A compressed format for collections of phylogenetic
trees and improved consensus performance

Robert S. Boyer, Warren A. Hunt Jr, Serita M. Nelesen

Department of Computer Sciences, The University of TexastiA, TX 78712, USA ;
{boyer, hunt, serita}@s. utexas.edu

Abstract. Phylogenetic tree searching algorithms often produce sénads of

trees which biologists save in Newick format in order to perf further analy-

sis. Unfortunately, Newick is neither space efficient, nondaucive to post-tree
analysis such as consensus. We propose a new format fangsgainylogenetic

trees that significantly reduces storage requirementsevduihtinuing to allow

the trees to be used as input to post-tree analysis. We ingpliexti mechanisms
to read and write such data from and to files, and also implézdeanconsensus
algorithm that is faster by an order of magnitude than stahghylogenetic anal-
ysis tools. We demonstrate our results on a collection & filgts produced from
both maximum parsimony tree searches and Bayesian methods.

1 Introduction

Producing a phylogeny for a set of taxa involves four majepst First, comparative
data for the taxa must be collected. This data often takefothe of DNA sequences,
other biomolecular information or matrices of morphol@jidata. Second, this data is
aligned to ensure that comparable information is consitlasinput to the tree pro-
ducing step. The third step is to produce candidate treesteTare many techniques
for doing this including optimizing maximum parsimony or xiraum likelihood cri-
teria, or, more recently, by using Bayesian methods [7].[TOse techniques rarely
result in a single optimal tree. Instead, there are ofteryniaes that a phylogeneticist
would like to save for further processing such as consensalyss, which is used to
summarize the collection of trees. These post-tree armbrsethe final step.

We have developed methods for storing and retrieving plerietjc tree data, and
using these methods we have implemented a consensus lablgo@ur approach per-
mits very large data sets to be compactly stored and rettiitbout any loss of preci-
sion. Also, our implementation of our consensus algoritmovigles greatly increased
performance when performing strict and majority consensugputations as compared
to PAUP [18] and TNT [8].

Our system is called the Texas Analysis of Symbolic Phylegiennformation
(TASPI), and it is an experimental system, written from teiralt is a stand alone tool
for a few kinds of phylogenetic data manipulation. TASPI istien in the ACL2 [12]
formal logic, where all operations are represented as puretibns. Using ACL2’s as-
sociated mechanical theorem prover, it is possible to paggertions about the TASPI
system.

In this paper, we explain our representation of phylogerieties, and how this for-
mat reduces the storage requirement for a collection of tie also give an algorithm
for computing strict and majority consensus trees thathatehimproved performance
as compared to currently available software. Finally, welude an empirical study
confirming our results.

2 Representation

Newick format [6] is the standard way of storing a collectiminphylogenetic trees.
Adopted in 1986, Newick is a parenthetical notation thasusenmas to separate sib-
ling subtrees, parentheses to indicate children, and acséni to conclude a tree.
Newick outlines each tree in its entirety whether storing aree, or a collection of
trees.

On the other hand, TASPI capitalizes on common structurkinvé collection of
trees. TASPI stores a common subtree once, and then eabkrftime the common
subtree is mentioned, TASPI references the first occurréftue saves considerable
space since potentially large common subtrees are onlgdstarce, and the references
are much smaller (for empirical results see Section 5).

There are two layers to the TASPI representation of treesa Aigh-level, trees
are represented as Lisp lists, similar in appearance to ¢tewut without commas
and semicolons. This is the format presented to the user 8PTAnd on which user
functions operate. At a low-level, the data are insteadesgted in a form that uses
hash-consing [9] to achieve decreased storage requireraadtimproved accessing
speeds. For ease of reference in Section 5, we call this thierBéunt compression.

Consider the following set of rooted trees in Newick format:

(a, ((b,(c,d)),e))
(a, ((e, (c,d)),b));
(a, (b, (e (c,d))));
((a,b), (e (c,d)))

The format of these trees presented to the user of TASPlagktforward:

(a ((b (cd)) e
(a ((e (cd) b
(a (b (e (c d))
((a b) (e (c d)

~— N N

)
)
)
)

Notice that storing this set of trees involves restoringshbtree containing taxa
andd once for every tree. The Boyer-Hunt compression insteagstihec- d clade
once, the first time it is encountered. If, subsequently,cthd clade is encountered
again, the first time is marked with “#n="for the current valof a counter n that is
incremented each time it is used. Then, instead of re-gidhiec- d clade, a reference
in the form “#n#" is stored in its place. This compressionpasllels to the Lempel-Ziv
data compression which is based only on characters seen @dfaThe compressed
version of the trees above is given below:

((A((B#1=(C D)) E))
(A (#2=(E #1#) B))
(A (B #2#))
((A B)#2#))

We use a technique sometimes called hash-consing, whichieenthat no object
is ever stored twice. In the context of phylogenetic tre@sphbject is a subtree, and
consing is a tree constructor that joins subtrees. Haslpmgsimply, is a technique
that creates a table that allows for fast searches. In tlsis, é&shing is used to quickly
determine if a subtree was previously encountered. Thedgmusing “#n="and “#n#",
is a standard read dispatch macro from Lisp programming [17]

Two subtleties remain to be addressed. First, though webeilbresenting rooted
trees in this paper, trees are not all rooted. In fact, mestdearching algorithms return
unrooted trees since determining the root of a tree mayf itmela computationally
intensive problem [7]. Newick format does not distinguigitveeen rooted and unrooted
trees except through the use of auxiliary flags. By placing]&nd [&U] just before
the beginning of a tree, rooted and unrooted trees, respgtare indicated. Without

these flags, the onus is on the user to interpret the treesg@mtely.
Second, Newick does not give a unique representation B

for a tree. Consider the tree on the right. There are many c
representations for this tree in both Newick and TASPI.
Possible TASPI representations include:

((FG ((AB) (C(DB)))and F

((C(ED) ((BA) (GRH)). _
To ensure a unique answer in our computations, we order tpeibwith respect to an
ordering on the taxa. As far as we can tell, PAUP also doesThiss, given an alpha-
betical ordering, we would order the tree abové AsB ((C (D E)) (F GQ)).

G E

3 Consensus Analysis

3.1 Background

Consensus trees are defined by Felsenstein as “trees thasiz®, as nearly as possi-
ble, the information contained in a set of trees whose tipsalithe same species” [7].
The idea of a consensus tree was first proposed by Day in 197ard quickly fol-
lowed by other criteria for agreement between trees. In 1B&gush and McMorris
defined the majority rule trees as we know them today. Theggsed this form of con-
sensus as following best the “dictionary definition of corses as 'general agreement’
or 'majority of opinion™ [13]. It was also around this timéat Sokal and Rohlf coined
the term “strict consensus” [16].

Consensus methods return a single tree, or an indicatiemthtxee meeting that
method’s requirements exists. The types of consensugia@dams, maximum agree-
ment subtree, semi-strict, also called loose, combinabteponent or Bremer [7],
greedy, local, and Nelson-Page. See Bryant [4] for an ogeraf various consensus
methods and their interrelationships.

Two of the most common types of consensus trees are striatnajatity. Both of
these decide which branches in the input trees to keep, amdaihild a tree from the

resulting branches. Strict consensus requires that amchria the consensus tree be
a branch in every input tree, while a majority tree only regsithat any branch in the
consensus tree be a branch in at least some majority of the tirges. A threshold is
a parameter to majority consensus that determines wha¢mage is to be used as a
cutoff. Strict consensus is a special case of majority cosis® that is, it is a majority
consensus with a threshold of 100%. Strict and majority ensss algorithms always
return a tree, and have optimal O(kn) algorithms as destiilyeDay [5] and Amenta
et al. [2] (where k is the number of trees and n is the numbena)t

3.2 Our Algorithm

We compute a consensus through a sequence of steps. Weditshessource file con-
taining the trees for which a consensus is to be computedn@the read process, we
identify every subtree for which we have already read antidalsubtree; thus, instead
of creating a new data structure for the subtree just readefeeence the previously
created subtree. We next create a mapping from all subtoe@getry parent in which

a subtree is referenced. Using this information, we comthgeccurrence frequency
of every subtree. Finally, after we have selected the sebtilgat match our selection
criteria, we construct the consensus answer. We give anmgaromputation in Sub-

section 3.3.

In the following explanation, we use the notion of a "multfsavhich is, intuitively
speaking, a kind of set in which the number of occurrencestcddore formally, one
may regard a multiset as a function to the set of positiveggeite IfA andB are mul-
tisets, therA is a multisubset oB if and only if for eachx in the domain ofA, x is in
the domain oB andA(x) <= B(x).

For example, suppose v, andw are all distinct objects. Leh = <u, 1>, <v, 2>
and letB = <u, 2>, <v, 4>, <w, 5>, thenA is a multiset with one occurrence of
and two ofv. Thus,A(v) = 2. A is a multisubset 0B becausé\(u) <= B(u) andA(v)
<=B(V).

One way to represent multisets is with lists in which the nandf occurrences of an
elementin a list represents the number of times that theezieimin the corresponding
multiset. So for example, we may represent the exay@bove with the Lisp listu v
V).

Several definitions will be useful.

tip: a symbol or integer.

tree: a tip or, recursively, a list of one or more trees.

fringe: a list of all tips in a tree.

subtree If a and b are trees, themis asubtreeof b if and only if either (1)ais b

or (2)bis alist andais a subtree of a member bf

— proper subtreelf aandb are treesa is aproper subtreef b iff ais a subtree olb
andais notb.

— domain: Thedomainof an association list (a list of key-value pairs) is the det o
the keys of the members of the association list.

— replete An association listlb is repleteif and only if for all t1 in the domain of

db, (1)t1 is a nontip tree and (2) i is a nontip proper subtree df, thendb(t2)

is a list representing the multiset of all trees in the donddidb that havet2 as
a member, includingl. Note that the multiset(a) (b) (a)) has the treda) as a
member twice.

— top levelA tree in the domain of a replettb is said to beop levelif and only if it
is a proper subtree of no member of the domaidlmf

To compute the consensus, our algorithm proceeds by:

1. Producing a replete association list of all of the sulstiréhe original input,

2. Counting the frequencies of the non-tip subtrees,

3. Collecting the subtrees that appear as often as the @siymajority threshold,
and finally,

4. Constructing the consensus tree.

Step one is accomplished by our functi@plete-trees-list-topwhich converts the
original input list of trees into a replete association(ddtabase). This replete database
is a mapping from subtrees to every parent tree containmgubtree in question. Step
two is performed by the functiofiinge-frequencieswhich counts the frequencies of
every subtree fringe in the replete database by iteratirautih the replete database.
Step three is collecting the subtrees that occur as oftelneathteshold. Finally, using
this collection of subtrees, functidwild-term-top constructs the consensus answer.

Our functionreplete-trees-list-toptakes a list of non-tip trees no member of which
is a proper subtree of another, such as a list of trees all thithsame set of taxa.
replete-trees-list-topreturns a replete association lah such that (1x is a member
of the domain ofdb if and only if x is @ member of or is a non-tip proper subtree of
a member of and (2) ifx is in the domain ofib, thendb(x) is an integer if and only
if x is a member of anddb(x) is the number of timeg occurs inl. For an example
execution ofreplete-trees-list-top see Subsection 3.3.

Functionfringe-frequenciestakes a list of nontip trees such that no membet &

a proper subtree of any other membet (fuch as that produced bgplete-trees-list-
top). fringe-frequenciesreturns a minimal length association list that pairs thedei
fr of each nontip subtree of each membetf wfith the number of occurrences irof
non-tip subtrees of membersiahat have fringdr .

By scanning through the resulting association list, we ik out the subtrees that
appear as often as the desired threshold. We have no needddtst actual number of
times any specific subtree appears, we simply collect thiesdbesubtrees (fringes) into
a list.

The functionbuild-term-top takes two arguments. The first argument is a sorted
list | of the subtrees’ fringed;is sorted using a lexicographic (normalization) order
that is based both on the internal tips and the size of theaslisnin each subtree.
All the subtrees il must appear in the consensus answer. The second argument is a
normalization taxa listx, that is used by our lexicographic ordering function so we
can produce a unique representation of any subtree thHtiitskides more than one
subtree. Remember, we represent each subtree as a listtofesybso to make the
representation unique we sort members of each suliitéle-term-top constructs a
consensus answer tree recursively by first building an anefviae first subtree of.
Once the first answer subtree is computed for the first eleménany (sub-)subtrees

required to build the first subtree are “crossed out” filaimat remain to be processed,
and we continue with the next remaining elemernit wiitil no entries remain.

3.3 Example

(((AB) C) (D E) (F G))) ((AB)C) (D (E(F) (A (BC) ((DE)(FG))

A BCD EF G A BCDEF G ABCDEF G
A BCD EFG ABCDE F G

((AB)C) (DE)FG)) (A(BC)(DEF)G))
Fig. 1. A collection of trees together with their TASPI represeiotat

Consider the five trees in Figure 1. The TASPI representatidhese trees is the
input to the functioreplete-trees-list-top This function returns the following associ-
ation list, where keys are in boldface:

((AB)((A B) Q)
(((AB)C)(DE)(FG))) - 1)
(OGE((DE F QG
((D B (FQ))

((DCE)FG) ((AB) O ((DE FQ))
((AB)C)(DEBFG) . 1)
((AB)C)(((AB) O (D (E(F Q)))

(((AB) O ((DB F Q)

(((AB) O ((DB (FQG)))
((FG) (E (F Q)

((DEB) (FQ))
((E(FG) (D (E(F G)))
(DEFG)) (((AB) O (D(E(FG))))
(((AB)C)(D(E(FG))) - 1)
((BC) (A (B Q))
(DEF) ((DEF) Q)
((DEF)G) ((A(B Q) ((DEF) G))
((ABC)(DERG) . 1)
((ABC)((A (B C) ((DE (FQ))

((A(B Q) ((DEF) Q))
((CE)(FG)N((A (B Q) ((DE (FQ))

(((AB) O ((DE (FQG)))

((ABC)(BE)(FG)) - 1)

A subtree is the key for each element of the list, and the nedeaiiof each entry
(the values) is either (1) trees or subtrees in which the lgears, or (2) an integer
representing the number of times this top level tree occeutisd input collection. Thus,
this is a replete association list. This association lisiag the input to the function
fringe-frequencies which produces this list:

((A B) 3) ((DEF). 1)

((D E) 3) ((ABQ . 5

((FGQ . 3 ((DEFGQ . 5)
((EFQ 1) ((ABCDEFGQ 5)
((BOQ . 2

This frequency list has each fringe from our replete assiocidist, together with an
integer. Remember, a fringe is simply a list of the tips ine@tiso we do not distinguish
between the fringe frofdA (B C)) and the fringe fron{ (A B) C). The integer
gives the number of trees that have a subtree with this fringe

We are now prepared to sweep through this list and recorditigefs that occur at
least as often as the threshold for both a strict and majooitysensus. In this example,
for the strict majority we collect those fringes that occuirbes, and for the majority,

we collect those that occur at least 3 times. This gives us:
((ABCDEFG . 5

((ABCDEFQ . 5) EEBSSG) '5)5)

((DEF QG . 5) and ((FQ . 3)

((AB QO . 5) (oo 5
((AB) . 3)

Finally, the functionbuild-term-top uses either the strict or majority fringes to-
gether with a normalization list such @& B C D E F G to create the strict and
majority consensus trees. In this case we crédt&d B C) (D E F G) and
(((AB) O ((DB (FQ)).

4 Experiments

4.1 Data Sets

We first obtained collections of phylogenetic trees from Dsman Roshan and Dr.
Tiffani Williams. These trees were created by PAUP and TNiffggening maximum
parsimony searches using biomolecular data sets. We halgrzad hundreds of these
collections though we only present the results from tenectibbns. The results pre-
sented are representative of the full set. We also genesatisdof trees using Mr-
Bayes [11] that had more taxa than either PAUP or TNT can eead;rthese data
sets were created by the third author.

Table 1 gives characteristic information for each coll@ttive present, namely, the
numbers of taxa per tree, the number of trees in the collectind the source of the
collection.

Table 1.Data set statistics

|Data Set Numb¢bata Set Nam@lumber of TaxgNumber of Treels Source]|

1 Dom_2org 8506 a7 Roshan
2 sRNA_mito 2587 369 Roshan
3 Will _Euk 2000 537 Roshan
4 Three567 567 2505 Williams
5 Actino 4583 301 Roshan
6 Ocho854 854 2505 Williams
7 John921 921 2505 Williams
8 t10000 500 10000 Roshan
9 Will2000 2000 2505 Williams
10 Mari2594 2594 2505 Williams
11 20000seqs 20000 1001 Nelesen
12 50000seqs 50000 1001 Nelesen
4.2 Methods

The files we obtained often contained comments about howdles tvere generated,
parsimony scores, or other output from their productionSPA does not store this
information, so we began by creating files that containeg tm topological tree in-
formation so that we could accurately assess our compressio

Next, we created a suite of Perl scripts that take thesenaiidiles and generate
appropriate input files for PAUP and TNT. In each case, tha liakis created from the
first tree in the file, and the trees themselves are colle@teeh, for PAUP, a Nexus file
is produced with the taxa list, the trees, and a PAUP blockainimg the commands to
compute consensus. Similarly for TNT, an appropriate ifiuis created with the taxa
list, trees, and commands to compute consensus.

TASPI reads the source files directly. As with PAUP and TNTSPA can be run
both interactively, where we submit one command at a timeysimg an input file
containing all commands needed for the desired computation

Using PAUP, TNT and TASPI, we measured the time it took théwsoke to read
each collection, and the time needed to compute both a atritimajority consensus
tree. For PAUP, we produced a strict consensus tree usinggitsrity consensus com-
mand with percent set to 100 since the strict consensus codhioak considerably
longer to do the same calculation. Also, by default, TNT duatsnclude branches that
are not well supported by the data used to create trees. Hwywes were not including
any initial data other than the trees themselves, so we dutis feature off using the
commandollapse notemp

Our experiments, where we were able to compare PAUP, TNT &8PT, were
all performed on an Intel Pentium 4 CPU 3.4 Ghz computer. Hewedor the two
largest data sets, we used an AMD Opteron CPU 2.4 Ghz compuitieh has similar
computational performance, but more physical memory.gEittomputer produces the
same compressed files. The largest files are too large to 8éyezither PAUP or TNT
due to internal limitations on the number of taxa allowed tre@.

1G

__100M
[%2]
2 —o— Newick
2 10M --@-- TASPl.bhz
o 1M - -—- Newick.bz2
-UN) —#— TASPI.bhz.bz2
100K
IK-——TT—7——T7 77—
1 2 3 45 6 7 8 9 1011 12
Data Set
Fig. 2. Storage requirements
5 Results

The first major contribution of TASPI is the condensed foriatvhich trees can be
stored, while maintaining structural information. Fig@&shows four sets of sizes for
each of our benchmark data sets. The Newick data representsze of the trees as
they were given to us, after removing information that TASBé&s not currently store
(e.g. comments and branch lengths) and Newick.bz2 illtestrine size of the file after
compression using the algorithm implemented in bzip2 [IBJSPI.bhz displays the
size of the file after compression using the Boyer-Hunt mebtiotice that this file
is still in ASCII, but with redundancies removed. Unlike naempression methods,
all the information present in the original files is still inediately accessible, without a
decompression step. Finally, TASPI.bhz.bz2 shows thedditte file if it is compressed
using the Boyer-Hunt method and then bzip2 is applied.

Using the compressed TASPI format saves considerable nyespace. For the data
sets we present, the storage requirement for the TASPI taianges from 2% of the
storage requirement of Newick for the 10000 (data set 8¢ctibn, up to 26% for the
Dom_2org (data set 1) collection. Over all data sets, the conspteFASPI format uses
just 5% of the storage requirement of the Newick format.

The amount of storage space saved is dependent on the anfaimtilarity be-
tween input trees. The more similarity between input tréesthe greater the number
of common subtrees) the more effective the compressios. known in the phylo-
genetic community that trees derived from independent skt are unlikely to have
common structure [4]. However, it appears that collectiohees such as those we
are presenting do have common structure since our compnessais able to reduce the
storage requirement for these collections of trees. Fyrthe greater the number of
trees in the collection, the more likely there will be comnsbructure.

Itis readily apparent that bzip2 produces smaller files thaBoyer-Hunt compres-
sion on the smaller collections of trees, but for the vergdalata sets, the Boyer-Hunt
compression produces smaller files than bzip2. FurtheBdlyer-Hunt files are ASCII,

2 g 20 g
2 2 30 2
£ 2 20 £
= e 10 =
1 2 3 4 5 6 7 8 9 10 11 12
—o— PAUP read] — <o— - TASPI read
--@-- TNT read Read Times —a— TASPI.bhz read
(a) Data sets 1-4 (b) Data sets 5-8 (c) Data sets 9-12
% 604, =" - 300 5
g ' 8 =
2 40 & 200 s
(D) K ," () ~
£ 20 & £ 1004 °® e
= g = =
12 3 4 56 7 8 9 10 11 12
—o— PAUP total] — -o— - TASPI total
--@-- TNT total Total Times —— TASPI.bhz total
ata sets 1- e) Data sets 5- ata sets 9-
(d)D 1-4 (e) D 5-8 D 9-12

Fig. 3. Time to read a collection of trees (a-c) and compute stridtmajority consensus trees
with PAUP, TNT and TASPI (d-f)

and thus are ready to be used as input to analysis, such eansoiss|f the data are not
currently required as input to a post-tree analysis, cosga® TASPI is even more use-
ful. Boyer-Hunt files can be further compressed using bzip@roduce even smaller
files than those produced by using bzip2 on the original Nlewiies for sharing and
transmission purposes. For our data sets, using the Boyet-tbmpression together
with bzip2 produces files that require 1% of the storage spébewick.

The second major contribution of TASPI is its ability to reaallections of trees
quickly. Figure 3(a-c) shows average read times in secamrdsaich of our benchmark
collections of trees. Notice that while reading trees wiliTTor PAUP requires compa-
rable times, reading the Boyer-Hunt compressed trees WiBPT is by far the fastest
time for any collection. In fact, neither PAUP nor TNT is abderead the last two data
sets. For the data sets which PAUP and TNT can read, readéngptinpressed TASPI
format takes just 2% of the time to read the Newick files wittUPAThis means that
loading these files takes more than 48 times longer when readPAUP or TNT rather

than using TASPI to read their compressed counterpart. Ez&aing the source files
is faster in TASPI than it is in either PAUP or TNT — using TASBIread the Newick
files takes just 16% of the time needed to read the same filasRAIWP or TNT.

The third major contribution of TASPI is a consensus implatagon with im-
proved performance. Figure 3(d-f) shows the time to compatsensus with each of
TASPI, TNT and PAUP. In each case, both a strict consensasatrd a majority con-
sensus tree are computed. Notice that the time to compusensas includes the time
to read the collection of trees since the trees are the impatdonsensus calculation.
Thus, we show both the time to compute consensus when reealimgressed trees and
also the time when reading Newick trees.

In all cases, the result TASPI produces is identical to thadpced by PAUP (when
PAUP is able to read the input), but TASPI is faster. For thia dats PAUP and TNT
can process that we present, using TASPI to compute corseviguinput trees in
compressed TASPI format requires 5% of the time it takes Pl&U®mpute consensus
with input trees in Newick format. If we factor out the impexreading time, TASPI
computes these consensus trees in about 10% of the time# BAUP to do the same
computation.

6 Conclusion

In phylogenetics, the ability to store large numbers ofdriseincreasingly important.
Bayesian methods, which use Monte Carlo Markov Chains, iaiéng more trees than
previous methods, and are growing in popularity. Biologaste also choosing to retain
additional trees visited during a search. We have shownahaformat provides de-
creased storage requirements, while maintaining datassitdiy for further process-
ing. Further, our format together with techniques like meation allows for improved
performance in post-tree analysis. We showed this usiingj atrd majority consensus.

The use of post-tree analyses are also becoming more pnevélfdliams et al.
propose using the rate of change of a consensus tree as agteperion for heuris-
tic maximum parsimony searches, which requires the contipataf a consensus tree
multiple times over the course of an analysis [19]. We havergia new format for
collections of phylogenetic trees that would make thisifédasIn addition, our replete
database, the output of the first step in our consensus @iggrprovides a possible
starting point for phylogenetic databases such as thogmpeal in [14].

In the future we hope to investigate the changes necessanake our consensus
algorithm incremental. This would allow online consensualgsis as proposed in [3].
We would also like to look at even larger collections of trélesger both in number
of trees and number of taxa) and consider application of ectirtiques to supertree
methods.

Acknowledgment

This work was funded in part by an ITR from the National Sceefoundation (EF-
0331453).

References

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

E. N. Adams. Consensus techniques and the comparisoxafdmic trees. Systematic
Zoology 21:390-397, 1972.

. Nina Amenta, Katherine St. John, and Frederick Clarke.indalr-time majority tree al-

gorithm. In Gary Benson and Roderic D. M. Page, editBrec. of the 3rd International
Workshop on Algorithms in Bioinformatics (WABI 200&)lume 2812 ol_ecture Notes in
Computer Sciencgages 216—227. Springer-Verlag, 2003.

. Tanya Y. Berger-Wolf. Online consensus and agreemertydbgenetic trees. In |. Jonassen

and J. Kim, editorsProc. of the 4th International Workshop on Algorithms iniBformatics
(WABI 2004) volume 3240 of_ecture Notes in Computer Scienpages 216—227. Springer-
Verlag, 2004.

. David Bryant. A classification of consensus methods fgitqaenetics. In M. Janowitz, F.J.

Lapointe, F. McMorris, B. Mirkin, and F. Roberts, editoBipconsensyDIMACS Series in
Discrete Mathematics and Theoretical Computer Sciendd AQIS-AMS, 2001.

. William H. E. Day. Optimal algorithms for comparing treggh labeled leavesJournal of

Classification 2(1):7—-28, 1985.

. J. Felsenstein. The newick tree format. http://evol ution. genetics.

washi ngt on. edu/ phyl i p/ newi cktree. htm ,1986.

. Joseph Felsensteimferring PhylogeniesSinauer Associates, Inc., 2004.
. P.A. Goloboff, J.S. Farris, and K.C. Nixon. TNT (Tree asi using new technology)

(BETA) ver. 1.0. Published by the authors, Tucuman, Argent2000.

. E. Goto, T. Soma, N. Inade, T. Ida, M. ldesawa, K. Hiraki, 8izuki, K. Shimizu, and

B. Philpov. Design of a lisp machine - flats. LiFP '82: Proceedings of the 1982 ACM
Symposium on LISP and functional programmipgges 208—-215, 1982.

David M. Hillis, Craig Moritz, and Barbara K. Mable, ealis. Molecular SytematicsSinauer
Associates, Inc., Sunderland, Massachusetts, 2nd edlig96.

J. P Huelsenbeck and F. Ronquist. MRBAYES: Bayesiaménfze of phylogenyBioinfor-
matics 17:754-755, 2001.

Matt Kaufmann, Pete Manolios, and J. S. Mo@emputer-Aided Reasoning: An Approach
Kluwer Academic Publishers, 2000.

T. Margush and F.R. McMorris. Consensus n-tre&allletin of Mathematical Biology
43(2):239-244, 1981.

L. Nakhleh, D. Miranker, F. Barbancon, W.H. Piel, and MDénoghue. Requirements of
phylogenetic databases. Pnoceedings of the Third IEEE Symposium on Bioinformatics a
Bioengineering (BIBE 2003pages 141-148. IEEE Press, 2003.

Julien Seward. bziphtt p: // sour ces. redhat . coni bzi p2/,2002.

Robert R. Sokal and F. James Rohlf. Taxonomic Congruiente Leptopodomorpha Re-
Examined.Systematic Zoology0(3):309-325, 1981.

Guy L. SteeleCommon Lisp the Languagehapter 22.1.4. Digital Press, 2nd edition, 1990.
D. L. Swofford. PAUP*: Phylogenetic Analysis Using Parsimony (and Othettildels) 4.0
Beta Sinauer Associates, Sunderland, Massachusetts, 2002.

Tiffani Williams, Tanya Berger-Wolf, Bernard Moret, kdan Roshan, and Tandy Warnow.
The relationship between maximum parsimony score and geyletic tree topologies. Per-
sonal Communication.

J. Zivand A. Lempel. A universal algorithm for sequelntiata compressionlEEE Trans-
actions on Information Theor23:337-342, 1977.

