
A compressed format for collections of phylogenetic
trees and improved consensus performance

Robert S. Boyer, Warren A. Hunt Jr, Serita M. Nelesen

Department of Computer Sciences, The University of Texas, Austin, TX 78712, USA ;fboyer, hunt, seritag@cs.utexas.edu
Abstract. Phylogenetic tree searching algorithms often produce thousands of
trees which biologists save in Newick format in order to perform further analy-
sis. Unfortunately, Newick is neither space efficient, nor conducive to post-tree
analysis such as consensus. We propose a new format for storing phylogenetic
trees that significantly reduces storage requirements while continuing to allow
the trees to be used as input to post-tree analysis. We implemented mechanisms
to read and write such data from and to files, and also implemented a consensus
algorithm that is faster by an order of magnitude than standard phylogenetic anal-
ysis tools. We demonstrate our results on a collection of data files produced from
both maximum parsimony tree searches and Bayesian methods.

1 Introduction

Producing a phylogeny for a set of taxa involves four major steps. First, comparative
data for the taxa must be collected. This data often takes theform of DNA sequences,
other biomolecular information or matrices of morphological data. Second, this data is
aligned to ensure that comparable information is considered as input to the tree pro-
ducing step. The third step is to produce candidate trees. There are many techniques
for doing this including optimizing maximum parsimony or maximum likelihood cri-
teria, or, more recently, by using Bayesian methods [7] [10]. These techniques rarely
result in a single optimal tree. Instead, there are often many trees that a phylogeneticist
would like to save for further processing such as consensus analysis, which is used to
summarize the collection of trees. These post-tree analyses are the final step.

We have developed methods for storing and retrieving phylogenetic tree data, and
using these methods we have implemented a consensus algorithm. Our approach per-
mits very large data sets to be compactly stored and retrieved without any loss of preci-
sion. Also, our implementation of our consensus algorithm provides greatly increased
performance when performing strict and majority consensuscomputations as compared
to PAUP [18] and TNT [8].

Our system is called the Texas Analysis of Symbolic Phylogenetic Information
(TASPI), and it is an experimental system, written from scratch. It is a stand alone tool
for a few kinds of phylogenetic data manipulation. TASPI is written in the ACL2 [12]
formal logic, where all operations are represented as pure functions. Using ACL2’s as-
sociated mechanical theorem prover, it is possible to proveassertions about the TASPI
system.



In this paper, we explain our representation of phylogenetic trees, and how this for-
mat reduces the storage requirement for a collection of trees. We also give an algorithm
for computing strict and majority consensus trees that exhibits improved performance
as compared to currently available software. Finally, we include an empirical study
confirming our results.

2 Representation

Newick format [6] is the standard way of storing a collectionof phylogenetic trees.
Adopted in 1986, Newick is a parenthetical notation that uses commas to separate sib-
ling subtrees, parentheses to indicate children, and a semicolon to conclude a tree.
Newick outlines each tree in its entirety whether storing one tree, or a collection of
trees.

On the other hand, TASPI capitalizes on common structure within a collection of
trees. TASPI stores a common subtree once, and then each further time the common
subtree is mentioned, TASPI references the first occurrence. This saves considerable
space since potentially large common subtrees are only stored once, and the references
are much smaller (for empirical results see Section 5).

There are two layers to the TASPI representation of trees. Ata high-level, trees
are represented as Lisp lists, similar in appearance to Newick, but without commas
and semicolons. This is the format presented to the user of TASPI and on which user
functions operate. At a low-level, the data are instead represented in a form that uses
hash-consing [9] to achieve decreased storage requirements and improved accessing
speeds. For ease of reference in Section 5, we call this the Boyer-Hunt compression.

Consider the following set of rooted trees in Newick format:

(a,((b,(c,d)),e));
(a,((e,(c,d)),b));
(a,(b,(e,(c,d))));
((a,b),(e,(c,d)));

The format of these trees presented to the user of TASPI is straightforward:

(a ((b (c d)) e))
(a ((e (c d)) b))
(a (b (e (c d))))
((a b) (e (c d)))

Notice that storing this set of trees involves restoring thesubtree containing taxac
andd once for every tree. The Boyer-Hunt compression instead stores thec-d clade
once, the first time it is encountered. If, subsequently, thec-d clade is encountered
again, the first time is marked with “#n=” for the current value of a counter n that is
incremented each time it is used. Then, instead of re-storing thec-d clade, a reference
in the form “#n#” is stored in its place. This compression hasparallels to the Lempel-Ziv
data compression which is based only on characters seen so far [20]. The compressed
version of the trees above is given below:



((A ((B #1=(C D )) E ))
(A (#2=(E #1#) B))
(A (B #2#))
((A B)#2#))

We use a technique sometimes called hash-consing, which ensures that no object
is ever stored twice. In the context of phylogenetic trees, an object is a subtree, and
consing is a tree constructor that joins subtrees. Hashing,put simply, is a technique
that creates a table that allows for fast searches. In this case, hashing is used to quickly
determine if a subtree was previously encountered. The format, using “#n=” and “#n#”,
is a standard read dispatch macro from Lisp programming [17].

Two subtleties remain to be addressed. First, though we willbe presenting rooted
trees in this paper, trees are not all rooted. In fact, most tree searching algorithms return
unrooted trees since determining the root of a tree may itself be a computationally
intensive problem [7]. Newick format does not distinguish between rooted and unrooted
trees except through the use of auxiliary flags. By placing [&R] and [&U] just before
the beginning of a tree, rooted and unrooted trees, respectively, are indicated. Without
these flags, the onus is on the user to interpret the trees appropriately.

Second, Newick does not give a unique representation
for a tree. Consider the tree on the right. There are many
representations for this tree in both Newick and TASPI.
Possible TASPI representations include:

((F G) ((A B) (C (D E)))) and
((C (E D)) ((B A) (G F))).

BA

F
G E

D

C

To ensure a unique answer in our computations, we order the output with respect to an
ordering on the taxa. As far as we can tell, PAUP also does this. Thus, given an alpha-
betical ordering, we would order the tree above as(A B ((C (D E)) (F G))).

3 Consensus Analysis

3.1 Background

Consensus trees are defined by Felsenstein as “trees that summarize, as nearly as possi-
ble, the information contained in a set of trees whose tips are all the same species” [7].
The idea of a consensus tree was first proposed by Day in 1972 [1], and quickly fol-
lowed by other criteria for agreement between trees. In 1981, Margush and McMorris
defined the majority rule trees as we know them today. They proposed this form of con-
sensus as following best the “dictionary definition of consensus as ’general agreement’
or ’majority of opinion”’ [13]. It was also around this time that Sokal and Rohlf coined
the term “strict consensus” [16].

Consensus methods return a single tree, or an indication that no tree meeting that
method’s requirements exists. The types of consensus include Adams, maximum agree-
ment subtree, semi-strict, also called loose, combinable component or Bremer [7],
greedy, local, and Nelson-Page. See Bryant [4] for an overview of various consensus
methods and their interrelationships.

Two of the most common types of consensus trees are strict andmajority. Both of
these decide which branches in the input trees to keep, and then build a tree from the



resulting branches. Strict consensus requires that any branch in the consensus tree be
a branch in every input tree, while a majority tree only requires that any branch in the
consensus tree be a branch in at least some majority of the input trees. A threshold is
a parameter to majority consensus that determines what percentage is to be used as a
cutoff. Strict consensus is a special case of majority consensus; that is, it is a majority
consensus with a threshold of 100%. Strict and majority consensus algorithms always
return a tree, and have optimal O(kn) algorithms as described by Day [5] and Amenta
et al. [2] (where k is the number of trees and n is the number of taxa).

3.2 Our Algorithm

We compute a consensus through a sequence of steps. We first read the source file con-
taining the trees for which a consensus is to be computed. During the read process, we
identify every subtree for which we have already read an identical subtree; thus, instead
of creating a new data structure for the subtree just read, wereference the previously
created subtree. We next create a mapping from all subtrees to every parent in which
a subtree is referenced. Using this information, we computethe occurrence frequency
of every subtree. Finally, after we have selected the subtrees that match our selection
criteria, we construct the consensus answer. We give an example computation in Sub-
section 3.3.

In the following explanation, we use the notion of a ”multiset”, which is, intuitively
speaking, a kind of set in which the number of occurrences count. More formally, one
may regard a multiset as a function to the set of positive integers. IfA andB are mul-
tisets, thenA is a multisubset ofB if and only if for eachx in the domain ofA, x is in
the domain ofB andA(x) <= B(x).

For example, supposeu, v, andw are all distinct objects. LetA = <u, 1>,<v, 2>
and letB = <u, 2>, <v, 4>, <w, 5>, thenA is a multiset with one occurrence ofu
and two ofv. Thus,A(v) = 2. A is a multisubset ofB becauseA(u) <= B(u) andA(v)<= B(v).

One way to represent multisets is with lists in which the number of occurrences of an
element in a list represents the number of times that the element is in the corresponding
multiset. So for example, we may represent the exampleA above with the Lisp list(u v
v).

Several definitions will be useful.

– tip: a symbol or integer.
– tree: a tip or, recursively, a list of one or more trees.
– fringe: a list of all tips in a tree.
– subtree: If a and b are trees, thena is asubtreeof b if and only if either (1)a is b

or (2)b is a list anda is a subtree of a member ofb.
– proper subtreeIf a andb are trees,a is aproper subtreeof b iff a is a subtree ofb

anda is notb.
– domain: Thedomainof an association list (a list of key-value pairs) is the set of

the keys of the members of the association list.
– repleteAn association listdb is repleteif and only if for all t1 in the domain of

db, (1) t1 is a nontip tree and (2) ift2 is a nontip proper subtree oft1, thendb(t2)



is a list representing the multiset of all trees in the domainof db that havet2 as
a member, includingt1. Note that the multiset((a) (b) (a)) has the tree(a) as a
member twice.

– top levelA tree in the domain of a repletedb is said to betop levelif and only if it
is a proper subtree of no member of the domain ofdb.

To compute the consensus, our algorithm proceeds by:

1. Producing a replete association list of all of the subtrees in the original input,
2. Counting the frequencies of the non-tip subtrees,
3. Collecting the subtrees that appear as often as the designated majority threshold,

and finally,
4. Constructing the consensus tree.

Step one is accomplished by our functionreplete-trees-list-topwhich converts the
original input list of trees into a replete association list(database). This replete database
is a mapping from subtrees to every parent tree containing the subtree in question. Step
two is performed by the functionfringe-frequencieswhich counts the frequencies of
every subtree fringe in the replete database by iterating through the replete database.
Step three is collecting the subtrees that occur as often as the threshold. Finally, using
this collection of subtrees, functionbuild-term-top constructs the consensus answer.

Our functionreplete-trees-list-toptakes a listl of non-tip trees no member of which
is a proper subtree of another, such as a list of trees all withthe same set of taxa.
replete-trees-list-topreturns a replete association listdb such that (1)x is a member
of the domain ofdb if and only if x is a member ofl or is a non-tip proper subtree of
a member ofl and (2) ifx is in the domain ofdb, thendb(x) is an integer if and only
if x is a member ofl anddb(x) is the number of timesx occurs inl. For an example
execution ofreplete-trees-list-top, see Subsection 3.3.

Functionfringe-frequenciestakes a listl of nontip trees such that no member ofl is
a proper subtree of any other member ofl (such as that produced byreplete-trees-list-
top). fringe-frequenciesreturns a minimal length association list that pairs the fringe
fr of each nontip subtree of each member ofl with the number of occurrences inl of
non-tip subtrees of members ofl that have fringefr .

By scanning through the resulting association list, we justpick out the subtrees that
appear as often as the desired threshold. We have no need to store the actual number of
times any specific subtree appears, we simply collect the desired subtrees (fringes) into
a list.

The functionbuild-term-top takes two arguments. The first argument is a sorted
list l of the subtrees’ fringes;l is sorted using a lexicographic (normalization) order
that is based both on the internal tips and the size of the elements in each subtree.
All the subtrees inl must appear in the consensus answer. The second argument is a
normalization taxa listtx, that is used by our lexicographic ordering function so we
can produce a unique representation of any subtree that itself includes more than one
subtree. Remember, we represent each subtree as a list of subtrees, so to make the
representation unique we sort members of each subtree.build-term-top constructs a
consensus answer tree recursively by first building an answer of the first subtree ofl.
Once the first answer subtree is computed for the first elementin l, any (sub-)subtrees



required to build the first subtree are “crossed out” froml that remain to be processed,
and we continue with the next remaining element ofl until no entries remain.

3.3 Example

A B C D E F G A B C D E F G

AA AB B BC CD DE EF FG GE F GC D

(((A B) C) (D (E (F G))))

(((A B) C) ((D E) F G)) ((A (B C)) ((D E F) G))

((A (B C)) ((D E) (F G)))(((A B) C) ((D E) (F G)))

Fig. 1. A collection of trees together with their TASPI representations

Consider the five trees in Figure 1. The TASPI representationof these trees is the
input to the functionreplete-trees-list-top. This function returns the following associ-
ation list, where keys are in boldface:

((A B)((A B) C))
((((A B) C) ((D E) (F G))) . 1)
((D E)((D E) F G)

((D E) (F G)))
(((D E) F G) ((A B) C) ((D E) F G)))
((((A B) C) ((D E) F G)) . 1)
(((A B) C)(((A B) C) (D (E (F G))))

(((A B) C) ((D E) F G))
(((A B) C) ((D E) (F G))))

((F G) (E (F G))
((D E) (F G)))

((E (F G)) (D (E (F G))))
((D (E (F G))) (((A B) C) (D (E (F G)))))
((((A B) C) (D (E (F G)))) . 1)
((B C) (A (B C)))
((D E F) ((D E F) G))
(((D E F) G) ((A (B C)) ((D E F) G)))
(((A (B C)) ((D E F) G)) . 1)
((A (B C))((A (B C)) ((D E) (F G)))

((A (B C)) ((D E F) G)))
(((D E) (F G))((A (B C)) ((D E) (F G)))

(((A B) C) ((D E) (F G))))
(((A (B C)) ((D E) (F G))) . 1)



A subtree is the key for each element of the list, and the remainder of each entry
(the values) is either (1) trees or subtrees in which the key appears, or (2) an integer
representing the number of times this top level tree occurs in the input collection. Thus,
this is a replete association list. This association list isnow the input to the function
fringe-frequencies, which produces this list:

((A B) . 3) ((D E F). 1)
((D E) . 3) ((A B C) . 5)
((F G) . 3) ((D E F G) . 5)
((E F G) . 1) ((A B C D E F G) . 5)
((B C) . 2)

This frequency list has each fringe from our replete association list, together with an
integer. Remember, a fringe is simply a list of the tips in a tree, so we do not distinguish
between the fringe from(A (B C)) and the fringe from((A B) C). The integer
gives the number of trees that have a subtree with this fringe.

We are now prepared to sweep through this list and record the fringes that occur at
least as often as the threshold for both a strict and majorityconsensus. In this example,
for the strict majority we collect those fringes that occur 5times, and for the majority,
we collect those that occur at least 3 times. This gives us:

((A B C D E F G) . 5)
((D E F G) . 5)
((A B C) . 5)

and

((A B C D E F G) . 5)
((D E F G) . 5)
((A B C) . 5)
((F G) . 3)
((D E) . 3)
((A B) . 3)

Finally, the functionbuild-term-top uses either the strict or majority fringes to-
gether with a normalization list such as(A B C D E F G) to create the strict and
majority consensus trees. In this case we create((A B C) (D E F G)) and
(((A B) C) ((D E) (F G))).

4 Experiments

4.1 Data Sets

We first obtained collections of phylogenetic trees from Dr.Usman Roshan and Dr.
Tiffani Williams. These trees were created by PAUP and TNT performing maximum
parsimony searches using biomolecular data sets. We have analyzed hundreds of these
collections though we only present the results from ten collections. The results pre-
sented are representative of the full set. We also generatedsets of trees using Mr-
Bayes [11] that had more taxa than either PAUP or TNT can even read; these data
sets were created by the third author.

Table 1 gives characteristic information for each collection we present, namely, the
numbers of taxa per tree, the number of trees in the collection, and the source of the
collection.



Table 1.Data set statistics

Data Set NumberData Set NameNumber of TaxaNumber of TreesSource

1 Dom 2org 8506 47 Roshan
2 sRNA mito 2587 369 Roshan
3 Will Euk 2000 537 Roshan
4 Three567 567 2505 Williams
5 Actino 4583 301 Roshan
6 Ocho854 854 2505 Williams
7 John921 921 2505 Williams
8 t10000 500 10000 Roshan
9 Will2000 2000 2505 Williams
10 Mari2594 2594 2505 Williams
11 20000seqs 20000 1001 Nelesen
12 50000seqs 50000 1001 Nelesen

4.2 Methods

The files we obtained often contained comments about how the trees were generated,
parsimony scores, or other output from their production. TASPI does not store this
information, so we began by creating files that contained only the topological tree in-
formation so that we could accurately assess our compression.

Next, we created a suite of Perl scripts that take these original files and generate
appropriate input files for PAUP and TNT. In each case, the taxa list is created from the
first tree in the file, and the trees themselves are collected.Then, for PAUP, a Nexus file
is produced with the taxa list, the trees, and a PAUP block containing the commands to
compute consensus. Similarly for TNT, an appropriate inputfile is created with the taxa
list, trees, and commands to compute consensus.

TASPI reads the source files directly. As with PAUP and TNT, TASPI can be run
both interactively, where we submit one command at a time, orusing an input file
containing all commands needed for the desired computation.

Using PAUP, TNT and TASPI, we measured the time it took the software to read
each collection, and the time needed to compute both a strictand majority consensus
tree. For PAUP, we produced a strict consensus tree using itsmajority consensus com-
mand with percent set to 100 since the strict consensus command took considerably
longer to do the same calculation. Also, by default, TNT doesnot include branches that
are not well supported by the data used to create trees. However, we were not including
any initial data other than the trees themselves, so we turned this feature off using the
commandcollapse notemp.

Our experiments, where we were able to compare PAUP, TNT and TASPI, were
all performed on an Intel Pentium 4 CPU 3.4 Ghz computer. However, for the two
largest data sets, we used an AMD Opteron CPU 2.4 Ghz computer, which has similar
computational performance, but more physical memory. Either computer produces the
same compressed files. The largest files are too large to be read by either PAUP or TNT
due to internal limitations on the number of taxa allowed in atree.



1 2 3 4 5 6 7 8 9 10 11 12
Data Set

10K

100K

1M

10M

100M

1G

S
iz

e 
(b

yt
es

)

Newick 
TASPI.bhz
Newick.bz2
TASPI.bhz.bz2

Fig. 2. Storage requirements

5 Results

The first major contribution of TASPI is the condensed formatin which trees can be
stored, while maintaining structural information. Figure2 shows four sets of sizes for
each of our benchmark data sets. The Newick data represents the size of the trees as
they were given to us, after removing information that TASPIdoes not currently store
(e.g. comments and branch lengths) and Newick.bz2 illustrates the size of the file after
compression using the algorithm implemented in bzip2 [15].TASPI.bhz displays the
size of the file after compression using the Boyer-Hunt method. Notice that this file
is still in ASCII, but with redundancies removed. Unlike most compression methods,
all the information present in the original files is still immediately accessible, without a
decompression step. Finally, TASPI.bhz.bz2 shows the sizeof the file if it is compressed
using the Boyer-Hunt method and then bzip2 is applied.

Using the compressed TASPI format saves considerable memory space. For the data
sets we present, the storage requirement for the TASPI format ranges from 2% of the
storage requirement of Newick for the t10000 (data set 8) collection, up to 26% for the
Dom 2org (data set 1) collection. Over all data sets, the compressed TASPI format uses
just 5% of the storage requirement of the Newick format.

The amount of storage space saved is dependent on the amount of similarity be-
tween input trees. The more similarity between input trees (i.e. the greater the number
of common subtrees) the more effective the compression. It is known in the phylo-
genetic community that trees derived from independent datasets are unlikely to have
common structure [4]. However, it appears that collectionsof trees such as those we
are presenting do have common structure since our compression was able to reduce the
storage requirement for these collections of trees. Further, the greater the number of
trees in the collection, the more likely there will be commonstructure.

It is readily apparent that bzip2 produces smaller files thanthe Boyer-Hunt compres-
sion on the smaller collections of trees, but for the very large data sets, the Boyer-Hunt
compression produces smaller files than bzip2. Further, theBoyer-Hunt files are ASCII,



1 2 3 4

5
10
15
20

T
im

e 
(s

ec
s)

PAUP read
TNT read

(a) Data sets 1-4

5 6 7 8

10
20
30
40

T
im

e 
(s

ec
s)

Read Times

(b) Data sets 5-8

9 10 11 12
0

500
1000
1500
2000
2500

T
im

e 
(s

ec
s)

TASPI read
TASPI.bhz read

(c) Data sets 9-12

1 2 3 4

20

40

60

T
im

e 
(s

ec
s)

PAUP total
TNT total

(d) Data sets 1-4

5 6 7 8

100

200

300

T
im

e 
(s

ec
s)

Total Times

(e) Data sets 5-8

9 10 11 12

0.5
1

1.5
2

2.5

T
im

e 
(h

ou
rs

)

TASPI total
TASPI.bhz total

(f) Data sets 9-12

Fig. 3. Time to read a collection of trees (a-c) and compute strict and majority consensus trees
with PAUP, TNT and TASPI (d-f)

and thus are ready to be used as input to analysis, such as consensus. If the data are not
currently required as input to a post-tree analysis, compressed TASPI is even more use-
ful. Boyer-Hunt files can be further compressed using bzip2 to produce even smaller
files than those produced by using bzip2 on the original Newick files for sharing and
transmission purposes. For our data sets, using the Boyer-Hunt compression together
with bzip2 produces files that require 1% of the storage spaceof Newick.

The second major contribution of TASPI is its ability to readcollections of trees
quickly. Figure 3(a-c) shows average read times in seconds for each of our benchmark
collections of trees. Notice that while reading trees with TNT or PAUP requires compa-
rable times, reading the Boyer-Hunt compressed trees with TASPI is by far the fastest
time for any collection. In fact, neither PAUP nor TNT is ableto read the last two data
sets. For the data sets which PAUP and TNT can read, reading the compressed TASPI
format takes just 2% of the time to read the Newick files with PAUP. This means that
loading these files takes more than 48 times longer when read with PAUP or TNT rather



than using TASPI to read their compressed counterpart. Evenreading the source files
is faster in TASPI than it is in either PAUP or TNT – using TASPIto read the Newick
files takes just 16% of the time needed to read the same files with PAUP or TNT.

The third major contribution of TASPI is a consensus implementation with im-
proved performance. Figure 3(d-f) shows the time to computeconsensus with each of
TASPI, TNT and PAUP. In each case, both a strict consensus tree and a majority con-
sensus tree are computed. Notice that the time to compute consensus includes the time
to read the collection of trees since the trees are the input to a consensus calculation.
Thus, we show both the time to compute consensus when readingcompressed trees and
also the time when reading Newick trees.

In all cases, the result TASPI produces is identical to that produced by PAUP (when
PAUP is able to read the input), but TASPI is faster. For the data sets PAUP and TNT
can process that we present, using TASPI to compute consensus with input trees in
compressed TASPI format requires 5% of the time it takes PAUPto compute consensus
with input trees in Newick format. If we factor out the improved reading time, TASPI
computes these consensus trees in about 10% of the time it takes PAUP to do the same
computation.

6 Conclusion

In phylogenetics, the ability to store large numbers of trees is increasingly important.
Bayesian methods, which use Monte Carlo Markov Chains, are visiting more trees than
previous methods, and are growing in popularity. Biologists are also choosing to retain
additional trees visited during a search. We have shown thatour format provides de-
creased storage requirements, while maintaining data accessibility for further process-
ing. Further, our format together with techniques like memoization allows for improved
performance in post-tree analysis. We showed this using strict and majority consensus.

The use of post-tree analyses are also becoming more prevalent. Williams et al.
propose using the rate of change of a consensus tree as a stopping criterion for heuris-
tic maximum parsimony searches, which requires the computation of a consensus tree
multiple times over the course of an analysis [19]. We have given a new format for
collections of phylogenetic trees that would make this feasible. In addition, our replete
database, the output of the first step in our consensus algorithm, provides a possible
starting point for phylogenetic databases such as those proposed in [14].

In the future we hope to investigate the changes necessary tomake our consensus
algorithm incremental. This would allow online consensus analysis as proposed in [3].
We would also like to look at even larger collections of trees(larger both in number
of trees and number of taxa) and consider application of our techniques to supertree
methods.

Acknowledgment

This work was funded in part by an ITR from the National Science Foundation (EF-
0331453).



References

1. E. N. Adams. Consensus techniques and the comparison of taxonomic trees.Systematic
Zoology, 21:390–397, 1972.

2. Nina Amenta, Katherine St. John, and Frederick Clarke. A linear-time majority tree al-
gorithm. In Gary Benson and Roderic D. M. Page, editors,Proc. of the 3rd International
Workshop on Algorithms in Bioinformatics (WABI 2003), volume 2812 ofLecture Notes in
Computer Science, pages 216–227. Springer-Verlag, 2003.

3. Tanya Y. Berger-Wolf. Online consensus and agreement of phylogenetic trees. In I. Jonassen
and J. Kim, editors,Proc. of the 4th International Workshop on Algorithms in Bioinformatics
(WABI 2004), volume 3240 ofLecture Notes in Computer Science, pages 216–227. Springer-
Verlag, 2004.

4. David Bryant. A classification of consensus methods for phylogenetics. In M. Janowitz, F.J.
Lapointe, F. McMorris, B. Mirkin, and F. Roberts, editors,Bioconsensus, DIMACS Series in
Discrete Mathematics and Theoretical Computer Science. DIMACS-AMS, 2001.

5. William H. E. Day. Optimal algorithms for comparing treeswith labeled leaves.Journal of
Classification, 2(1):7–28, 1985.

6. J. Felsenstein. The newick tree format. http://evolution.genetics.
washington.edu/phylip/newicktree.html, 1986.

7. Joseph Felsenstein.Inferring Phylogenies. Sinauer Associates, Inc., 2004.
8. P.A. Goloboff, J.S. Farris, and K.C. Nixon. TNT (Tree analysis using new technology)

(BETA) ver. 1.0. Published by the authors, Tucumán, Argentina, 2000.
9. E. Goto, T. Soma, N. Inade, T. Ida, M. Idesawa, K. Hiraki, M.Suzuki, K. Shimizu, and

B. Philpov. Design of a lisp machine - flats. InLFP ’82: Proceedings of the 1982 ACM
Symposium on LISP and functional programming, pages 208–215, 1982.

10. David M. Hillis, Craig Moritz, and Barbara K. Mable, editors.Molecular Sytematics. Sinauer
Associates, Inc., Sunderland, Massachusetts, 2nd edition, 1996.

11. J. P Huelsenbeck and F. Ronquist. MRBAYES: Bayesian inference of phylogeny.Bioinfor-
matics, 17:754–755, 2001.

12. Matt Kaufmann, Pete Manolios, and J. S. Moore.Computer-Aided Reasoning: An Approach.
Kluwer Academic Publishers, 2000.

13. T. Margush and F.R. McMorris. Consensus n-trees.Bulletin of Mathematical Biology,
43(2):239–244, 1981.

14. L. Nakhleh, D. Miranker, F. Barbancon, W.H. Piel, and M.J. Donoghue. Requirements of
phylogenetic databases. InProceedings of the Third IEEE Symposium on Bioinformatics and
Bioengineering (BIBE 2003), pages 141–148. IEEE Press, 2003.

15. Julien Seward. bzip2.http://sources.redhat.com/bzip2/, 2002.
16. Robert R. Sokal and F. James Rohlf. Taxonomic Congruencein the Leptopodomorpha Re-

Examined.Systematic Zoology, 30(3):309–325, 1981.
17. Guy L. Steele.Common Lisp the Language, chapter 22.1.4. Digital Press, 2nd edition, 1990.
18. D. L. Swofford.PAUP*: Phylogenetic Analysis Using Parsimony (and Other Methods) 4.0

Beta. Sinauer Associates, Sunderland, Massachusetts, 2002.
19. Tiffani Williams, Tanya Berger-Wolf, Bernard Moret, Usman Roshan, and Tandy Warnow.

The relationship between maximum parsimony score and phylogenetic tree topologies. Per-
sonal Communication.

20. J. Ziv and A. Lempel. A universal algorithm for sequential data compression.IEEE Trans-
actions on Information Theory, 23:337–342, 1977.


