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Core problem: speeding up phylogeny

I Trees with tens of thousands
of leaves

I Too slow even for “fast”
algorithms

I Can we do this in both in
theory and practice?



General algorithm and important special case

I Phylogenetic inference
I Given: Large multiple

alignment, n species,
Markov sequence model

I Find: edge-weighted tree
I Runtime faster than

quadratic in n

Some possibilities:

I FastTree [Price et al., 2009]

I Our previous program QTree

[B + Truszkowski 2011]

No performance guarantees
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General algorithm and important special case

I Phylogenetic inference
I Phylogenetic placement

I Given: Large multiple
alignment M,
tree T with n leaves

I Plus: alignment of new
sequence S to M

I Place S into tree T
I Faster than linear in n

Might have lots of new sequences

Example: add S = fox to this tree:
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Start with special case

Why do phylogenetic placement?

I Too slow to build whole tree
(lots of new sequences)

I New sequences (and
alignment) less trustrworthy

I Consistency across
experiments

I Real goal is something else
(metagenomics, etc.)



Slow way to do it

For each edge e in T :

I Find maximum likelihood if
S were attached to e

I Return edge e⇤ of overall
maximum likelihood

Linear in n: 2n � 3 edges to
examine

Example: add S = fox to this
tree:
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Idea: find a good part of the tree

Why look at the invertebrate part
of the tree with fox sequence?

I Look for sequence in T
similar to S

I Only explore its
neighbourhood

Can we make this work?

goose

dog

human

fruit fly

nematode

gibbon

wren

lamprey



Idea: find a good part of the tree

Why look at the invertebrate part
of the tree with fox sequence?

I Look for sequence in T
similar to S

I Only explore its
neighbourhood

Can we make this work?

goose

dog

human

fruit fly

nematode

gibbon

wren

lamprey

fox



To localize new sequence S

1. Ancestral sequences
I S may belong far from

leaves
I Would force search of

whole tree

Theorem [Evans et al. 2000]:
Can approximately infer ancestral
sequences, given tree and edge
lengths, regardless of n

I Can find near matches even
by the root
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Ancestral estimates



To localize new sequence S

1. Ancestral sequences

2. Search structure
I Fast way of locating close

matches to S
I Doesn’t generate lots of

false positives

Theorem [Indyk + Motwani
1998]: Can find near neighbours
to S in T with locality-sensitive
hashing in o(n) time

New sequence S = GGGCT
Consider positions 1, 3, 5
Key is GGT

GACCC

AACCT

ACGCT

GAGGT

GAGGC

AAGCT

GAGGC

GAGCC

GGGCT
matches here



Locality-sensitive hashing

I Idea: if S is close to a sequence in the tree, they probably match in
a random set of k positions.

I Build q hash tables, each from O(log n) randomly chosen positions

I Hash table hit: good neighbourhood to explore

How many hash tables?
Max. length of tree edge 0.01 0.02 0.05 0.075 0.10

Number of tables n0.05 n0.10 n0.27 n0.43 n0.61

(In practice 4 or 8 work pretty well...)



LSHplace

I Build hash tables from
random columns of
alignment

I For each sequence S :
I Localize S using hash

tables
I Shrink neighbourhood

with distance queries
I In tiny region, use

likelihood to find best
place
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Results

Errors:

I Topological distance: how many edges away from the correct edge?

I Evolutionary distance: accounting for edge lengths

Simulated data (so we know the right answer), 100,000 new sequences:
Tree size 1000 5000 10,000
Run time 35 min 41 min 49 min

Correct edge 73% 68% 63%
Average topol. dist .45 edges .52 edges .65 edges
Average evol. dist .013 .008 .007

2-3 million sequences a day on a desktop; maximum tree size probably
20-40,000 sequences



Summary of results

Versus pplacer [Matsen et al. 2010]:

I 8-25 times faster

I 6% fewer reads placed exactly correctly

Status

I Preliminary work (LSHplace 1.0) published at PSB 2013

I These results are unpublished: LSHplace 2.0

I Current work: speed, accuracy, memory footprint



General phylogenetic algorithm

Framework

I Start with each taxon in its
own tree

I Until only one tree left:
I Find close tree edges or

nodes (using LSH) and
join them

I Infer ancestral sequences
at new internal nodes
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A bit more detail

While forest has more than one
tree:

I Find close nodes A and B in
di↵erent trees (using LSH)

I Identify nearby edges to join

I Create nodes X and Y in the
middle of those edges, joined
with a new edge

I Reconstruct ancestral
sequences at X and Y

A

B
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Sweeping under the rug

I Can we always find a pair of nodes to join?
I Yes; the theory is frighteningly complex, but there always is a good

pair to join

I What other caveats?
I All tree lengths below constant g
I Alignment has to be right
I Markov model of evolution (In our theorem, sequences are binary;

this restriction is not required)



After the sweeping

Theorem [B + Truszkowski 2011]: If all tree lengths less than a constant
g < .15, our algorithm finds the correct tree, with high probability, in
time O(f (g)) time, where f (g) = o(n2).

Upper bound g 0.01 0.02 0.05 0.075 0.10
f (g) n1.11 n1.20 n1.48 n1.68 n1.86

First o(n2)-runtime algorithm with provably good theoretical performance
on O(log n)-length sequences.



Can this be practical?

I LSHtree: very fast software for phylogenetic reconstruction
I Small number of hash tables, instead of growing with upper limit on

edge length (presumably unknown!)
I Build new hash tables when not enough collisions
I NN interchanges after each join to fix errors in pair of joined edges
I Other simplifications of complex theoretical algorithm

I Prototype implementation, probably less stable than LSHplace.
I Experimental data:

I Tree topology simulated using pure-birth process
I Varying edge lengths: mean branch lengths range from .03 to .25
I 2000 taxa
I Varying sequence lengths: 500 to 4000 basepairs



Results

LSHtree; Qtree (our previous work); NJ phase of FastTree
Short edges (mean is 0.03): Medium edges (mean is 0.125):

For these edge lengths, results slightly better than other programs for
reasonably large sequences



Results

LSHtree; Qtree (our previous work); NJ phase of FastTree
Long edges (mean is .25):

For trees with long edges, LSHtree can’t join nodes well:
ancestral reconstructions are junk



Results

I Summary
I 1.5-2.5 times faster than FastTree’s NJ phase
I Accuracy comparable between both programs; LSHtree may be a bit

better for short edges, and requires slightly longer edges to become
successful

I Next phases
I Improve speed and memory footprint
I Make algorithm more tolerant of long edges, bad alignments, etc.
I Incorporate local search



Conclusions

I LSHplace (PSB 2013): phylogenetic placement software 8-25 x
faster than pplacer, not much less accurate

I LSHtree (WABI 2012): phylogenetic reconstruction software faster
than FastTree, roughly as accurate

I Theoretical basis for both programs is robust and complex

I More work in progress for both systems!
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