC--
S4 = -------TCAC--GACCGACA

S1 = AGGCTATCACCTGACCTCCA
S2 = TAGCTATCACGACCGC
S3 = TAGCTGACCGC
S4 = TCACGACCGACA



Phase 2: Construct tree

S1 = -AGGCTATCACCTGACCTCCA
S2 = TAG-CTATCAC--GACCGC--
S3 = TAG-CT-------GACCGC--
S4 = -------TCAC--GACCGACA

S1 = AGGCTATCACCTGACCTCCA
S2 = TAGCTATCACGACCGC
S3 = TAGCTGACCGC
S4 = TCACGACCGACA

S1

S4

S2

S3



Many methods
Alignment methods
• Clustal
• POY (and POY*)
• Probcons (and Probtree)
• MAFFT
• Prank
• Muscle
• Di-align
• T-Coffee
• Opal
• FSA (new method)
• Infernal (new method)
• Etc.

Phylogeny methods
• Bayesian MCMC
• Maximum parsimony
• Maximum likelihood
• Neighbor joining
• FastME
• UPGMA
• Quartet puzzling
• Etc.

RAxML: best heuristic for large-scale ML optimization



1000 taxon models, ordered by difficulty



Problems with the two-phase approach

• Current alignment methods fail to return
reasonable alignments on large datasets with high
rates of indels and substitutions.

• Manual alignment is time consuming and
subjective.

• Systematists discard potentially useful markers if
they are difficult to align.

This issues seriously impact large-scale phylogeny
estimation (and Tree of Life projects)



Co-estimation methods
• Statistical methods (e.g., BAliPhy, StatAlign, Alifritz,

and others) have been developed, but all are
extremely computationally intensive (either unable
to analyze datasets with 100 sequences, or using
at least a week).

• Steiner Tree approaches based upon edit distances
(e.g., POY) are sometimes used, but these have
poor topological accuracy and are also
computationally intensive.



SATé
Liu, Nelesen, Raghavan, Linder, and Warnow,

Science, 19 June 2009, pp. 1561-1564.

• Kansas SATé software developers: Mark Holder
and Jiaye Yu

• Downloadable software for various platforms
• Easy-to-use GUI
• http://phylo.bio.ku.edu/software/sate/sate.html



1000 taxon models ranked by difficulty, Original SATé is 24 hour analysis,
Next SATé finishes in a few hours.



DACTAL

New supertree method:
SuperFine

Existing Method:
RAxML(MAFFT)

pRecDCM3

BLAST-
based

Overlapping 
subsets

A tree for
each subset

Unaligned
Sequences

A tree for the
entire dataset



Average of Three Largest
CRW Datasets

Datasets with curated alignments based
upon secondary structure with 6323 to
27,643 sequences (16S.B.ALL, 16S.T,
and16S.3).
Reference trees are 75% RAxML
bootstrap trees
DACTAL run with at most 5 iterations
from FastTree(PartTree)
Observations:

Quicktree and PartTree the only
alignment methods that run on all
three datasets
DACTAL is robust to starting tree
(same final accuracy results from
worse starting trees)



Observations
• SATé and DACTAL outperform two-phase methods

with respect to topological accuracy on large, hard-
to-align datasets.

• DACTAL outperforms SATé on the largest
datasets, and can analyze datasets that SATé
cannot.

• We do not have any theoretical explanation for why
these methods perform well.



Implications

• We need new methods for very large phylogenetic
analyses.

• Don’t throw out data that look hard to analyze -
design new methods!



Implications, continued

• Divide-and-conquer methods can greatly improve
the accuracy and speed of phylogeny and
alignment estimation.

• Theoretical performance doesn’t predict empirical
performance.

• Many open questions result from considering
phylogeny estimation with indels.



Some open questions

• What is the sequence length requirement for
maximum likelihood?

• Are trees identifiable under models including “long
gaps”?

• Why do SATé and DACTAL perform well?

• Under standard implementations of ML, gaps are
treated as missing data: what are the
consequences?



Projects in my lab
• Co-estimation of alignments and trees
• Supertree methods
• Comparative genomics: whole genome phylogeny

using gene order and content
• Estimating species trees from gene trees
• Reticulate phylogeny detection and estimation
• Faster maximum likelihood methods
• Datamining sets of trees
• Computational historical linguistics
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