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Abstract 

The estimation of linguistic evolution has intrigued many researchers for 
generations, and in just the last few years, several new methods for constructing 
phylogenies from languages have been produced and used to analyze a number of 
language families. These analyses have led to a great deal of excitement, both 
within the field of historical linguistics and in related fields such as archaeology 
and human genetics. They have also been controversial, since the analyses have 
not always been consistent with each other, and the differences between different 
reconstructions have been potentially critical to the claims made by the different 
groups. In this paper, we report on a simulation study we performed in order to 
help resolve this controversy, which compares some of the main phylogeny 
reconstruction methods currently being used in linguistic cladistics. Our 
simulated datasets varied in the number of contact edges, the degree of parallel 
evolution and back-mutation (jointly referred to as ‘homoplasy’), the deviation 
from a lexical clock, and the deviation from the rates-across-sites assumption. We 
find the accuracy of maximum parsimony, neighbor joining, UPGMA, and the 
method of Gray & Atkinson, to be remarkably consistent across all the model 
conditions we studied, with maximum parsimony the best, followed by Gray & 
Atkinson’s method, then neighbor joining, and finally UPGMA (one of the 
standard lexicostatistics methods). Furthermore, if linguistic traits (called 
‘characters’) are weighted in a maximum parsimony or maximum compatibility 
analysis, the accuracy of the results depends upon the weighting scheme and the 
amount of homoplasy in the characters. However, for low homoplasy model 
conditions and appropriate weighting schemes, weighted parsimony and weighted 
compatibility generally produce the most accurate results of all methods. 

 
 

1  Introduction 
 

A linguistic phylogeny, also called a linguistic phylogenetic tree, is a rooted, binary 
tree (i.e., every internal node has two children), describing the evolutionary history for 
a set of related languages (or, in some cases, dialects). Linguistic phylogenies have 
been used to better understand language evolution as well as human migrations. In 
recent years, many new phylogenies have been proposed for different language 
families, with some of them sparking significant controversy (see Nichols and 
Warnow (2009) for a survey of some recent analyses). Because these phylogenies 
have been estimated using different computational methods and different data (both of 
different types and of differing scholarly reliability), evaluating these phylogenies has 
been challenging. 

One of the key concerns that historical linguists have had with proposed linguistic 
phylogenies has been the quality of the data used in the analysis (Eska and Ringe, 
2004; Nichols and Warnow, 2009). In order to address this concern, Nakhleh et al. 
(2005b) compared different methods for estimating Indo-European phylogenies, using 
a highly reliable, curated collection of linguistic characters (i.e., traits), including 
lexical, phonological, and morphological characters. This study showed that while 
most methods produce many of the well-established subgroups, they differ 
substantially in important and linguistically interesting ways. Thus, for example, all 
methods reproduce the major subgroups and also somewhat more contentious 
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groupings such as Greco-Armenian; in addition, most methods place Tocharian as the 
second language to split off from Proto Indo-European (PIE) after Anatolian. 
However, other questions – such as where to place Germanic - were handled quite 
differently by the different methods and depended upon the data used. In particular, 
Nakhleh et al. (2005b) observed “certain posited relationships only show up if 
morphological and phonological characters are included in the analysis”. Thus, 
Nakhleh et al. (2005b) showed that the differing evolutionary hypotheses produced by 
different methods depended not only on the quality of the data, but also on the type of 
data (e.g., only using lexical data as opposed to also including morphological and 
phonological data) and the particular method. 

Unfortunately, since the true Indo-European tree is not known, the relative 
accuracy of the various trees (and hence of the phylogeny estimation methods used to 
estimate these trees) could not be established. How, then, is an interested researcher to 
determine whether a particular phylogenetic analysis proposed for a given language 
family is reliable? Or to determine what phylogenetic reconstruction method to use 
when given a particular character dataset? Or to determine which linguistic characters 
to use in a new phylogenetic analysis? Or to understand why two phylogenetic 
analyses might differ? 

The difficulty in evaluating methods for estimating phylogenies is not unique to 
linguistics; the same issue occurs in biology, where phylogenies are estimated using 
molecular sequence data, and the true phylogeny cannot be known in full detail. For 
this reason, evaluations of phylogeny estimation methods are primarily based on 
simulation studies, where molecular sequences are evolved down different ‘model 
trees’, and trees estimated on these sequences are then compared to the model tree in 
order to quantify the error in the estimation. These studies have revealed important 
differences between methods and have strongly influenced the phylogenetic analysis 
protocols used by evolutionary biologists. Although simulation is not a dominant 
methodology in linguistics, simulation studies have also been performed in linguistics 
to evaluate phylogeny estimation methods (see, for example, Embleton (1981, 1986); 
McMahon and McMahon (2005); Nicholls and Gray (2008); Wang and Minett 
(2005)). 

Inspired by the improved understanding of phylogenetic estimation methods 
enabled by simulation studies, we performed a simulation study to compare some of 
the major methods of linguistic phylogeny estimation. Because linguistic character 
evolution is not properly modelled by biological evolution models, we used the 
parametric model of linguistic evolution developed in Warnow et al. (2006). This 
model allows for borrowing between lineages and has parameters specifying the 
probabilities of each character changing state on an edge, being borrowed, evolving in 
parallel, or mutating back to a previous state (these terms are defined below). We set 
these parameters to fit the empirical properties observed for linguistic characters 
defined on Indo-European languages in Nakhleh et al. (2005b). We evaluated 
accuracy on different types of linguistic characters and under different conditions, 
varying the rates of evolution and the amounts of borrowing between lineages. In 
particular, we varied the simulation protocol to allow us to evaluate the consequences 
of restricting a phylogenetic analysis to lexical characters only, as well as the 
consequences of eliminating characters that seem likely to have evolved with 
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borrowing, parallel evolution, or back-mutation. 
The remainder of the paper is organized as follows. We begin with a discussion of 

linguistic characters, focusing on different types of characters and their properties, in 
Section 2. We then discuss the simulation study protocol, including the phylogenetic 
methods we compared, the parametric model in Warnow et al. (2006), how we set the 
parameters for each type of linguistic character, and the datasets we generated to study 
the phylogenetic methods, in Section 3. In Section 4, we discuss the results of the 
study, focusing on the relative accuracy of different methods, the impact of character 
selection on accuracy, and the ramifications of this study for linguistic phylogenetic 
analysis. The details of the mathematical model and phylogenetic methods are 
provided in the Appendix. 

 
 

2  Linguistic Characters and Model Assumptions 
 

In this section, we discuss different types and properties of linguistic characters, and 
the conditions under which the major computational methods are guaranteed to have 
good performance. (This material is necessarily cursory; see Nichols and Warnow 
(2009) for a deeper discussion of these issues.) 

 
2.1 Linguistic characters 

 
Most commonly, phylogenies are based upon analyses of wordlists, where each word 
(semantic slot) is used to partition the languages into cognate classes. This is an 
example of a more general concept, called ‘character’, which can be defined by any 
linguistic feature. The different forms that a character can take in different languages 
are called the ‘states’ of the character; each language can be described by its states for 
each character. In the current state of the art, linguistic characters are of three types: 
lexical, phonological, and morphological. (Syntactic characters are not generally used 
because not enough is known about syntactic change to justify confidence that any 
syntactic character could provide good evidence for linguistic descent.) For lexical 
characters, the different states are cognate classes, so that two languages exhibit the 
same state for the lexical character if and only if they have cognates for the meaning 
associated with the lexical character. Phonological characters record the occurrence of 
sound changes within the (pre)history of the language; thus a typical phonological 
character has two states, depending on whether or not the sound change (or, more 
often, a constellation of sound changes) has occurred in the development of each 
language. Most morphological characters represent inflectional markers; like lexical 
characters, they are coded by cognation. Thus each character defines an equivalence 
relation on the language family, such that two languages are equivalent if they exhibit 
the same state for the character. 

In general, the character states are defined so that it is reasonable to assume that if 
two languages exhibit the same state for the same character, then the shared state 
arose due to common inheritance. However, when borrowing occurs (a very common 
occurrence for lexical characters when different linguistic communities come into 
contact), two languages can share a character state, but their common ancestor could 
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have a different state; this violates the assumption that shared states are due only to 
common inheritance. A careful linguist is often able to detect that a word (for 
example) is a result of contact (i.e., borrowing) rather than genetic descent, and code 
that word as a unique state. However, undetected borrowing can result in languages 
sharing character states that are not due to common inheritance (see Ringe et al. 
(2002); Nakhleh et al. (2005a,b) for examples of both detected and undetected 
borrowing). Other phenomena that can result in shared states not being due to 
common inheritance are parallel development and ‘back mutation’. Parallel 
development is the more common of the two, with semantic shift being a common 
cause of parallel development (e.g., words meaning “human being” shift to mean 
“man”, i.e. “male human being”). Back-mutation is a change of the form a > b > a. 
However, back-mutation can occur only in a very restricted range of cases, e.g. 
acquisition of an inflectional category followed by loss of the same; the Latin 
superlative in Romance languages is an example. 

It is clear that some linguistic characters are much more likely to evolve by 
parallel development, borrowing, or back-mutation than others. For example, lexical 
characters are more likely to evolve with borrowing than either morphological or 
phonological characters, as noted in Sankoff (2002):652-8. Phonological characters 
require more discussion. They can be either simple or complex; complex 
phonological characters are those based upon a sequence of sound changes, and 
simple ones are those that represent a single sound change. An example of a complex 
phonological character is the P16 character in Ringe et al. (2002) – Grimm’s Law, 
followed by Verner’s Law, followed by the shift of stress to initial syllables, followed 
by raising of unstressed *e to *i – a phonological character so complex that it is very 
unlikely to be repeated independently. In contrast, note that simple phonological 
characters can evolve in parallel; an example of this is Grimm’s law, a striking sound 
change, but something very like it happened also in Armenian. Neither simple nor 
complex phonological characters are likely to exhibit back-mutation. Characters that 
evolve without any borrowing, parallel development, or back mutation provide clear 
information about the true history relating the languages, while those that evolve with 
substantial borrowing or homoplasy (that is, parallel evolution or back-mutation) are 
harder to interpret. Thus, not all linguistic characters provide the same quality of 
‘phylogenetic signal’; the type of character (lexical, phonological, or morphological) 
impacts the probability of being borrowed, evolving in parallel, or exhibiting back 
mutation. 

Characters also differ according to their rates of evolution (how likely they are to 
change state). It is easy to see that a character that never changes on the tree provides 
no information about the evolutionary history relating the languages, so that rates of 
evolution can be too slow to be useful. Similarly, characters that change too quickly 
can result in all languages having different states, and again not provide any 
information about the evolutionary history; thus, rates of evolution canbe too fast to be 
useful. Therefore the rate of evolution also impacts phylogenetic signal. 

Another issue that impacts phylogeny estimation methods is whether the expected 
number of times the character changes is proportional to time, also known as the 
strong lexical clock assumption. When all characters evolve under a strong lexical 
clock, then even very simple methods (e.g., UPGMA, which makes two languages 
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sisters if they share the most features in common) will be highly accurate. However, 
the strong lexical clock assumption has been discredited in historical linguistics (see, 
for example, McMahon and McMahon (2006)), and so methods should be compared 
under a range of conditions, including both strong and weakened clock assumptions. 

Finally, a feature that impacts phylogenetic estimation is the assumption (explicit 
in many statistical methods, such as Gray and Atkinson (2003)) that all the characters 
evolve according to a ‘rates-across-sites’ assumption. For example, under the 
rates-across-sites assumption, if a character evolves at twice the speed of another 
character on one branch of the tree, then it evolves at twice the speed of the other 
character on every branch in the tree. This assumption may not hold, of course, since 
conditions that impact the rate of change for a given character can impact different 
characters differently. 

 
2.2 Assumptions made by methods 

 
Typically, methods are based upon explicit assumptions about how characters evolve, 
and are only guaranteed to perform well when the data being analyzed matches the 
assumptions made by the method. With few exceptions, phylogeny estimation 
methods assume that there is no undetected borrowing between languages, an 
assumption that may be violated. However, even when there is no undetected 
borrowing between languages, the conditions under which methods are guaranteed to 
be highly accurate are not likely to hold. For example, it is well known that UPGMA 
does well under the strong lexical clock but may not work well when the lexical clock 
assumption is violated. Similarly, the methods of maximum parsimony, maximum 
compatibility, and the ‘perfect phylogeny’ methods of Ringe et al. (e.g., Ringe et al. 
(1995, 2002)) are guaranteed to give good results when the characters evolve without 
any homoplasy (parallel development or back mutation) or borrowing, but may not 
perform well in the presence of homoplasy or borrowing. Less obvious, but equally 
concerning, is the dependency on the rates-across-sites assumption made by statistical 
methods (such as Gray and Atkinson (2003)), and other assumptions made by these 
models (discussed in detail in Eska and Ringe (2004); Nichols and Warnow (2009)) 
that are unlikely to hold for linguistic data. Thus, guarantees made purely on 
theoretical grounds are not generally relevant to practice, and phylogenetic estimation 
methods need to be evaluated using other techniques. 

Evaluations of phylogenetic estimation methods based upon linguistic 
benchmarks (well-established trees for language families) have been made, and have 
provided some preliminary insights (see Nichols and Warnow (2009) for a survey of 
many methods on many language families, and Nakhleh et al. (2005b) for a 
comparison of methods on Indo-European). However, these benchmark trees are 
typically only partially resolved; that is, not all the branchings are binary, and it is not 
clear that all subgrouping relationships are known with certainty. Therefore, a full 
understanding of the relative reliability of phylogeny estimation methods cannot be 
obtained by relying on benchmarks. Simulation studies provide a separate, 
complementary way of exploring accuracy, because they provide a ground truth (the 
true tree) to which estimated trees can be compared and accuracy quantified. 
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3  Simulation Study 
 

3.1 Overview 
 

Our study was designed to help us understand how the conditions of the evolutionary 
process (e.g., the presence of borrowing between lineages, relaxing the strong 
molecular clock, relaxing the strong rates-across-sites assumption, and the degree of 
homoplasy) impact the accuracy of the different phylogeny reconstruction methods we 
studied (Gray and Atkinson (2003), weighted and unweighted maximum parsimony, 
weighted maximum compatibility, lexicostatistics, and neighbor joining, see Section 
3.3). However, we were also interested in seeing if there were any clear indications of 
relative performance between different methods in evaluating the consequences of 
‘screening datasets’ to remove likely homoplastic characters, in using weighting 
schemes to give higher weight to those characters which were considered likely to be 
more resistant to borrowing and homoplasy, and in restricting analyses to lexical-only 
datasets as compared to using lexical and morphological characters together. 

Some comments on the screening and weighting of characters seem appropriate 
at this point. More than a century of work in historical linguistics has shown that 
words of certain meanings are unusually likely to undergo specific shifts in meaning, 
and the lexical characters based on those meanings (“semantic slots”) are therefore 
unusually likely to exhibit parallel development. Words meaning ‘human being’ tend 
to acquire the meaning ‘man’; words meaning ‘man’ tend to acquire the meaning 
‘husband’; a word meaning ‘cheek’, ‘chin’, or ‘jaw’ is likely to acquire either of the 
other two meanings in that set; demonstratives are likely to develop into definite 
articles and/or third-person pronouns; and so on. If there is a reasonable suspicion that 
characters of these kinds exhibit parallel development in a particular dataset, it is 
reasonable to “screen” those characters out, since shared cognates in those meanings 
are unlikely to reflect shared descent. This can have important consequences for the 
reliability of certain phylogenetic methods, as we will demonstrate below. 

The weighting of characters is also based on a body of experience widely shared 
by historical linguists. While borrowing of lexemes (vocabulary items) between 
languages is commonplace, it is not at all clear whether inflectional morphology or 
sound changes can be borrowed; and even if they can, it is clear that the borrowing of 
non-lexical material is rare and occurs only under special circumstances. It follows 
that non-lexical characters are more likely to have evolved by descent alone, and thus 
provide better evidence for the true tree. This insight can be quantified by weighting 
phonological and morphological characters more heavily than lexical characters, and 
weighting can also have a significant impact on the performance of different 
phylogenetic methods. 

We performed the simulation study using the parametric model of language 
evolution provided in Warnow et al. (2006). This model permits borrowing between 
languages, modelling this as ‘contact’ edges added to an underlying genetic tree, thus 
producing a ‘phylogenetic network’ (see Nakhleh et al. (2005a)). Character evolution 
then proceeds from the root down to the leaves of the phylogenetic network, and the 
model allows parallel evolution and back mutation. Finally, the model assumes 
independence between the characters, but does not constrain the characters to evolve 
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identically. The model also provides parameters for which values must be set for each 
character, controlling the deviation from a strong lexical clock, deviation from the 
strong rates-across-sites assumption (also known as ‘heterotachy’), the rate of 
evolution, and the probability of borrowing. 

Our study used phylogenetic networks with 30 leaves and with 0 to 3 contact 
edges. To capture the characteristics of a real dataset, such as the Indo-European 
dataset analyzed in Nakhleh et al. (2005b), we evolved from 301 to 360 characters 
down the trees, of which 300 were modelled after lexical characters, and the 
remainder were morphological. We set the parameters of the simulation in order to 
produce datasets with different rates of evolution (low, medium, and high), different 
homoplasy levels (low, medium, and high), different deviations from a lexical clock 
(low, medium, and high), and different deviations from the rates-across-sites 
assumption (low, medium, and high). We divided lexical characters into three types 
according to the rate of evolution, obtaining fast lexical, medium lexical, and slow 
lexical characters. 

We ran 28 basic experiments, each defined by parameter values that determine the 
rates of evolution, the number of contact events, deviation from the strong lexical 
clock, and deviation from the strong rates-across-sites assumption. For each 
experiment, we generated 32 random phylogenetic networks (phylogenetic trees with 
contact edges to permit borrowing between languages), and simulated four datasets on 
each network. All in all we created 3584 datasets. 

Each dataset is the result of a run of the simulation process, and consists of a set 
of sequences, one for each leaf in the phylogenetic tree or network, where each 
sequence represents the states of the language represented by that leaf for each of the 
characters in the simulation process. This resulting character state matrix is used by 
each reconstruction method to produce an estimated tree, which can then be compared 
with the genetic tree within the model phylogenetic network. 

We compared each estimated tree to the genetic tree within the model 
phylogenetic network with respect to its topological accuracy, reporting two types of 
error rates: ‘false negatives’ and ‘false positives’, which we now define. Every edge in 
a tree defines a bipartition of the leaves of the tree, and hence can be identified with 
that bipartition. Two trees on the same leaf set can thus be compared on the basis of 
their bipartitions. A bipartition in the genetic tree that is missing from the estimated 
tree is said to be a ‘false negative’, while a bipartition that appears in an estimated tree 
that does not appear in the genetic tree is a ‘false positive’. The number of false 
negatives is bounded by n − 3, where there are n leaves, and so the ‘false negative 
rate’ (FN rate) is defined to be the number of false negatives, divided by n-3. 
Similarly, the false positive rate (FP rate) is the number of false positives, divided by 
n-3. Genetic trees are always binary, but estimated trees may not be. However, when 
estimated trees are binary, then their false negative rates and false positive rates are 
identical. In general, though, we can only assert that the false positive rate is always 
no more than the false negative rate. We focus our attention on false negative rates, 
but provide information about false positive rates as well. 
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3.2 Character evolution parameters 
 

Certain parameters of the model are specific to the phylogenetic network but vary with 
the experiments; these include the model phylogenetic network (in particular the 
number of contact edges) and the elapsed time on each edge. In addition to these 
network-specific parameters, there are parameters that can change according to the 
character, as follows: 

 
• homoplasy  factor(c), which determines the probability of parallel evolution or 

back mutation, 
 

•  character borrowing(c), which determines the probability of being transmitted 
via borrowing, 

 
• height  factor(c), impacting the rate of evolution, 

 
• dlc(c), reflecting the deviation from the lexical clock, and 

 
• het(c), reflecting the degree of heterotachy (or deviation from the 

rates-across-sites assumption). 
 

Since homoplasy means parallel evolution or back mutation, a character c that has a 
low value for homoplasy factor(c) has a low probability of parallel evolution or back 
mutation, and conversely a character with a high value for homoplasy factor(c) has a 
high probability of parallel evolution and/or back mutation. Similarly, the 
character borrowing(c) value indicates the probability of the character being 
transmitted on a contact edge, so that characters that are highly resistant to borrowing 
will have very low values, and characters that can be easily borrowed will have high 
values. 

The height factor(c) is a measure of the total amount of evolution; low values for 
height factor(c) mean that the character changes state relatively rarely on the tree, and 
high values mean that it changes state frequently. The value of height factor(c) can be 
seen as the rate of change for the character c. The parameter dlc(c), which measures 
the deviation from a lexical clock, will be 0 when character change is proportional to 
time, and increase as the strong lexical clock assumption is relaxed. The parameter 
het(c), called ‘heterotachy’ measures the deviation from the strong ‘rates-across-sites’ 
assumption, which asserts that each character is a multiple of every other character, so 
that if character c1  evolves twice as quickly as character c2  within Germanic, then it 
will evolve twice as quickly also within Italic, within Baltic, within Tocharian, etc. 
Since the rates-across-sites assumption is unlikely to be valid, values for het(c) 
greater than 0 here are linguistically reasonable. 

We add the following constraints to the parameter system to suppress additional 
degrees of freedom unnecessary for the purpose of our experiments: 

 
• We set the parameters dlc(c) and het(c) identically for all characters within any 

one simulation, but vary these parameters between different experiments. The 
other parameters have one set value for each of the four character classes we 
consider. 
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• We use three values for height factor(c), one for slow lexical and morphological 
characters, a somewhat larger one for medium lexical characters, and the largest 
one for fast lexical characters. 

 
• The values of homoplasy factor(c) and character borrowing(c) are identical for 

all lexical characters, but are different for morphological characters. 
 

• We do not allow borrowing for morphological characters, so that 
character borrowing(c) is a parameter for lexical characters only. 

 
For each experiment, we set the above parameters partly by targeting measurable 

model conditions such as observed homoplasy and borrowing, as well as other 
considerations such as the number of contact edges, number and type of characters 
analyzed, etc. Parameter settings (specifically character borrowing(c) and 
homoplasy factor(c)) are set so that on the low homoplasy or screened datasets, 1% of 
the lexical characters and none of the morphological characters evolve 
homoplastically, and 6% of the lexical characters and none of the morphological 
characters evolve with borrowing, while on the moderate homoplasy or unscreened 
datasets, 13% of the lexical and 24% of the morphological characters are homoplastic, 
and 7% of the lexical and none of the morphological evolve with borrowing. These 
settings are approximately equal to those observed in the analyses of screened 
characters for Indo-European languages in Nakhleh et al. (2005a), and so represent a 
somewhat ‘easy’ model setting. Therefore, before screening, the morphological 
characters are much more likely to be homoplastic than the lexical characters, and 
after screening they are much less likely. 

 

 
3.3 Phylogeny reconstruction methods 

 
The phylogeny reconstruction methods we study in this paper include most of the 
standard methods used in molecular phylogenetics as well as two newer methods 
proposed explicitly for reconstructing phylogenies on languages. 

These six methods are the ones that have been used in most phylogenetic 
reconstructions on linguistic datasets: UPGMA is one of the standard lexicostatistics 
methods, maximum parsimony has been used in several dataset analyses (see for 
example the analysis of the Bantu language family in Holden (2002)), and Gray & 
Atkinson used their method to analyze an Indo-European dataset (Gray and Atkinson, 
2003) and to analyze the Bantu language family (Holden and Gray, 2006). Other 
phylogenetic analyses of IE datasets (Nakhleh et al., 2005a; Ringe et al., 2002; 
Nakhleh et al., 2005b) have used methods designed to find trees that optimize 
weighted maximum compatibility, and these trees were used as candidates for the 
underlying genetic tree of a ‘perfect phylogenetic network’ for IE in (Nakhleh et al., 
2005a). Thus, WMC is included in order to represent a technique that is closely allied 
to our approaches. Neighbor joining is included in order to provide a method from the 
biological systematics toolkit. 

Some comments should be made about the use of weighting in maximum 
parsimony or maximum compatibility. The weights in these methods are supposed to 
reflect the relative resistance to borrowing and homoplasy, with higher weights given 
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to characters that are believed to be more resistant to borrowing and homoplasy. 
WMC can be used most effectively after the data have been screened to remove 
clearly homoplastic characters. In our simulation study, we have the weights for all 
lexical characters set to 1 and weights for all morphological characters set to 50, to 
reflect the expectation that morphological characters (after screening), will have a 
very low incidence of homoplasy and borrowing, as compared to lexical characters. 
(We note that Nakhleh et al. (2005b) used two weights, 1 and infinity, for their 
characters, with 1 the default and infinity used for only a subset of the morphological 
and phonological characters that were deemed extremely resistant to homoplasy and 
borrowing. We picked 50 as a proxy for infinity to allow us to explore performance on 
datasets on which not all characters with high weight will evolve without homoplasy.) 
Thus, WMC and WMP should not be used in this way on unscreened data. However, 
we include data showing how WMC and WMP perform on unscreened data in order 
to show the impact of poor estimates of character weights on phylogenetic accuracy. 

 
UPGMA.  The UPGMA (unweighted pair grouping method of agglomeration) 
algorithm is a standard lexicostatistics method. In this method, the distance between 
every pair of languages is computed, using the number of characters on which the two 
languages are different. Then, the pair x and y of languages that has the smallest 
distance is grouped together as sister languages. The matrix is then modified by 
replacing x and y by a composite language with its distance to each of the remaining 
languages computed as the average of the distances from x and y, and then the 
algorithm recurses on the smaller matrix. This method works well when the 
evolutionary processes obey the lexical clock assumption. 

 
Neighbor joining.  NJ, or Neighbor Joining (Saitou and Nei, 1987), is a particular 
agglomerative clustering technique used in molecular phylogenetics, which is able to 
reconstruct accurate phylogenies even when the clock assumption does not hold, 
provided that the method is used with an appropriately defined distance matrix, 
corrected, using the statistical model of evolution, to account for unseen state changes. 
That is, if a character changes state two or more times between languages x and y, the 
observer can only note whether the two languages are different or not for the 
character, and so the estimated pairwise distance between x and y will be generally 
smaller than the actual number of times the character has changed between x and y. 
Using corrected distances ensures good statistical performance (see, for example, 
Steel (1994) for how to correct distances under a general model of molecular 
sequence evolution). Therefore, we use a statistically-based distance estimator (see 
Appendix) in conjunction with the NJ method. 

 
Maximum parsimony  and weighted maximum parsimony.  Maximum 
Parsimony, or MP, is an optimization problem that seeks a tree on which a minimum 
number of character state changes occurs (Foulds and Graham, 1982). When the 
characters are weighted, then the objective is to find a tree in which the total weighted 
number of character state changes is minimized. We used heuristics in the PAUP* 
(Swofford, 1996) software package to find good (though not provably optimal) 
solutions to these problems (provably optimal solutions cannot currently be found 
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except using techniques that can run in exponential time). Since there can be many 
equally good solutions, we computed the average error of the best trees found. 

As discussed before, we used a weighting scheme where the weight of every 
morphological character is 50 and the weight of every lexical character is 1; this 
weighting scheme reflects the perceived relative resistance of the screened datasets 
analyzed in Nakhleh et al. (2005b), and so reflects the expectation that screened 
morphological characters will be much more resistant to homoplasy and borrowing 
than screened lexical characters. 

 
Weighted maximum compatibility.  When all the characters evolve without 
homoplasy down a tree, then the tree is called a ‘perfect phylogeny’, and each of the 
characters is said to be ‘compatible’ on the tree. Weighted Maximum Compatibility, 
or WMC, is the optimization problem which seeks a tree with the maximum weighted 
compatibility score, which is computed by adding up all the weights of the characters 
that are compatible on the tree. WMC is an NP-hard problem, which we try to solve 
heuristically through the use of the WMP (weighted maximum parsimony) analysis – 
by taking all the trees which are optimal for WMP, scoring each one under the WMC 
criterion, and then returning those trees which are optimal under WMC. Once again, 
we return the average error of the trees found by the WMC search. Since WMC (like 
MP and WMP) is NP-hard, these solutions are not guaranteed to be globally optimal 
solutions. 

 
Gray & Atkinson’s method (G&A)    The method designed by Gray and Atkinson 
(originally presented in Gray and Atkinson (2003)) operates as follows. First, each 
multistate character is replaced by several binary characters, each representing the 
presence or absence of a given state for that character. These binary characters are 
then interpreted as restriction sites and analyzed under a rates-across-sites model in 
the MrBayes software (Huelsenbeck and Ronquist, 2001). MrBayes uses a Markov 
chain Monte Carlo exploration of tree and parameter space to simulate the Bayesian 
posterior distribution of the tree and parameter under its model. The run of the 
Markov chain is divided into a burn-in and a stationary phase of equal length. Each 
phase contains 100,000 iterations. During the second, stationary phase, 200 simulated 
values are recorded at regular intervals. We report the majority consensus tree of those 
200 values. 

 
Software    We used PAUP* (Swofford, 1996) for all the phylogeny reconstruction 
methods we studied, except for Gray & Atkinson. For our implementation of Gray & 
Atkinson, we used MrBayes. 

 
 

4  Experimental Results 
 

4.1 The model conditions 
 

We ran 28 different basic experiments, each consisting of a model condition 
(parameters for the evolutionary process) and the number and type of characters 
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simulated under each condition. For each of these basic experiments, we produced 
128 datasets. Thus, all in all we created 3584 datasets, each of which was analyzed by 
the six phylogeny reconstruction methods we studied. 

The 28 different experiments we ran can be grouped into four sets. In each set we 
used 300 lexical characters, with an equal number of slow, medium, and fast-evolving 
characters. 

 

• Basic experiment: We fixed the deviation from a lexical clock (dlc) and 
heterotachy (het) parameters to medium, but varied the number of contact edges 
from 0 − 3, the homoplasy level from low to moderate, and the rate of evolution 
for the lexical characters from low to high. For each experiment, we generated 
300 lexical and 60 morphological characters. This produced 8 different model 
conditions. 

 
• Experiment 2: The purpose of this experiment was to explore the impact of 

heterotachy (deviation from the rates-across-sites assumption) on phylogeny 
estimation. We set the number of contact edges to 3 and the deviation from the 
lexical clock to moderate. We set heterotachy to low or high and homoplasy 
levels to be either low or moderate. For each experiment, we generated 300 
lexical and 60 morphological characters. This produced 4 different model 
conditions. 

 
• Experiment 3: The purpose of this experiment was to explore the impact of the 

deviation of the lexical clock on phylogeny estimation. We set the number of 
contact edges to 3 and set the heterotachy to medium. We let the deviation from 
the lexical clock be low or high, and the homoplasy level be low or moderate. 
For each experiment, we generated 300 lexical and 60 morphological 
characters. This produced 4 possible model conditions. 

 
• Experiment 4: The purpose of this experiment was to explore the impact on 

phylogeny estimation of varying the number and types of characters, ranging 
from only lexical to a mix of lexical and morphological. We fixed the deviation 
from the lexical clock and heterotachy to moderate, the homoplasy level to low 
or moderate, and the number of contact edges to 0 or 3. We varied the number 
and type of characters in three ways: 300 lexical and 1 morphological, 300 
lexical and 20 morphological, or 300 lexical and 60 morphological. This 
produced 12 possible model conditions. 

 
4.2 False Positive Rates 

 
We explored performance for both false negative and false positive rates. False 
positive rates are not shown, but can be summarized as follows. UPGMA, NJ, MP, 
WMP, and WMC methods produce binary trees, and hence for these methods their 
false positive and false negative rates are identical. The G&A method uses the 
majority consensus method to produce its output, and hence may not produce binary 
trees. As a result, its false positive rates are lower than its false negative rates. In 
general, we see that the false positive rates are quite low for G&A – often below 1%, 
but almost always below 5%. 
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4.3 Impact of homoplasy 
 

We begin by considering the impact of the level of homoplasy on a phylogenetic 
analysis. Recall that we set the parameter values for our ‘low homoplasy’ and 
‘moderate homoplasy’ datasets to reflect levels observed for these screened and 
unscreened datasets, respectively, in Nakhleh et al. (2005b), and this has the 
consequence that morphological characters are more homoplastic than lexical 
characters for unscreened data, but less homoplastic than lexical characters for 
screened data. However, the weighting we use for the weighted parsimony and 
weighted compatibility methods (where morphological characters receive higher 
weight than lexical characters) is identical for both conditions, and is therefore not 
appropriate for unscreened data. 

In Figure 1 we show the results when the model phylogeny is a tree, and in Figure 
2 we show the results when the model phylogeny is a network with three contact 
edges. We see that screening improves weighted parsimony and weighted 
compatibility the most, which is not surprising since the weighting scheme is 
inappropriate for the unscreened data. Thus, the improvement in accuracy of the 
weighted MP and weighted MC methods obtained as a result of screening is to be 
expected. 

We also see an improvement in MP’s performance from unscreened to screened, 
and this too is to be expected since maximum parsimony will tend to improve as the 
homoplasy level decreases (in particular, maximum parsimony should be accurate 
when the characters evolve without any homoplasy). 

However, there is little change in performance for the other methods between 
screened and unscreened data, indicating that these methods do not benefit as much 
when the homoplasy is reduced by these amounts. 

 

 
 

Figure 1: Impact of homoplasy on accuracy of phylogeny reconstruction methods for 
300 lexical characters and 60 morphological characters evolved down a phylogenetic 
tree under a moderate deviation from a lexical clock (dlc = 0.3) and moderate devia- 
tion from the rates-across-sites assumption (het = 1.2). 
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Figure 2: Impact of homoplasy on accuracy of phylogeny reconstruction methods for 
300 lexical characters and 60 morphological characters evolved down a phylogenetic 
network with three contact edges under a moderate deviation from the lexical clock 
(dlc = 0.3) and moderate deviation from the rates-across-sites assumption (het = 1.2). 

 
 

4.4 Impact of deviation from a lexical clock 
 

We now examine the impact of varying the deviation from a lexical clock, from 
almost clock-like behavior (with dlc = 0.15) to a moderate deviation (with 
dlc = 0.45). Figure 3 shows the results on the screened datasets obtained from a 
phylogenetic network with three contact edges, and with moderate deviation from the 
rates-across-sites assumption (het = 1.2); results for other conditions (including 
unscreened datasets) were similar in terms of the impact of this parameter on 
performance. Error rates increase for all methods as the deviation from the lexical 
clock increases, but this is most pronounced for UPGMA and quite slight for the other 
methods. 

 
4.5 Impact of heterotachy 

 
In Figure 4 we show the effect on phylogenetic analyses of deviating from the rates-
across-sites assumption to various degrees, by exploring the difference in accuracy 
obtained as het varies from 0.6 (which is close to the rates-across-sites) to het = 1.8 
(which is further away), on data simulated on a phylogenetic network with three 
contact edges and low homoplasy; the same trends are observed for other model 
conditions. The rates-across-sites assumption is critical to statistical models that 
attempt to estimate parameters under the assumption that all the sites evolve as 
multiples of each other (i.e., some faster and some slower, but with a constant ratio 
held between all sites). This is a standard assumption in phylogenetic analyses since it 
enables distance-based methods to be statistically consistent under suitable 
conditions, and it also enables dating of internal nodes. 

Interestingly, we see that as het increases - i.e., as we relax the rates-across-sites 
assumption - methods improve in accuracy. One possible explanation for this is that as 
the rates-across-sites assumption is relaxed, the range of rates-of-change exhibited by 
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Figure 3: Impact of the deviation from a lexical clock on phylogenetic analyses of a 
30-taxon phylogenetic network with three contact edges, from 300 lexical characters 
and 60 morphological characters evolved under low levels of homoplasy and with a 
moderate deviation from the rates- across-sites assumption (het = 1.2). We vary the 
deviation from a lexical clock from low (dlc = 0.15) to moderate (dlc = 0.45). 

 
 

the set of characters on any given edge will also increase (with high probability); this, 
in particular, increases the probability that edges that are quite ‘short’ (i.e., edges e for 
which t(e) is small) will exhibit some changes by some characters, making these 
edges more likely to be inferred by a phylogeny reconstruction method. 

 

 
4.6 Varying the proportion of lexical and morphological 

characters 
 

Our next analysis considered the impact of using combined datasets (both 
morphological and lexical together) versus lexical-only datasets, for low homoplasy 
levels (set to reflect the estimated homoplasy levels in Nakhleh et al. (2005b) for the 
screened datasets). Recall that in our simulations, we set the parameters for screened 
morphological characters so that there is no borrowing (this is true even of unscreened 
morphological characters) and so that they exhibit much less homoplasy than lexical 
characters. The inclusion of morphological characters into a dataset thus reduces the 
rate of homoplasy and borrowing. We look at three different possibilities: each had 
300 lexical but could have 1 morphological, 20 morphological, or 60 morphological 
characters. The analyses show the consequence of adding morphological characters to 
a dataset which is primarily lexical. 

In Figure 5, we see the result of this experiment on screened datasets obtained by 
simulating down a phylogenetic network with three contact edges. Note that all 
methods improve with the addition of low homoplasy morphological characters, and 
that that the biggest improvements are obtained by WMP and WMC, as expected. The 
results for other model settings for screened data are similar. 
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Figure 4: Impact of heterotachy (deviation from the rates-across-sites assumption) on 
the accuracy of phylogenetic reconstruction methods on data (300 lexical characters 
and 60 morphological characters) evolved down a phylogenetic network with three 
contact edges with low homoplasy, and with moderate deviation from a lexical clock 
(dlc = 0.3). The bars refer to the different values for het. 

 

 
 

Figure 5:  Impact of data selection on the accuracy of phylogenetic reconstructions 
on data evolved down a phylogenetic network with three contact edges, under low 
homoplasy (screened data), moderate deviation from a lexical clock (dlc = 0.3), and 
moderate deviation from the rates-across-sites assumption (het = 1.2). 

 
 

4.7 Impact of the number of contact edges 
 

In Figure 6, we show the results of our experiment in which we vary the number of 
contact edges from 0 (for tree-like evolution) to 3, for low homoplasy datasets 
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(screened data), with moderate deviation from the lexical clock (dlc = 0.3) and 
moderate deviation from the rates-across-sites assumption (het = 1.2). Most methods 
return better estimates of the genetic tree when there is no borrowing (or less 
borrowing) between lineages, which is what we expect. Two aspects of this study are 
surprising, however: the impact of contact edges is relatively small, and UPGMA gets 
better with added contact edges. Understanding why this is so will require further 
investigation. 

 

 
 

Figure 6: Impact of the number of contact edges on phylogenetic reconstructions of a 
phylogenetic network with three contact edges, from 360 characters (300 lexical and 60 
morphological) evolved under low homoplasy, moderate deviation from a lexical clock 
(dlc = 0.3), and moderate deviation from the rates-across-sites assumption (het  = 
1.2). 

 
 
 

4.8 Relative performance of different methods 
 

We turn now to the question of relative performance of different methods. Figures 7-9 
show these comparisons under a number of different model conditions, but all show 
the same relative performance. Thus, if we exclude weighted maximum parsimony 
and weighted maximum compatibility, the relative performance of the remaining 
methods is consistent across all model conditions, with UPGMA the worst, NJ the 
next, Gray & Atkinson next, and finally MP. 

The performance of the remaining methods, WMP and WMC, depends very much 
on the model condition. We see that under low homoplasy conditions (as would be 
expected from screened data), WMP and WMC have accuracy approximately equal to 
that of MP, and hence are better than the other methods. However, under moderate 
homoplasy conditions, WMP and WMC tend to have error rates that could be as poor 
as G&A’s. 
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Figure 7: Impact of the number of contact edges on phylogenetic reconstruction meth- 
ods for 300 lexical characters and 60 morphological characters, under two levels of 
homoplasy (moderate on the left and low on the right).  All datasets evolve under a 
moderate deviation from a lexical clock (dlc = 0.3) and moderate deviation from the 
rates-across-sites assumption (het = 1.2). 

 

 
 

Figure 8: Impact of the deviation from the rates-across-sites assumption on phyloge- 
netic reconstruction methods, for 300 lexical characters and 60 morphological char- 
acters, under two levels of homoplasy (moderate on the left and low on the right). 
All characters evolve down a phylogenetic network with three contact edges under a 
moderate deviation from a lexical clock (dlc = 0.3). We vary het, the parameter for 
deviating from the rates-across-sites assumption, from low (0.6) to moderate (1.8). 

 
 

4.9 Summary 
 

Our study showed the following: 
 

• There was a consistent pattern of relative accuracy of phylogenies reconstructed 
using these methods, with UPGMA worst, followed by neighbor joining, then 
G&A, then MP. The relative performance of WMP and WMC depended upon 
the amount of homoplasy in the high weight characters, and so was excellent 
(comparable to that of MP) for the low homoplasy conditions and poor for the 
moderate homoplasy conditions. 

 
• Deviating from the lexical clock made all methods somewhat worse, but had the 

biggest impact on UPGMA. 
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Figure 9: Impact of deviating from the lexical clock on phylogenetic reconstruction 
methods for 300 lexical characters and 60 morphological characters, under two homo- 
plasy levels (moderate on the left and low on the right).  All characters evolve down 
a phylogenetic network with three contact edges under a moderate deviation from the 
rates-across-sites assumption (het = 1.2). We vary the deviation from the lexical clock 
from low (dlc = 0.15) to moderate (dlc = 0.45). 

 
 

• Deviating from the rates-across-sites assumption (i.e., increasing heterotachy) 
had a small but beneficial effect on all methods. 

 
• The incidence of borrowing between languages generally made reconstructions 

less accurate, but not dramatically so; surprisingly, it made UPGMA somewhat 
more accurate. 

 
• The addition of additional morphological characters with low levels of 

homoplasy improved the accuracy of all phylogeny reconstruction methods, and 
especially of WMP and WMC. 

 
4.10 Comparison to Nakhleh et al. (2005b) 

 
A comparison between this study and that of Nakhleh et al. (2005b) is quite 
interesting. In Nakhleh et al. (2005b), the same methods (with the modification that 
Nakhleh et al. (2005b) used the majority consensus of MP and MC trees instead of 
reporting average error) were compared on sets of highly reliable lexical, 
phonological, and morphological characters compiled for 12 Indo-European 
languages by Ringe and Taylor. Because there is no ‘true tree’ yet established for IE, 
the comparison between the methods was limited to two criteria: establishment of 
known subgroups, and the incidence of homoplasy in the characters implied by each 
estimated tree. 

UPGMA had the worst accuracy of all methods – it was the only method to fail 
the first criterion, and its trees had the largest number of homoplastic characters of all. 
A comparison between the other methods showed that they differed in the number and 
type of homoplastic characters, and that relative performance depended on whether 
screened or unscreened data were used, and whether only lexical characters or all 
three types of characters were used. On the screened full dataset, only weighted MP 
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and weighted MC produced trees on which characters considered resistant to 
homoplasy were not homoplastic. The performance on the screened full dataset also 
showed NJ produced somewhat greater levels of homoplasy than the other methods, 
and in particular made more characters homoplastic that were considered resistant to 
homoplasy than the other methods. Differences on the unscreened datasets were 
somewhat less extreme (though UPGMA was still the worst), and differences when 
restricted to lexical characters were also smaller. Although we do not evaluate 
methods with respect to the number of homoplastic characters, these results are 
consistent with our study, and suggest that using the incidence of homoplasy (and the 
type of character exhibiting homoplasy) may be a reasonable proxy for phylogenetic 
accuracy. 

 
4.11 Studies of phylogenetic estimation methods in biology 

 
Many previous studies have compared many of the methods we studied here, and also 
maximum likelihood (a statistical method like MrBayes), on data-sets that evolved 
under stochastic models of molecular sequence evolution. These studies have 
generally shown that most methods are improved by reductions in homoplasy, and 
that MrBayes and maximum likelihood, when based upon the same model as that 
which generated the data, have the best accuracy (see Wang et al. (2011) for one such 
study). However, under some model conditions, maximum parsimony (although not 
statistically consistent) can be more accurate than these statistical methods 
(Kolaczkowski and Thornton, 2004). The neighbor joining method can also have very 
good accuracy if the sequences are long enough but has poorer accuracy on datasets 
with large numbers of taxa (Nakhleh et al., 2002). UPGMA, by contrast, is generally 
less accurate than neighbor joining (Huelsenbeck and Hillis, 1993). 

These observations are largely compatible with our observations. For example, 
UPGMA had the worst performance, and most methods generally improved with 
lowered rates of homoplasy. One observation in our study that on the face of it seems 
incompatible with earlier results is the poor performance of G&A, the only parametric 
statistical method in our study. However, the model underlying the G&A method is 
for binary characters, and the model that generated the data produces multi-state 
characters. Therefore, the G&A method has to represent the multi-state 
characters as binary characters, but this cannot be done without 
causing model misspecification. This helps explain why the G&A method, 
although explicitly based upon a parametric model of evolution, did not give the 
best results. 

This discussion points out the differences between linguistic characters and 
biological characters, and the differences in the stochastic models of evolution used in 
these two disciplines. That is, the stochastic models of evolution used to generate 
datasets for these biological studies make assumptions that are specifically designed 
for molecular phylogenetics, and not appropriate for linguistic phylogenetics. For 
example, biological models assume that the number of states is fixed for all characters 
(ranging from 2 states for presence/absence characters, to 4 for nucleotide sequence 
datasets, to 20 for amino-acid models, and 64 for codon models), while linguistic 
characters do not have this constraint. Another major difference, which is related to 
the unbounded number of states for linguistic characters, is the probability of 
homoplasy. That is, careful analyses of linguistic characters, including screening for 
clear evidence of homoplasy and appropriate handling of detected borrowing, 
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produces characters that are unlikely to evolve with homoplasy or borrowing. As a 
result, screened linguistic characters will generally exhibit quite low homoplasy 
levels. While low rates of homoplasy can also exist in molecular sequence datasets, 
homoplasy rates are generally higher, and they are only reliably very low when the 
rate of evolution is also very low. Thus, linguistic characters can evolve with low rates 
of homoplasy while also having moderate to high rates of substitution, characteristics 
that are not found in molecular characters. 

In other words, despite the similarities in issues between linguistic and biological 
phylogenetics, there are distinct differences in how these characters evolve. Therefore, 
simulation studies based upon stochastic models of biological evolution will not be 
directly relevant to phylogenetic estimation of languages, and vice-versa. In addition, 
although statistical methods of phylogeny estimation that are based upon parametric 
models are likely to give the best results, unless the models on which they are based 
are reasonably realistic, these methods may not produce highly accurate trees. These 
observations, as a whole, show that linguistic phylogeny estimation, and studies of 
phylogeny estimation methods in linguistics, need to be informed by linguistic 
scholarship. 

 
 

5  Discussion 
 

Our study examined a few of the major methods for phylogeny estimation, including 
G&A (a Bayesian method), two distance-based methods (NJ and UPGMA), maximum 
parsimony (weighted and unweighted), and weighted maximum compatibility. 
However, we did not test other Bayesian methods recently introduced (for example, 
(Nicholls and Gray, 2008; Ryder et al., 2011), nor did we address the performance of 
phylogenetic network reconstruction methods (that is, methods that can estimate 
evolutionary histories that include borrowing, and so produce graphical models that 
are not trees, see for example Nakhleh et al. (2005a); Huson (1998); Bandelt and 
Dress (1992); Bryant and Moulton (2003); Bandelt et al. (1995, 2000, 1999)). 
Therefore, this study cannot be used to predict the relative accuracy of other methods; 
however, the range of model conditions we explored allows us to evaluate the methods 
we do study, and reveals the potential for simulation studies to be highly informative 
of the conditions under which different methods will reconstruct accurate trees, and 
the types of data that are most useful for phylogenetic estimation of language families. 

What does our study imply about the choice of phylogeny reconstruction method, 
or about the choice of dataset for a phylogenetic analysis? At a minimum, the study 
indicates that phylogenies estimated using the distance-based methods we studied 
(UPGMA and neighbor joining) are much less accurate than phylogenies estimated 
using the character-based methods we studied (e.g., maximum parsimony, maximum 
compatibility, and G&A). Furthermore, although we observed somewhat worse 
accuracy for G&A than for MP, WMP, and WMC, it is possible that the G&A method 
(which uses MrBayes, a Bayesian method that utilizes MCMC to explore the space of 
model trees) might be improved if more MCMC iterations were run. Because the 
G&A analyses were the most computationally intensive, and we analyzed several 
thousand datasets, increasing the number of iterations was beyond the scope of this 
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study.  However, it is also possible that the two-state model in the G&A analysis is 
the problem, since (as discussed earlier) it requires a modification of the data that 
causes model misspecification (i.e., the data that are analyzed are multi-state, and the 
G&A analysis first encodes these as binary presence/absence characters in order to 
use MrBayes).   

One of the observations in our study is that data selection has an impact on the 
accuracy of the phylogenies that are constructed. In particular, careful screening of 
datasets so as to reduce homoplasy and/or borrowing, and using characters which are 
more resistant to homoplasy and borrowing (i.e., screened morphological and 
phonological characters), can yield significantly improved results. Furthermore, when 
screened datasets that include morphological characters as well as lexical characters 
are analyzed, then the best analyses are clearly obtained by using weighted maximum 
parsimony or weighted maximum compatibility, and in these cases the difference in 
performance between these methods and other methods can be quite substantial. 

A noteworthy trend in these analyses is that except for UPGMA, all methods 
(even neighbor joining) were able to reconstruct all but (about) 10% of the edges of 
the true tree. This observation suggests that on real linguistic datasets, most methods 
(except for UPGMA) will agree on a substantial portion of the tree, and probably 
succeed in reconstructing the major subgroups. The differences between methods 
really come down to finer details of the phylogenetic analysis. In IE terms, these 
questions might be: where does Germanic lie in the Indo-European family tree, is 
Italo-Celtic a subgroup, are Greek and Armenian sisters? These ‘fine details’, in other 
words, are where much of the intense debate lies within the historical linguistics 
community. 

We now briefly touch upon some of the outstanding theoretical questions. 
Currently methods for phylogenetic analysis are fundamentally limited to using 
characters which exhibit at most one state on each language, and hence cannot be used 
for ‘polymorphic’ characters, which exhibit two or more states on some languages. 
Polymorphism is, unfortunately, quite common - especially among lexical characters. 
Thus, clearly one of the outstanding problems in linguistic phylogenetics is to develop 
methods which can utilize polymorphic characters, and to do this we need to begin 
with appropriate models of how polymorphism arises. Some simple examples of 
polymorphism arise from semantic shift, whereby two characters with different 
meaning gradually become indistinguishable within one language with respect to 
meaning, so that the language then has two words for the same basic meaning. 
English examples of this include big and large, or rock and stone. The model for 
polymorphism provided in Bonet et al. (1999) explains polymorphism as arising only 
from semantic shift, but no homoplasy is permitted. However, polymorphism can also 
arise from borrowing, through the incorporation of a loan word into a language, as 
well as from other processes; in addition, we now have good evidence that while 
morphological characters may generally evolve with little (or no) homoplasy, the 
same is not true for lexical characters. Hence, better models for polymorphism still 
need to be developed. 

Another issue that must be addressed comes about because a speech community 
is not comprised of a single individual speaking the language, but a community of 
speakers. This simple observation has the following consequence: different members 
of the community may differ in the words they use, how they pronounce words, etc. 
As a result, characters can exhibit more than one state in a given community (i.e., 
polymorphism can be present). More generally, a proper modelling of linguistic 
change would benefit by including features that are based upon this observation. In 
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effect, the basic problem of estimating phylogenies in languages that still confronts 
historical linguistics is that models of linguistic character evolution are too simple in 
that they do not take population effects into consideration. This is obvious in 
polymorphism, but it holds as well for the modelling of all characters. 

Mathematical models of evolution that would take these population effects 
explicitly into consideration would have to include modifications of the underlying 
graphs (so that vertices and edges in the phylogenies would represent populations of 
speakers, rather than a single individual speaker), as well as of the stochastic 
processes that operate on the characters. As important as this is to historical 
linguistics, little has yet been done. 

For many researchers, the question of estimating dates at internal nodes is of 
central importance. However, from a mathematical point of view, estimating dates at 
internal nodes is extremely difficult without significant constraints on the deviation 
from a lexical clock (the linguistic equivalent of a molecular clock, see Evans et al. 
(2006); McMahon and McMahon (2006)). The estimation of relative branch lengths 
(meaning, ratios between branch lengths) might be feasible to estimate, as argued in 
Embleton (1986), although even this problem seems to require constraints on the ways 
in which sites can vary, as shown in Evans and Warnow (2005). Therefore, our 
viewpoint on this matter is that it’s best to limit phylogenetic reconstruction to 
estimating the underlying branching process, rather than also estimating the dates. 

In summary, although some aspects (e.g., times at ancestral nodes) of the 
evolutionary history of languages may be difficult to estimate, this study shows some 
of the current method are able to provide reasonable estimates of the genetic tree 
relating the languages, even in the presence of considerable homoplasy and 
borrowing. Further improvements might well be obtained through statistical 
estimation techniques, provided they are based upon realistic models of language 
evolution. 
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Summary 

This paper reports a simulation study comparing and evaluating the performance of different 

linguistic phylogeny reconstruction methods on model datasets for which the correct trees are 

known.  UPGMA performed least well, then (in ascending order) neighbor joining, the method 

of Gray and Atkinson, and maximum parsimony.  Weighting characters greatly improves the 

accuracy of maximum parsimony and maximum compatibility if the characters with high 

weights exhibit low homoplasy.   

Keywords: UPGMA, neighbor-joining, maximum parsimony, maximum compatibility, phylogenetics,             
Indo-European, glottochronology, lexicostatistics, simulation 
 
 
 

 

Sommaire  

Cet article présente un rapport sur une étude de simulation qui compare critiquement quelque 

méthodes pour reconstruire les phylogénies linguistiques, en utilisant des ensembles de données 

exemplaires pour lesquels les arbres généalogiques sont donnés en avant.  UPGMA a donné les 

resultats les moins corrects; “neighbor joining” était un peu meilleur, la méthode de Gray et 

Atkinson encore un peu, et “maximum parsimony” le meilleur de toutes.  Si l’on assigne poids 

différents aux caractères, “maximum parsimony” et “maximum compatibility” donnents les 

résultats plus exacts, à condition que les caractères de poids plus grand montrent peu d’ 

homoplasie.   

 

Übersicht    

Dieses Beitrag legt eine Modellsimulierung vor, die das Durchsatz verschiedener 

Sprachstammbaumrekonstruktionsmethoden vergleicht und auswertet, unter Andwendung von 

Datensätze deren Stammbäume vorausgegeben sind.  Das Durchsatz von UPGMA war am 

mindesten genau; etwas besser war Nachbarzufügung, noch besser die Methode von Gray und 

Atkinson, und am Besten die Methode von Maximalsparsamkeit.  Unter Anwendung von 

Charactergewichtung sind Maximalsparsamkeit und Maximalkompatibilität viel genauer, 

vorausgesetzt daß die Charakter größerer Gewichtung wenig Homoplasie zeigen.   

 



 
 
 
 
 


