

From Gene Trees to Species Trees

Tandy Warnow
The University of Texas at Austin

Avian Phylogenomics Project

Erich Jarvis, HHMI

MTP Gilbert, Copenhagen

G Zhang, BGI

T. Warnow UT-Austin

S. Mirarab Md. S. Bayzid, UT-Austin UT-Austin

Plus many many other people...

- Approx. 50 species, whole genomes
- 8000+ genes, UCEs
- Gene sequence alignments and trees computed using SATé (Liu et al., Science 2009 and Systematic Biology 2012)

Challenges:

Maximum likelihood on multi-million-site sequence alignments Massive gene tree incongruence

Phylogeny (evolutionary tree)

From the Tree of the Life Website, University of Arizona

Phylogenomics

(Phylogenetic estimation from whole genomes)

Using multiple genes

	gene 1	_			gene 3
S_1	TCTAATGGAA		ı		900
S_2	GCTAAGGGAA		gene 2	S_1	TATTGATACA
S_3	TCTAAGGGAA		90110 2	S_3	TCTTGATACC
S_4	TCTAACGGAA	S_4	GGTAACCCTC	S_4	TAGTGATGCA
S ₇	TCTAATGGAC	S ₅	GCTAAACCTC	S ₇	TAGTGATGCA
S_8	TATAACGGAA	S_6	GGTGACCATC	S_8	CATTCATACC
		S ₇	GCTAAACCTC		

Concatenation

gene 1 gene 2 gene 3

 S_1 TCTAATGGAA ???????? TATTGATACA GCTAAGGGAA ????????????????????? TCTAAGGGAA ???????? TCTTGATACC TCTAACGGAA GGTAACCCTC TAGTGATGCA ???????? GCTAAACCTC ??????????? ????????? GGTGACCATC ?????????? TCTAATGGAC GCTAAACCTC TAGTGATGCA TATAACGGAA ???????? CATTCATACC

 S_2

 S_3

 S_4

S₅

 S_6

 S_7

 S_8

Red gene tree ≠ species tree (green gene tree okay)

Gene Tree Incongruence

- Gene trees can differ from the species tree due to:
 - Duplication and loss
 - Horizontal gene transfer
 - Incomplete lineage sorting (ILS)

Lineage Sorting

- Population-level process, also called the "Multi-species coalescent" (Kingman, 1982)
- Gene trees can differ from species trees due to short times between speciation events or large population size; this is called "Incomplete Lineage Sorting" or "Deep Coalescence".

The Coalescent

Courtesy James Degnan

Gene tree in a species tree

Courtesy James Degnan

Species tree estimation: difficult, even for small datasets!

From the Tree of the Life Website, University of Arizona

Incomplete Lineage Sorting (ILS)

- 2000+ papers in 2013 alone
- Confounds phylogenetic analysis for many groups:
 - Hominids
 - Birds
 - Yeast
 - Animals
 - Toads
 - Fish
 - Fungi
- There is substantial debate about how to analyze phylogenomic datasets in the presence of ILS.

Two competing approaches

How to compute a species tree?

How to compute a species tree?

Techniques:

MDC?

Most frequent gene tree?

Consensus of gene trees?

Other?

Key observation:

Under the multi-species coalescent model, the species tree defines a *probability distribution on the gene trees*

Courtesy James Degnan

Statistical Consistency

Statistical Consistency

Data are gene trees, presumed to be randomly sampled <u>true gene trees</u>.

Statistically consistent under ILS?

- MP-EST (Liu et al. 2010): maximum likelihood estimation of rooted species tree – YES
- BUCKy-pop (Ané and Larget 2010): quartet-based Bayesian species tree estimation –YES
- MDC NO
- Greedy NO
- Concatenation under maximum likelihood open
- MRP (supertree method) open

Two competing approaches

The Debate: Concatenation vs. Coalescent Estimation

- In favor of coalescent-based estimation
 - Statistical consistency guarantees
 - Addresses gene tree incongruence resulting from ILS
 - Some evidence that concatenation can be positively misleading
- In favor of concatenation
 - Reasonable results on data
 - High bootstrap support
 - Summary methods (that combine gene trees) can have poor support or miss well-established clades entirely
 - Some methods (such as *BEAST) are computationally too intensive to use

Is Concatenation Evil?

- Joseph Heled:
 - YES

- John Gatesy
 - No

- Data needed to held understand existing methods and their limitations
- Better methods are needed

Results on 11-taxon datasets with weak ILS

*BEAST more accurate than summary methods (MP-EST, BUCKy, etc) CA-ML: (concatenated analysis) most accurate

Datasets from Chung and Ané, 2011 Bayzid & Warnow, Bioinformatics 2013

Results on 11-taxon datasets with strongILS

*BEAST more accurate than summary methods (MP-EST, BUCKy, etc)
CA-ML: (concatenated analysis) also very accurate

Datasets from Chung and Ané, 2011 Bayzid & Warnow, Bioinformatics 2013

Gene Tree Estimation: *BEAST vs. Maximum Likelihood

11-taxon weakILS datasets

17-taxon (very high ILS) datasets

*BEAST produces more accurate gene trees than ML on gene sequence alignments

11-taxon datasets from Chung and Ané, Syst Biol 2012

17-taxon datasets from Yu, Warnow, and Nakhleh, JCB 2011

Impact of Gene Tree Estimation Error on MP-EST

MP-EST has no error on true gene trees, but MP-EST has 9% error on estimated gene trees

Datasets: 11-taxon strongILS conditions with 50 genes

Similar results for other summary methods (MDC, Greedy, etc.).

Problem: poor gene trees

• Summary methods combine estimated gene trees, not true gene trees.

Problem: poor gene trees

- Summary methods combine estimated gene trees, not true gene trees.
- The individual gene sequence alignments in the 11-taxon datasets have poor phylogenetic signal, and result in poorly estimated gene trees.

Problem: poor gene trees

- Summary methods combine estimated gene trees, not true gene trees.
- The individual gene sequence alignments in the 11-taxon datasets have poor phylogenetic signal, and result in poorly estimated gene trees.
- Species trees obtained by combining poorly estimated gene trees have poor accuracy.

TYPICAL PHYLOGENOMICS PROBLEM: many poor gene trees

- Summary methods combine estimated gene trees, not true gene trees.
- The individual gene sequence alignments in the 11-taxon datasets have poor phylogenetic signal, and result in poorly estimated gene trees.
- Species trees obtained by combining poorly estimated gene trees have poor accuracy.

Addressing gene tree estimation error

- Get better estimates of the gene trees
- Restrict to subset of estimated gene trees
- Model error in the estimated gene trees
- Modify gene trees to reduce error
- "Bin-and-conquer"

Bin-and-Conquer?

- 1. Assign genes to "bins", creating "supergene alignments"
- 2. Estimate trees on each supergene alignment using maximum likelihood
- 3. Combine the supergene trees together using a summary method

Bin-and-Conquer?

- 1. Assign genes to "bins", creating "supergene alignments"
- 2. Estimate trees on each supergene alignment using maximum likelihood
- 3. Combine the supergene trees together using a summary method

Variants:

- Naïve binning (Bayzid and Warnow, Bioinformatics 2013)
- Statistical binning (Mirarab, Bayzid, Boussau, and Warnow, submitted)

Avian Phylogenomics Project

- Approx. 50 species, whole genomes
- 8000+ genes, UCEs
- Gene sequence alignments and trees computed using SATé (Liu et al.,
 Science 2009 and Systematic Biology 2012)
- Approximately 14,000 "gene trees", all with very low support (exons average bootstrap support about 25%, introns about 47%)

To concatenate or not to concatenate?

Avian Phylogeny

- GTRGAMMA Maximum likelihood analysis (RAxML) of 37 million basepair alignment (exons, introns, UCEs) — highly resolved tree with near 100% bootstrap support.
- More than 17 years of compute time, and used 256
 GB. Run at HPC centers.

Avian Phylogeny

- GTRGAMMA Maximum likelihood analysis (RAxML) of 37 million basepair alignment (exons, introns, UCEs) — highly resolved tree with near 100% bootstrap support.
- Unbinned MP-EST on 14000+ genes: highly incongruent with the concatenated maximum likelihood analysis, poor bootstrap support.

 More than 17 years of compute time, and used 256 GB. Run at HPC centers.

Avian Phylogeny

- GTRGAMMA Maximum likelihood analysis (RAxML) of 37 million basepair alignment (exons, introns, UCEs) — highly resolved tree with near 100% bootstrap support.
- More than 17 years of compute time, and used 256 GB. Run at HPC centers.

- Unbinned MP-EST on 14000+ genes: highly incongruent with the concatenated maximum likelihood analysis, poor bootstrap support.
- Statistical binning version of MP-EST on 14000+ gene trees

 highly resolved tree, largely congruent with the concatenated analysis, good bootstrap support

To consider

 Binning reduces the amount of data (number of gene trees) but can improve the accuracy of individual "supergene trees". The response to binning differs between methods. Thus, there is a trade-off between data quantity and quality, and not all methods respond the same to the trade-off.

 We know very little about the impact of data error on methods. We do not even have proofs of statistical consistency in the presence of data error.

Warnow Laboratory

PhD students: Siavash Mirarab*, Nam Nguyen, and Md. S. Bayzid**

Undergrad: Keerthana Kumar

Lab Website: http://www.cs.utexas.edu/users/phylo

Funding: Guggenheim Foundation, Packard, NSF, Microsoft Research New England, David Bruton Jr. Centennial Professorship, and TACC (Texas Advanced Computing Center)

TACC and UTCS computational resources

- * Supported by HHMI Predoctoral Fellowship
- ** Supported by Fulbright Foundation Predoctoral Fellowship

Quantifying Error

TRUE TREE

FN: false negative

(missing edge)

FP: false positive (incorrect edge)

50% error rate

DNA SEQUENCES

INFERRED TREE

Avian Simulation – 14,000 genes

MP-EST:

Unbinned ~ 11.1% error

0

• Greedy:

Unbinned ~ 26.6% error

0

- 8250 exon-like genes (27% avg. bootstrap support)
- 3600 UCE-like genes (37% avg. bootstrap support)
- 2500 intron-like genes (51% avg. bootstrap support)

Avian Simulation – 14,000 genes

MP-EST:

- Unbinned ~ 11.1% error
- Binned ~ 6.6% error

Greedy:

- Unbinned ~ 26.6% error
- Binned ~ 13.3% error
- 8250 exon-like genes (27% avg. bootstrap support)
- 3600 UCE-like genes (37% avg. bootstrap support)
- 2500 intron-like genes (51% avg. bootstrap support)

Avian Phylogeny

- GTRGAMMA Maximum likelihood analysis (RAxML) of 37 million basepair alignment (exons, introns, UCEs) — highly resolved tree with near 100% bootstrap support.
- Unbinned MP-EST on 14000+ genes: highly incongruent with the concatenated maximum likelihood analysis, poor bootstrap support.

 More than 17 years of compute time, and used 256 GB. Run at HPC centers.

Basic Questions

- Is the model tree identifiable?
- Which estimation methods are statistically consistent under this model?
- How much data does the method need to estimate the model tree correctly (with high probability)?
- What is the computational complexity of an estimation problem?

Additional Statistical Questions

- Trade-off between data quality and quantity
- Impact of data selection
- Impact of data error
- Performance guarantees on finite data (e.g., prediction of error rates as a function of the input data and method)

We need a solid mathematical framework for these problems.

Summary

- DCM1-NJ: an absolute fast converging (afc) method, uses chordal graph theory and probabilistic analysis of algorithms to prove performance guarantees
- Binning: species tree estimation from multiple genes, can improve coalescent-based species tree estimation methods.
- New questions in phylogenetic estimation about impact of error in input data.

Metazoa Dataset from Salichos & Rokas - Nature 2013 225 genes and 21 species

- UnBinned MP-EST compared to Concatenation using RAxML
 - Poor bootstrap support
 - Substantial conflict with concatenation (red is conflict green/black is congruence)
 - O Strongly rejects (Tunicate, Craniate), a subgroup that is strongly supported in the literature [Bourlat, Sarah J., et al. *Nature* 444.7115 (2006); Delsuc, Frédéric, et al. *Genesis* 46.11 (2008); Singh, Tiratha R., et al. *BMC genomics* 10.1 (2009): 534.]

Unbinned MPEST

RAxML on combined datamatrix

Tunicate

Cintestinals
Cophabothordates

B. floridae
G. gallus
G. gallus

Contraction

Contracti

MP-EST unbinned

Binned vs. unbinned analyses

- 75%-threshold for binning
- Number of species: 21 for both
- Number of "genes"
 - Unbinned: 225 genes
 - Binned:17 supergenes
- Gene tree average bootstrap support
 - Unbinned: 47%
 - Binned: 78%
- Species tree bootstrap support
 - Unbinned: avg 83%, 11 above 75%, 10 above 90%
 - Binned: avg 89%, 15 above 75%, 12 above 90%

Naïve binning vs. unbinned: 50 genes

Bayzid and Warnow, Bioinformatics 2013 11-taxon strongILS datasets with 50 genes, 5 genes per bin

Naïve binning vs. unbinned, 100 genes

^{*}BEAST did not converge on these datasets, even with 150 hours. With binning, it converged in 10 hours.

Naïve binning vs. unbinned: 50 genes

Bayzid and Warnow, Bioinformatics 2013 11-taxon strongILS datasets with 50 genes, 5 genes per bin

Avian Simulation study – binned vs. unbinned, and RAxML

Mammals Simulation

Avian Simulation

