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How did life evolve on earth?
An international effort toAn international effort to
understand how lifeunderstand how life
evolved on earthevolved on earth

Biomedical applications:Biomedical applications:
drug design, proteindrug design, protein
structurestructure  and functionand function
prediction,prediction,  biodiversitybiodiversity

Phylogenetic Phylogenetic estimationestimation
is a is a ““Grand ChallengeGrand Challenge””::
millions of millions of taxataxa, NP-hard, NP-hard
optimization problemsoptimization problems

• Courtesy of the Tree of Life project



The CIPRES Project
(Cyber-Infrastructure for Phylogenetic Research)

www.phylo.org

This project is funded by the NSF under a Large ITR grant
• ALGORITHMS and SOFTWARE: scaling to millions of sequences (open

source, freely distributed)
• MATHEMATICS/PROBABILITY/STATISTICS: Obtaining better

mathematical theory under complex models of evolution
• DATABASES: Producing new database technology for structured data,

to enable scientific discoveries
• SIMULATIONS: The first million taxon simulation under realistically

complex models
• OUTREACH: Museum partners, K-12, general scientific public
• PORTAL available to all researchers



Step 1: Gather data

S1 = AGGCTATCACCTGACCTCCA
S2 = TAGCTATCACGACCGC
S3 = TAGCTGACCGC
S4 = TCACGACCGACA



Step 2: Multiple Sequence Alignment

S1 = -AGGCTATCACCTGACCTCCA
S2 = TAG-CTATCAC--GACCGC--
S3 = TAG-CT-------GACCGC--
S4 = -------TCAC--GACCGACA

S1 = AGGCTATCACCTGACCTCCA
S2 = TAGCTATCACGACCGC
S3 = TAGCTGACCGC
S4 = TCACGACCGACA



Step 3: Construct tree

S1 = -AGGCTATCACCTGACCTCCA
S2 = TAG-CTATCAC--GACCGC--
S3 = TAG-CT-------GACCGC--
S4 = -------TCAC--GACCGACA

S1 = AGGCTATCACCTGACCTCCA
S2 = TAGCTATCACGACCGC
S3 = TAGCTGACCGC
S4 = TCACGACCGACA

S1

S4

S2

S3



But molecular phylogenetics assumes the
alignment is given

S1 = -AGGCTATCACCTGACCTCCA
S2 = TAG-CTATCAC--GACCGC--
S3 = TAG-CT-------GACCGC--
S4 = -------TCAC--GACCGACA

S1

S4

S2

S3



This talk

• DCM-NJ: Dramatic improvement in phylogeny
estimation in terms of tree accuracy, and
theoretical performance under Markov models of
evolution

• DCM-MP and DCM-ML: Speeding up heuristics
for large-scale phylogenetic estimation

• Simulation studies of two-phase methods (amino-
acid and DNA sequences).

• SATe: A new technique for simultaneous
estimation of trees and alignments



Performance criteria
• Estimated alignments are evaluated with respect to the true

alignment.  Studied both in simulation and on real data.
• Estimated trees are evaluated for “topological accuracy”

with respect to the true tree.  Typically studied in
simulation.

• Methods for these problems can also be evaluated with
respect to an optimization criterion (e.g., maximum
likelihood score) as a function of running time.  Typically
studied on real data. (Reasonably valid for phylogeny but
not yet for alignment.)

Issues: Simulation studies need to be based upon realistic models, and
“truth” is often not known for real data.



DNA Sequence Evolution

AAGACTT

TGGACTTAAGGCCT

-3 mil yrs

-2 mil yrs

-1 mil yrs

today

AGGGCAT TAGCCCT AGCACTT

AAGGCCT TGGACTT

TAGCCCA TAGACTT AGCGCTTAGCACAAAGGGCAT

AGGGCAT TAGCCCT AGCACTT

AAGACTT

TGGACTTAAGGCCT

AGGGCAT TAGCCCT AGCACTT

AAGGCCT TGGACTT

AGCGCTTAGCACAATAGACTTTAGCCCAAGGGCAT



Markov models of single site
evolution

Simplest (Jukes-Cantor):
• The model tree is a pair (T,{e,p(e)}), where T is a rooted binary

tree, and p(e) is the probability of a substitution on the edge e.
• The state at the root is random.
• If a site changes on an edge, it changes with equal probability to

each of the remaining states.
• The evolutionary process is Markovian.

More complex models (such as the General Markov model) are
also considered, often with little change to the theory.



FN: false negative
      (missing edge)
FP: false positive
      (incorrect edge)

50% error rate

FN

FP



Statistical consistency, exponential convergence, and
absolute fast convergence (afc)



Distance-based Phylogenetic Methods



• Theorem (Erdos, Szekely, Steel and
Warnow 1997, Atteson 1997):  Neighbor
joining (and some other distance-based
methods) will return the true tree with high
probability provided sequence lengths are
exponential in the diameter of the tree.



Neighbor joining’s performance
[Nakhleh et al. ISMB 2001]

Simulation study
based upon fixed
edge lengths, K2P
model of evolution,
sequence lengths
fixed to 1000
nucleotides.
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Maximum Parsimony:

ACT

ACA

GTT

GTA
ACA GTA

1 2 1

MP score = 4

    MP is not statistically consistent.
    Finding the optimal MP tree is NP-hard.

Optimal labeling on a fixed tree can be
computed in linear time O(nk)



Maximum Likelihood (ML)

• Given:  stochastic model of sequence evolution
(e.g. Jukes-Cantor, or GTR+Gamma+I) and a set
S of sequences

• Objective: Find tree T and parameter values so as
to maximize the probability of the data.

NP-hard, but statistically consistent. Preferred by
many systematists, but even harder than MP in
practice.  (Steel and Szekely proved that
exponential sequence lengths suffice for accuracy
with high probability.)



1. Hill-climbing heuristics (which can get stuck in local optima)
2. Randomized algorithms for getting out of local optima
3. Approximation algorithms for MP (based upon Steiner Tree approximation

algorithms) -- however, the approx. ratio that is needed is probably 1.01 or
smaller!

Approaches for “solving” MP and ML
(and other NP-hard problems in phylogeny)

Phylogenetic trees

Cost

Global optimum

Local optimum



Problems with techniques for MP and ML
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Shown here is the performance of a very good heuristic (TNT) for maximum
parsimony analysis on a real dataset of almost 14,000 sequences. (“Optimal” here
means best score to date, using any method for any amount of time.)  Acceptable error
is below 0.01%.

Performance of TNT with time



Problems with existing phylogeny
reconstruction methods

• Polynomial time methods (generally based
upon distances) have poor accuracy with
large diameter datasets.

• Heuristics for NP-hard optimization
problems take too long (months to reach
acceptable local optima).



Warnow et al.: Meta-algorithms
for phylogenetics

• Basic technique: determine the conditions under
which a phylogeny reconstruction method does
well (or poorly), and design a divide-and-conquer
strategy  (specific to the method) to improve its
performance

• Warnow et al. developed a class of divide-and-
conquer methods, collectively called DCMs
(Disk-Covering Methods).  These are based upon
chordal graph theory to give fast decompositions
and provable performance guarantees.



Disk-Covering Method (DCM)



Improving phylogeny reconstruction
methods using DCMs

• Improving the theoretical convergence rate
and performance of polynomial time
distance-based methods using DCM1

• Speeding up heuristics for NP-hard
optimization problems (Maximum
Parsimony and Maximum Likelihood) using
Rec-I-DCM3



DCM1
Warnow, St. John, and Moret, SODA 2001

• A two-phase procedure which reduces the sequence length
requirement of methods. The DCM phase produces a collection of
trees, and the SQS phase picks the “best” tree.

• The “base method” is applied to subsets of the original dataset.  When
the base method is NJ, you get DCM1-NJ.

DCM SQS
Exponentially
converging
method

Absolute fast
converging
method



Neighbor joining (although statistically consistent)
has poor performance on large diameter trees

[Nakhleh et al. ISMB 2001]

Simulation study based
upon fixed edge
lengths, K2P model of
evolution, sequence
lengths fixed to 1000
nucleotides.

Error rates reflect
proportion of incorrect
edges in inferred trees.
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DCM1-boosting distance-based methods
[Nakhleh et al. ISMB 2001]

•Theorem:
DCM1-NJ
converges to the
true tree from
polynomial
length sequences

NJ
DCM1-NJ
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Problems with techniques for MP and ML
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Shown here is the performance of a TNT heuristic maximum parsimony analysis on a
real dataset of almost 14,000 sequences. (“Optimal” here means best score to date,
using any method for any amount of time.)  Acceptable error is below 0.01%.

Performance of TNT with time



Rec-I-DCM3 significantly improves performance
(Roshan et al. CSB 2004)

Comparison of TNT to Rec-I-DCM3(TNT) on one large dataset.
Similar improvements obtained for RAxML (maximum likelihood).
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DCM boosted version of best techniques



Very nice, but…

• Evolution is not as simple as these models
assert!



indels (insertions and deletions) also occur!

…ACGGTGCAGTTACCA…

…ACCAGTCACCA…

MutationDeletion



Basic Questions

• Does improving the alignment lead to an
improved phylogeny?

• Are we getting good enough alignments from
MSA methods?

• Are we getting good enough trees from the
phylogeny reconstruction methods?

• Can we improve these estimations, perhaps
through simultaneous estimation of trees and
alignments?



Multiple Sequence Alignment

-AGGCTATCACCTGACCTCCA
TAG-CTATCAC--GACCGC--
TAG-CT-------GACCGC--

Notes:
1. We insert gaps (dashes) to each sequence to make
them “line up”.
2. Nucleotides in the same column are presumed to have
a common ancestor (i.e., they are “homologous”).

AGGCTATCACCTGACCTCCA
TAGCTATCACGACCGC
TAGCTGACCGC



Indels and substitutions at the
DNA level

…ACGGTGCAGTTACCA…

MutationDeletion



Indels and substitutions at the
DNA level

…ACGGTGCAGTTACCA…

MutationDeletion



Indels and substitutions at the
DNA level

…ACGGTGCAGTTACCA…

MutationDeletion

…ACCAGTCACCA…



…ACGGTGCAGTTACCA…

…ACCAGTCACCA…

MutationDeletion The true pairwise alignment is:

      …ACGGTGCAGTTACCA…

      …AC----CAGTCACCA…

The true multiple alignment on a set of
homologous sequences is obtained by tracing
their evolutionary history, and extending the
pairwise alignments on the edges to a
multiple alignment on the leaf sequences.



Basics about alignments
• The standard alignment method for phylogeny is Clustal

(or one of its derivatives), but many new alignment
methods have been developed by the protein alignment
community.

• Alignments are generally evaluated in comparison to the
“true alignment”, using the SP-score (percentage of truly
homologous pairs that show up in the estimated
alignment).

• On the basis of SP-scores (and some other criteria),
methods like ProbCons, Mafft, and Muscle are generally
considered “better” than Clustal.



Questions

• Many new MSA methods improve on ClustalW on
biological benchmarks (e.g., BaliBASE) and in
simulation.  Does this lead to improved phylogenetic
estimations?

• The phylogeny community has tended to assume that
alignment has a big impact on final phylogenetic
accuracy.  But does it? Does this depend upon the
model conditions?

• What are the best two-phase methods?



Our simulation studies (using ROSE*)

• Amino-acid evolution (Wang et al., unpublished):
– BaliBase and birth-death model trees, 12 taxa to 100 taxa.
– Average gap length 3.4.
– Average identity 23% to 57%.
– Average gappiness 3% to 60%.

• DNA sequence evolution (Liu et al., unpublished):
– Birth-death trees, 25 to 500 taxa.
– Two gap length distributions (short and long).
– Average p-distance 43% to 63%.
– Average gappiness 40% to 80%.

*ROSE has limitations!





Non-coding DNA evolution

Models 1-4 have “long gaps”, and models 5-8 have “short gaps”



Observations

• Phylogenetic tree accuracy is positively correlated with
alignment accuracy (measured using SP), but the degree
of improvement in tree accuracy is much smaller.

• The best two-phase methods are generally (but not
always!) obtained by using either ProbCons or MAFFT,
followed by Maximum Likelihood.

• However, even the best two-phase methods don’t do
well enough.



Two problems with two-phase methods

• All current methods for multiple alignment
have high error rates when sequences
evolve with many indels and substitutions.

• All current methods for phylogeny
estimation treat indel events inadequately
(either treating as missing data, or giving
too much weight to each gap).



Simultaneous estimation?

• Statistical methods (e.g., AliFritz and
BaliPhy) cannot be applied to datasets
above ~20 sequences.

• POY (Wheeler et al.) attempts to find
tree/alignment pairs of minimum total edit
distance.  POY can be applied to larger
datasets, but has not performed as well as
the best two-phase methods.



SATe:
(Simultaneous Alignment and Tree Estimation)

• Developers: Warnow, Linder, Liu, Nelesen, and
Zhao.

• Technique: search through tree space, and align
sequences on each tree by heuristically estimating
ancestral sequences and compute ML trees on the
resultant multiple alignments.

• SATe returns the alignment/tree pair that
optimizes maximum likelihood under
GTR+Gamma+I.



Simulation study

• 100 taxon model trees (generated by r8s and then modified,
so as to deviate from the molecular clock).

• DNA sequences evolved under ROSE (indel events of
blocks of nucleotides, plus HKY site evolution).  The root
sequence has 1000 sites.

• We vary the gap length distribution, probability of gaps,
and probability of substitutions, to produce 8 model
conditions: models 1-4 have “long gaps” and 5-8 have
“short gaps”.



Our method (SATe) vs. other methods

• Long gap models 1-4, Short gap models 5-8



Alignment length accuracy
• Normalized number of columns in the estimated alignment relative to

the true alignment.



Summary
• SATe improves upon the two-phase techniques we studied with

respect to tree accuracy, and with respect to alignment length.

• SATe’s performance depends upon how long you run it (these
experiments limited to 48 hours).

• SATe is under development!

Note: SATe’s algorithmic strategy is very different from most other
alignment methods.

The CIPRES Portal contains Rec-I-DCM3 versions of parsimony and
maximum likelihood, and we plan to add SATe.



Future work

• Better models and better simulators!!! (ROSE is
limited)

• Extension of SATe-ML to models that include gap
events (indels, duplications, and rearrangements)

• Better metrics for alignment accuracy that are
predictive of phylogenetic accuracy

• New data structures and visualization tools for
representing homologies
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1-Clustal default, 2- ProbCons default, 3-Muscle
default, 4-UPGMA1, 5-UPGMA2, 6-ProbTree

25 taxa 100 taxa

Guide Tree Accuracy



SP-Error Rates



Error Rates (100 Taxa)



Alignment accuracy
FN: proportion of correctly homologous pairs of nucleotides missing from

the estimated alignment (i.e., 1-SP score).
FP: proportion of incorrect pairings of nucleotides in the estimated

alignment.



(but evolution is more complicated than that!)

…ACGGTGCAGTTACCA…

…AC----CAGTCACCA…

Mutation

SEQUENCE EDITS

REARRANGEMENTS

Deletion

Inversion
Translocation
Duplication



SATe-TL vs. SATe-ML vs. Clustal

• Model conditions 1-4 have long gaps (100 taxa)
• Model conditions 5-8 have short gaps (100 taxa)


