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How did life evolve on earth?
An international effort toAn international effort to
understand how lifeunderstand how life
evolved on earthevolved on earth

Biomedical applications:Biomedical applications:
drug design, proteindrug design, protein
structurestructure  and functionand function
prediction,prediction,  biodiversitybiodiversity

Phylogenetic Phylogenetic estimationestimation
is a is a ““Grand ChallengeGrand Challenge””::
millions of millions of taxataxa, NP-hard, NP-hard
optimization problemsoptimization problems

• Courtesy of the Tree of Life project



The CIPRES Project
(Cyber-Infrastructure for Phylogenetic Research)

www.phylo.org

This project is funded by the NSF under a Large ITR grant
• ALGORITHMS and SOFTWARE: scaling to millions of sequences (open

source, freely distributed)
• MATHEMATICS/PROBABILITY/STATISTICS: Obtaining better

mathematical theory under complex models of evolution
• DATABASES: Producing new database technology for structured data,

to enable scientific discoveries
• SIMULATIONS: The first million taxon simulation under realistically

complex models
• OUTREACH: Museum partners, K-12, general scientific public
• PORTAL available to all researchers



Step 1: Gather data

S1 = AGGCTATCACCTGACCTCCA
S2 = TAGCTATCACGACCGC
S3 = TAGCTGACCGC
S4 = TCACGACCGACA



Step 2: Multiple Sequence Alignment

S1 = -AGGCTATCACCTGACCTCCA
S2 = TAG-CTATCAC--GACCGC--
S3 = TAG-CT-------GACCGC--
S4 = -------TCAC--GACCGACA

S1 = AGGCTATCACCTGACCTCCA
S2 = TAGCTATCACGACCGC
S3 = TAGCTGACCGC
S4 = TCACGACCGACA



Step 3: Construct tree

S1 = -AGGCTATCACCTGACCTCCA
S2 = TAG-CTATCAC--GACCGC--
S3 = TAG-CT-------GACCGC--
S4 = -------TCAC--GACCGACA

S1 = AGGCTATCACCTGACCTCCA
S2 = TAGCTATCACGACCGC
S3 = TAGCTGACCGC
S4 = TCACGACCGACA

S1

S4

S2

S3



Performance criteria
• Estimated alignments are evaluated with respect to the true

alignment.  Studied both in simulation and on real data.
• Estimated trees are evaluated for “topological accuracy”

with respect to the true tree.  Typically studied in
simulation.

• Methods for these problems can also be evaluated with
respect to an optimization criterion (e.g., maximum
likelihood score) as a function of running time.  Typically
studied on real data.

Issues: Simulation studies need to be based upon realistic
models, and “truth” is often not known for real data.



Observations

• The best current multiple sequence alignment methods can
produce highly inacccurate alignments on large datasets
(with the result that trees estimated on these alignments are
also inaccurate).

• The fast (polynomial time) methods produce highly
inaccurate trees for many datasets.

• Heuristics for NP-hard optimization problems often
produce highly accurate trees, but can take months to
reach solutions on large datasets.



This talk

• Part 1: Improving the topological accuracy of
polynomial time phylogeny reconstruction
methods (and absolute fast converging methods)

• Part 2: Improving heuristics for NP-hard
optimization problems (getting better solutions
faster)

• Part 3: Simultaneous Alignment and Tree
estimation (SATe)

• Part 4: Conclusions



Part 1: Improving polynomial time methods
(and absolute fast converging methods)



DNA Sequence Evolution
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Markov models of single site
evolution

Simplest (Jukes-Cantor):
• The model tree is a pair (T,{e,p(e)}), where T is a rooted binary

tree, and p(e) is the probability of a substitution on the edge e.
• The state at the root is random.
• If a site changes on an edge, it changes with equal probability to

each of the remaining states.
• The evolutionary process is Markovian.

More complex models (such as the General Markov model) are
also considered, often with little change to the theory.



Distance-based Phylogenetic Methods



FN: false negative
      (missing edge)
FP: false positive
      (incorrect edge)

50% error rate

FN

FP



Neighbor joining has poor performance on large
diameter trees [Nakhleh et al. ISMB 2001]

Simulation study based
upon fixed edge
lengths, K2P model of
evolution, sequence
lengths fixed to 1000
nucleotides.

Error rates reflect
proportion of incorrect
edges in inferred trees.

NJ
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• Theorem: Neighbor joining (and some other
distance-based methods) will return the true
tree with high probability provided
sequence lengths are exponential in the
diameter of the tree (Erdos et al., Atteson).



Statistical consistency, exponential convergence, and
absolute fast convergence (afc)



DCM1
Warnow, St. John, and Moret, SODA 2001

• A two-phase procedure which reduces the sequence length
requirement of methods. The DCM phase produces a
collection of trees, and the SQS phase picks the “best” tree.

• The “base method” is applied to subsets of the original
dataset.  When the base method is NJ, you get DCM1-NJ.

DCM SQS
Exponentially
converging
method

Absolute fast
converging
method



Graph-theoretic
divide-and-conquer (DCM’s)

• Define a triangulated (i.e. chordal) graph so that its
vertices correspond to the input taxa

• Compute a decomposition of the graph into overlapping
subgraphs, thus defining a decomposition of the taxa into
overlapping subsets.

• Apply the “base method” to each subset of taxa, to
construct a subtree

• Merge the subtrees into a single tree on the full set of taxa.



DCM (cartoon)



Some properties of chordal graphs

• Every chordal graph has at most n maximal
cliques, and these can be found in polynomial
time: Maxclique decomposition.

• Every chordal graph has a vertex separator which
is a maximal clique:  Separator-component
decomposition.

• Every chordal graph has a perfect elimination
scheme: enables us to merge correct subtrees and
get a correct supertree back, if subtrees are big
enough.



DCM1 Decompositions

DCM1 decomposition : Compute maximal cliques

Input: Set S of sequences, distance matrix d, threshold value 

1. Compute threshold graph 
}),(:),{(,),,( qjidjiESVEVGq !===

2. Perform minimum weight triangulation (note: if d is an additive matrix, then 
     the threshold graph is provably chordal).

}{ ijdq!



DCM1-boosting distance-based methods
[Nakhleh et al. ISMB 2001]

•Theorem:
DCM1-NJ
converges to the
true tree from
polynomial
length sequences

NJ
DCM1-NJ
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However,

• The best phylogenetic accuracy tends to be from
computationally intensive methods  (and most
molecular phylogeneticists prefer these methods).

• Unfortunately, these approaches can take weeks or
more, just to reach decent local optima.

• Conclusion: We need better heuristics for NP-
hard optimization methods!



Part 2: Improved heuristics for
NP-hard optimization problems

• Rec-I-DCM3: Roshan, Williams, Moret,
and Warnow

• Part of the CIPRES software distribution
and portal



Standard problem: Maximum Parsimony
(Hamming distance Steiner Tree)

• Input: Set S of n aligned sequences of
length k

• Output: A phylogenetic tree T
– leaf-labeled by sequences in S
– additional sequences of length k labeling the

internal nodes of T

such that                         is minimized.!
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Maximum parsimony (example)

• Input: Four sequences
– ACT
– ACA
– GTT
– GTA

• Question: which of the three trees has the
best MP scores?



Maximum Parsimony

ACT

GTT ACA

GTA ACA ACT

GTAGTT
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Maximum Parsimony

ACT

GTT

GTT GTA

ACA

GTA

1
2

2

MP score = 5

ACA ACT

GTAGTT

ACA ACT
3 1 3

MP score = 7

ACT

ACA

GTT

GTA
ACA GTA
1 2 1

MP score = 4

Optimal MP tree



Maximum Parsimony:
computational complexity

ACT

ACA

GTT

GTA
ACA GTA

1 2 1

MP score = 4

Finding the optimal MP tree is NP-hard

Optimal labeling can be
computed in linear time O(nk)



Maximum Likelihood (ML)

• Given:  stochastic model of sequence evolution
(e.g. Jukes-Cantor) and a set S of sequences

• Objective: Find tree T and parameter values so as
to maximize the probability of the data.

Preferred by some systematists, but even harder than
MP in practice.



1. Hill-climbing heuristics (which can get stuck in local optima)
2. Randomized algorithms for getting out of local optima
3. Approximation algorithms for MP (based upon Steiner Tree

approximation algorithms).

Approaches for “solving” MP (and other NP-
hard problems in phylogeny)

Phylogenetic trees

Cost

Global optimum

Local optimum



Problems with current techniques for MP
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Shown here is the performance of a TNT heuristic maximum parsimony analysis on a
real dataset of almost 14,000 sequences. (“Optimal” here means best score to date,
using any method for any amount of time.)  Acceptable error is below 0.01%.

Performance of TNT with time



Rec-I-DCM3: a new technique
(Roshan et al.)

• Combines a new decomposition technique
(DCM3) with recursion and iteration, to
produce a novel approach for escaping local
optima

• Demonstrated here on MP (maximum
parsimony), but also implemented for ML
and other optimization problems



The DCM3 decomposition

Input: Set S of sequences, and guide-tree T

1. Compute short subtree graph G(S,T), based upon T 

2. Find clique separator in the graph G(S,T) and form subproblems

DCM3 decompositions 
(1) can be obtained in O(n) time (the
short subtree graph is triangulated)
(2) yield small subproblems
(3) can be used iteratively



Iterative-DCM3

T

T’

Base methodDCM3



Rec-I-DCM3 significantly improves performance
(Roshan et al.)

Comparison of TNT to Rec-I-DCM3(TNT) on one large dataset
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Part 3: Multiple sequence alignment

• SATe (Simultaneous Alignment and Tree
estimation)

• Developers: Liu, Nelesen, Linder, and
Warnow

• unpublished



Multiple Sequence Alignment

-AGGCTATCACCTGACCTCCA
TAG-CTATCAC--GACCGC--
TAG-CT-------GACCGC--

Notes:
1. We insert gaps (dashes) to each sequence to make
them “line up”.
2. Nucleotides in the same column are presumed to have
a common ancestor (i.e., they are “homologous”).

AGGCTATCACCTGACCTCCA
TAGCTATCACGACCGC
TAGCTGACCGC



Indels and substitutions at the
DNA level

…ACGGTGCAGTTACCA…

MutationDeletion



Indels and substitutions at the
DNA level

…ACGGTGCAGTTACCA…

MutationDeletion



Indels and substitutions at the
DNA level

…ACGGTGCAGTTACCA…

MutationDeletion

…ACCAGTCACCA…



…ACGGTGCAGTTACCA…

…ACCAGTCACCA…

MutationDeletion

The true multiple alignment is:

      …ACGGTGCAGTTACCA…

      …AC----CAGTCACCA…



Basic observations about
standard two-phase methods

• Clustal is the standard multiple alignment method
used by systematists.

• However, many new MSA methods improve on
ClustalW, with ProbCons and MAFFT the two best
MSA methods.

• The best current two-phase techniques are obtained by
computing maximum likelihood trees on ProbCons or
MAFFT alignments (joint work with Wang, Leebens-
Mack, and dePamphilis - unpublished).



New method: SATe
(Simultaneous Alignment and Tree estimation)

• Developers: Warnow, Linder, Liu, Nelesen,
and Zhao.

• Basic technique: iteratively propose
alignments (using various techniques), and
compute maximum likelihood trees for
these alignments.

• Unpublished.



Simulation study

• 100 taxon model trees, 1000 sites at the root
• DNA sequences evolved with indels and substitutions

(using ROSE).
• We vary the gap length distribution, probability of gaps,

and probability of substitutions, to produce 8 model
conditions: models 1-4 have “long gaps” and 5-8 have
“short gaps”.

• We compare SATe to maximum likelihood trees (using
RAxML) on various alignments (including the true
alignment), each method limited to 24 hours.



Error rates refer to the proportion of incorrect edges.



Errors in estimating alignments
• Normalized number of columns in the estimated alignment relative to

the true alignment.



Summary of SATe

• SATe produces more accurate trees than the
best current two-phase method, especially
when the evolutionary  process has many
gap events.

• SATe alignments do not compress the data
(“over-align”) as much as standard MSA
methods, most of which are based upon
progressive alignment.



Future work

• Our current research is focused on
extending SATe to estimate maximum
likelihood under models that include gap
events.

• Evolution is more complex than just indels
and substitutions: we need methods that can
handle genome rearrangements and
duplications.
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