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i Pl th le...
 Approx. 50 species, whole genomes us many many other people

e 8000+ genes, UCEs
e Gene sequence alignments and trees computed using SATé (Liu et al.,
Science 2009 and Systematic Biology 2012)

Challenges:
Maximum likelihood on multi-million-site sequence alignments
Massive gene tree incongruence




Phylogeny
(evolutionary tree)

From the Tree of the Life Website,
University of Arizona



Phylogenomics
(Phylogenetic estimation from whole genomes
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Using multiple genes
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Concatenation
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Red gene tree # species tree
(green gene tree okay)

/\ species tree
gene lree



Gene Tree Incongruence

* Gene trees can differ from the species tree
due to:

— Duplication and loss

— Horizontal gene transfer
— Incomplete lineage sorting (ILS)



Lineage Sorting

* Population-level process, also called the
“Multi-species coalescent” (Kingman, 1982)

* Gene trees can differ from species trees due to
short times between speciation events or large
population size; this is called “Incomplete Lineage
Sorting” or “Deep Coalescence”.



The Coalescent

Courtesy James Degnan
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Courtesy James Degnan

tree
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Gene tree



Species tree estimation: difficult,
even for small datasets!

From the Tree of the Life Website,
University of Arizona



Incomplete Lineage Sorting (ILS)

e 2000+ papersin 2013 alone
* Confounds phylogenetic analysis for many groups:
— Hominids
— Birds
— Yeast
— Animals
— Toads
— Fish
— Fungi
 There is substantial debate about how to analyze
phylogenomic datasets in the presence of ILS.



Two competing approaches
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How to compute a species tree?



How to compute a species tree?

Techniques:
MDC?
Most frequent gene tree?
Consensus of gene trees?
Other?



Key observation:
Under the multi-species coalescent model, the species tree
defines a probability distribution on the gene trees

Courtesy James Degnan



Statistical Consistency

error

Data



Statistical Consistency

error

Data

Data are gene trees, presumed to be randomly
sampled true gene trees.




Statistically consistent under ILS?

MP-EST (Liu et al. 2010): maximum likelihood
estimation of rooted species tree — YES

BUCKy-pop (Ané and Larget 2010): quartet-based
Bayesian species tree estimation —YES

MDC - NO
Greedy — NO
Concatenation under maximum likelihood — open

MRP (supertree method) — open



Two competing approaches
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The Debate:
Concatenation vs. Coalescent Estimation

. In favor of coalescent-based estimation

— Statistical consistency guarantees
— Addresses gene tree incongruence resulting from ILS
— Some evidence that concatenation can be positively misleading

. In favor of concatenation

— Reasonable results on data

— High bootstrap support

— Summary methods (that combine gene trees) can have poor
support or miss well-established clades entirely

— Some methods (such as *BEAST) are computationally too
intensive to use



|Is Concatenation Evil?

* Joseph Heled: * John Gatesy
— YES — No

* Data needed to held understand existing
methods and their limitations

e Better methods are needed



Results on 11-taxon datasets with weak ILS
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5—genes 10—genes 25—genes 50—-genes

*BEAST more accurate than summary methods (MP-EST, BUCKYy, etc)
CA-ML: (concatenated analysis) most accurate

Datasets from Chung and Ané, 2011
Bayzid & Warnow, Bioinformatics 2013



Results on 11-taxon datasets with strongILS
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S—genes 10—genes 25—genes 50—-genes

*BEAST more accurate than summary methods (MP-EST, BUCKYy, etc)
CA-ML: (concatenated analysis) also very accurate

Datasets from Chung and Ané, 2011
Bayzid & Warnow, Bioinformatics 2013
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Gene Tree Estimation:
*BEAST vs. Maximum Likelihood

0.5

0.5

04

| 8 genes
H » genes

Average FN rate
Average FN rate

*BEAST FastTree RAxML *BEAST FastTree RAXxML

11-taxon weakILS datasets 17-taxon (very high ILS) datasets

*BEAST produces more accurate gene trees than ML on gene sequence alignments

11-taxon datasets from Chung and Ané, Syst Biol 2012
17-taxon datasets from Yu, Warnow, and Nakhleh, JCB 2011



Impact of Gene Tree Estimation Error on MP-EST

0.25

0.2 .

0.15 *

W true
[ estimated

Average FN rate

0.1 F T .

0.05 - .

MP-EST

MP-EST has no error on true gene trees, but
MP-EST has 9% error on estimated gene trees

Datasets: 11-taxon strongILS conditions with 50 genes

Similar results for other summary methods (MDC, Greedy, etc.).



Problem: poor gene trees

 Summary methods combine estimated gene
trees, not true gene trees.



Problem: poor gene trees

Summary methods combine estimated gene
trees, not true gene trees.

The individual gene sequence alignments in the
11-taxon datasets have poor phylogenetic
signal, and result in poorly estimated gene
trees.



Problem: poor gene trees

e Summary methods combine estimated gene
trees, not true gene trees.

 The individual gene sequence alignments in the
11-taxon datasets have poor phylogenetic
signal, and result in poorly estimated gene
trees.

e Species trees obtained by combining poorly
estimated gene trees have poor accuracy.



TYPICAL PHYLOGENOMICS PROBLEM:
many poor gene trees

e Summary methods combine estimated gene
trees, not true gene trees.

 The individual gene sequence alignments in the
11-taxon datasets have poor phylogenetic
signal, and result in poorly estimated gene
trees.

e Species trees obtained by combining poorly
estimated gene trees have poor accuracy.



Addressing gene tree estimation error

* Get better estimates of the gene trees

* Restrict to subset of estimated gene trees
* Model error in the estimated gene trees

* Modify gene trees to reduce error

* “Bin-and-conquer”



Bin-and-Conquer?

Assign genes to “bins”, creating “supergene alignments”

Estimate trees on each supergene alignment using
maximum likelihood

Combine the supergene trees together using a summary
method



Bin-and-Conquer?

1. Assign genes to “bins’, creating “supergene alignments”

2. Estimate trees on each supergene alignment using
maximum likelihood

3. Combine the supergene trees together using a summary
method

Variants:

* Naive binning (Bayzid and Warnow, Bioinformatics 2013)

e Statistical binning (Mirarab, Bayzid, Boussau, and
Warnow, submitted)



Avian Phylogenomics Project

e Approx. 50 species, whole genomes

e 8000+ genes, UCEs

e Gene sequence alignments and trees computed using SATé (Liu et al.,
Science 2009 and Systematic Biology 2012)

e Approximately 14,000 “gene trees”, all with very low support (exons
average bootstrap support about 25%, introns about 47%)

e To concatenate or not to concatenate?



Avian Phylogeny

e GTRGAMMA Maximum
likelihood analysis (RAXML) of
37 million basepair alignment
(exons, introns, UCEs) — highly
resolved tree with near 100%
bootstrap support.

* More than 17 years of
compute time, and used 256
GB. Run at HPC centers.

Avian Phylogenomics Project, in preparation



Avian Phylogeny

GTRGAMMA Maximum  Unbinned MP-EST on 14000+
likelihood analysis (RAXML) of genes: highly incongruent with
37 million basepair alignment the concatenated maximum
(exons, introns, UCEs) — highly likelihood analysis, poor
resolved tree with near 100% bootstrap support.

bootstrap support.

More than 17 years of
compute time, and used 256
GB. Run at HPC centers.

Avian Phylogenomics Project, in preparation



Avian Phylogeny

GTRGAMMA Maximum
likelihood analysis (RAXML) of
37 million basepair alignment
(exons, introns, UCEs) — highly
resolved tree with near 100%
bootstrap support.

More than 17 years of
compute time, and used 256
GB. Run at HPC centers.

Unbinned MP-EST on 14000+
genes: highly incongruent with
the concatenated maximum
likelihood analysis, poor
bootstrap support.

Statistical binning version of
MP-EST on 14000+ gene trees
— highly resolved tree, largely
congruent with the
concatenated analysis, good
bootstrap support

Avian Phylogenomics Project, in preparation



To consider

e Binning reduces the amount of data (number of gene
trees) but can improve the accuracy of individual
“supergene trees”. The response to binning differs
between methods. Thus, there is a trade-off between
data quantity and quality, and not all methods respond
the same to the trade-off.

 We know very little about the impact of data error on
methods. We do not even have proofs of statistical
consistency in the presence of data error.
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Quantifying Error
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Avian Simulation — 14,000 genes

e MP-EST:
o Unbinned ~11.1% error

O
e Greedy:
o Unbinned ~ 26.6% error

O

® 8250 exon-like genes (27% avg. bootstrap support)
e 3600 UCE-like genes (37% avg. bootstrap support)
e 2500 intron-like genes (51% avg. bootstrap support)



Avian Simulation — 14,000 genes

e MP-EST:
o Unbinned ~11.1% error
o Binned ~ 6.6% error
e Greedy:
o Unbinned ~ 26.6% error
o Binned ~13.3% error

® 8250 exon-like genes (27% avg. bootstrap support)
e 3600 UCE-like genes (37% avg. bootstrap support)
e 2500 intron-like genes (51% avg. bootstrap support)



Avian Phylogeny

GTRGAMMA Maximum  Unbinned MP-EST on 14000+
likelihood analysis (RAXML) of genes: highly incongruent with
37 million basepair alignment the concatenated maximum
(exons, introns, UCEs) — highly likelihood analysis, poor
resolved tree with near 100% bootstrap support.

bootstrap support.

More than 17 years of
compute time, and used 256
GB. Run at HPC centers.

Avian Phylogenomics Project, in preparation



Basic Questions

Is the model tree identifiable?

Which estimation methods are statistically
consistent under this model?

How much data does the method need to
estimate the model tree correctly (with high
probability)?

What is the computational complexity of an
estimation problem?



Additional Statistical Questions

* Trade-off between data quality and quantity
* Impact of data selection
* Impact of data error

* Performance guarantees on finite data (e.g.,

prediction of error rates as a function of the input
data and method)

We need a solid mathematical framework for these
problems.



Summary

« DCM1-NJ: an absolute fast converging (afc) method,
uses chordal graph theory and probabilistic analysis
of algorithms to prove performance guarantees

* Binning: species tree estimation from multiple genes,
can improve coalescent-based species tree
estimation methods.

* New questions in phylogenetic estimation about
impact of error in input data.



Metazoa Dataset from
Salichos & Rokas - Nature 2013

225 genes and 21 species

® UnBinned MP-EST compared to Concatenation using RAXML
o Poor bootstrap support
o Substantial conflict with concatenation (red is conflict - green/black is congruence)

o Strongly rejects (Tunicate,Craniate), a subgroup that is strongly supported in the

literature [Bourlat, Sarah J., et al Nature 444.7115 (2006); Delsuc, Frédéric, et al. Genesis 46.11 (2008); Singh, Tiratha R., et al. BMC
genomics 10.1 (2009): 534.]
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Binned vs. unbinned analyses

75%-threshold for binning
Number of species: 21 for both

Number of “genes”
— Unbinned: 225 genes
— Binned:17 supergenes

Gene tree average bootstrap support

— Unbinned: 47%

— Binned: 78%

Species tree bootstrap support

— Unbinned: avg 83%, 11 above 75%, 10 above 90%
— Binned: avg 89%, 15 above 75%, 12 above 90%



Naive binning vs. unbinned: 50 genes
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Bayzid and Warnow, Bioinformatics 2013
11-taxon stronglLS datasets with 50 genes, 5 genes per bin



Naive binning vs. unbinned, 100 genes
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*BEAST did not converge on these datasets, even with 150 hours.
With binning, it converged in 10 hours.



Naive binning vs. unbinned: 50 genes
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Bayzid and Warnow, Bioinformatics 2013
11-taxon stronglLS datasets with 50 genes, 5 genes per bin



Avian Simulation study — binned vs.

unbinned, and RAXML
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Mammals Simulation
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Tree Error

Avian Simulation

1X, 200 genes, 250bp

1X, 200 genes, 500bp

1X, 200 genes, 1000bp

30% -

20% =

10% -

0% -

1X, 600 genes, Mixed

0.5X, 200 genes, 500bp

2X, 200 genes, 500bp

30% -

20% -

10% -

0% -

Greedy
MRP
MP-EST |

RAxXML 7

Greedy
MRP
MP-EST ]|
RAXML |

Greedy 7
MRP
MP-EST 7
RAXML |

- Unbinned . Statistical Binning . Concatenation




