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Phylogenetic Analysis
• Gather data
• Align sequences
• Estimate phylogeny on the multiple alignment
• Estimate the reliable aspects of the evolutionary

history (using bootstrapping, consensus trees, or
other methods)

• Perform post-tree analyses



DNA Sequence Evolution
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Phylogeny Problem

TAGCCCA TAGACTT TGCACAA TGCGCTTAGGGCAT
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…ACGGTGCAGTTACC-A…

…AC----CAGTCACCTA…

The true multiple alignment
– Reflects historical substitution, insertion, and deletion

events
– Defined using transitive closure of pairwise alignments

computed on edges of the true tree

…ACGGTGCAGTTACCA…

Substitution
Deletion

…ACCAGTCACCTA…

Insertion



Input: unaligned sequences

S1 = AGGCTATCACCTGACCTCCA
S2 = TAGCTATCACGACCGC
S3 = TAGCTGACCGC
S4 = TCACGACCGACA



Phase 1: Multiple Sequence Alignment

S1 = -AGGCTATCACCTGACCTCCA
S2 = TAG-CTATCAC--GACCGC--
S3 = TAG-CT-------GACCGC--
S4 = -------TCAC--GACCGACA

S1 = AGGCTATCACCTGACCTCCA
S2 = TAGCTATCACGACCGC
S3 = TAGCTGACCGC
S4 = TCACGACCGACA



Phase 2: Construct tree

S1 = -AGGCTATCACCTGACCTCCA
S2 = TAG-CTATCAC--GACCGC--
S3 = TAG-CT-------GACCGC--
S4 = -------TCAC--GACCGACA

S1 = AGGCTATCACCTGACCTCCA
S2 = TAGCTATCACGACCGC
S3 = TAGCTGACCGC
S4 = TCACGACCGACA

S1

S4

S2

S3



Alignment methods
• Clustal
• POY (and POY*)
• Probcons (and Probtree)
• MAFFT
• Prank
• Muscle
• Di-align
• T-Coffee
• Opal
• FSA
• Infernal
• Etc.

Phylogeny methods
• Bayesian MCMC
• Maximum parsimony
• Maximum likelihood
• Neighbor joining
• FastME
• UPGMA
• Quartet puzzling
• Etc.

RAxML: best heuristic for large-scale ML optimization



• How are methods evaluated?

• Which methods perform well?

• What about other evolutionary processes,
such as duplications or rearrangements?

• What if the phylogeny is not a tree?

• What are the major outstanding challenges?



• Part I (Basics): standard statistical models of
substitution-only sequence evolution, methods for
phylogeny estimation, performance criteria, and basic
proof techniques.

• Part II (Advanced): Alignment estimation, more
complex models of sequence evolution, species tree
estimation from gene trees and sequences, reticulate
evolution, and gene order/content phylogeny.



Part I: Basics
• Substitution-only models of evolution
• Performance criteria
• Standard methods for phylogeny estimation
• Statistical performance guarantees and proof techniques
• Performance on simulated and real data
• Evaluating support



DNA Sequence Evolution
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Phylogeny Problem

TAGCCCA TAGACTT TGCACAA TGCGCTTAGGGCAT
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Markov Models of Site Evolution

Jukes-Cantor (JC):
• T is binary tree and has substitution probabilities p(e) on each edge e.
• The state at the root is randomly drawn from {A,C,T,G}
• If a site (position) changes on an edge, it changes with equal probability

to each of the remaining states.
• The evolutionary process is Markovian.
Generalized Time Reversible (GTR) model: general substitution matrix.
Rates-across-sites models used to describe variation between sites.



Performance criteria
• Running time and space.
• Statistical performance issues (e.g., statistical

consistency and sequence length requirements),
typically studied mathematically.

• “Topological accuracy” with respect to the underlying
true tree.  Typically studied in simulation.

• Accuracy with respect to a mathematical score (e.g.
tree length or likelihood score) on real data.



FN: false negative
      (missing edge)
FP: false positive
      (incorrect edge)

50% error rate

FN

FP



Statistical consistency and sequence length
requirements



1. Polynomial time distance-based methods
2. Hill-climbing heuristics for NP-hard optimization

problems

Phylogenetic reconstruction methods

Phylogenies

Cost

Global optimum

Local optimum

3. Bayesian methods



Distance-based Methods



UPGMA
While |S|>2:

find pair x,y of closest taxa;

delete x

Recurse on S-{x}

Insert y as sibling to x

Return tree

a b c d e



UPGMA

a b c d e

Works when
evolution is
“clocklike”



UPGMA

a

b c

d e

Fails to produce
true tree if
evolution
deviates too
much from a
clock!



Distance-based Methods



Additive Distance Matrices



Statistical Consistency
   Theorem (Steel): Logdet distances are

statistically consistent estimators of model
tree distances.

!"Sequence length



Distance-based Methods



Constructing quartet trees
Four-Point Condition: A matrix D is additive if and only if for every four

indices i,j,k,l, the maximum and median of the three pairwise sums are
identical

                     Dij+Dkl < Dik+Djl = Dil+Djk

The Four-Point Method computes quartet trees using the Four-point
condition (modified for non-additive matrices).



Naïve Quartet Method
Input: estimated matrix {dij}
Output: tree or Fail
Algorithm: Compute the tree on each quartet using the four-point

method
Merge them into a tree on the entire set if they are compatible:

– Find a sibling pair A,B
– Recurse on S-{A}
– If S-{A} has a tree T, insert A into T by making A a sibling to

B, and return the tree



Error tolerance of NQM
• Note: every quartet tree is correctly computed if every

estimated distance dij is close enough (within f/2) to
the true evolutionary distance Aij, where f is the
smallest internal edge length.

• Hence, the NQM is guaranteed correct if 
maxij{|dij-Aij|} < f/2.



   The Naïve Quartet Method (NQM) returns the
true tree if                is small enough.),( !dL"

!"Sequence length

Hence NQM is statistically consistent under the
GTR model (and any model with a statistically 
consistent distance estimator)



Statistical consistency and sequence length
requirements



Theorem (Erdos et al. 1999): The Naïve Quartet Method will return the true
tree w.h.p. provided sequence lengths are exponential in the
evolutionary diameter of the tree.

Sketch of proof:

• NQM guaranteed correct if all entries in the estimated distance matrix
have low error.

• Estimations of large distances require long sequences to have low error
with high probability (w.h.p).

Note: Other methods have the same guarantee (various authors), and
better empirical performance.



Performance on large diameter trees

Simulation study based
upon fixed edge
lengths, K2P model of
evolution, sequence
lengths fixed to 1000
nucleotides.

Error rates reflect
proportion of incorrect
edges in inferred
trees.

[Nakhleh et al. ISMB 2001]
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Statistical consistency and sequence length
requirements



Chordal graph algorithms yield phylogeny
estimation from polynomial length

sequences

• Theorem (Warnow et
al., SODA 2001):
DCM1-NJ correct with
high probability given
sequences of length
O(ln n eO(g ln n))

• Simulation study from
Nakhleh et al. ISMB
2001

NJ
DCM1-NJ
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Afc methods
A method M is “absolute fast converging”, or afc,  if for

all positive f, g, and ε, there is a polynomial p(n) s.t.
Pr(M(S)=T) > 1- ε, when S is a set of sequences
generated on T of length at least p(n).

Notes:
1. The polynomial p(n) will depend upon M, f, g, and ε.

2. The method M is not “told” the values of f and g.



Fast converging methods (and related work)

• 1997: Erdos, Steel, Szekely, and Warnow (ICALP).

• 1999: Erdos, Steel, Szekely, and Warnow (RSA, TCS); Huson, Nettles
and Warnow (J. Comp Bio.)

• 2001: Warnow, St. John, and Moret (SODA); Cryan, Goldberg, and
Goldberg (SICOMP); Csuros and Kao (SODA); Nakhleh, St. John,
Roshan, Sun, and Warnow (ISMB)

• 2002: Csuros (J. Comp. Bio.)

• 2006: Daskalakis, Mossel, Roch (STOC), Daskalakis, Hill, Jaffe,
Mihaescu, Mossel, and Rao (RECOMB)

• 2007: Mossel (IEEE TCBB)

• 2008: Gronau, Moran and Snir (SODA)

• 2010: Roch (Science)



“Character-based” methods
• Maximum parsimony
• Maximum Likelihood
• Bayesian MCMC (also likelihood-based)

These are more popular than distance-based methods,
and tend to give more accurate trees. However,
these are computationally intensive!



Standard problem: Maximum Parsimony
(Hamming distance Steiner Tree)

• Input: Set S of n sequences of length k
• Output: A phylogenetic tree T

– leaf-labeled by sequences in S
– additional sequences of length k labeling

the internal nodes of T

such that                         is minimized.!
" )(),(

),(
TEji

jiH



Maximum parsimony (example)
• Input: Four sequences

– ACT
– ACA
– GTT
– GTA

• Question: which of the three trees has the
best MP scores?



Maximum Parsimony

ACT

GTT ACA

GTA ACA ACT

GTAGTT

ACT

ACA

GTT

GTA



Maximum Parsimony

ACT

GTT

GTT GTA

ACA

GTA

1
2

2

MP score = 5

ACA ACT

GTAGTT

ACA ACT
3 1 3

MP score = 7

ACT

ACA

GTT

GTA
ACA GTA
1 2 1

MP score = 4

Optimal MP tree



Maximum Parsimony:
computational complexity

ACT

ACA

GTT

GTA
ACA GTA

1 2 1

MP score = 4

Finding the optimal MP tree is NP-hard

Optimal labeling can be
computed in linear time O(nk)



Local search strategies

Phylogenetic trees

Cost

Global optimum

Local optimum



Local search strategies
• Hill-climbing based upon topological

changes to the tree

• Incorporating randomness to exit from
local optima



Evaluating heuristics with
respect to MP or ML scores

Time

Score
of best
trees

Performance of Heuristic 1

Performance of Heuristic 2

Fake study



Maximum Parsimony
Good heuristics are available, but can take a very long time (days

or weeks) on large datasets.
Typically a consensus tree is returned, since MP can produce

many equally optimal trees.
Bootstrapping can also be used to produce support estimations.

MP is not always statistically consistent, even if solved exactly.



MP is not statistically consistent

• Jukes-Cantor evolution
• The Felsenstein zone

A

B

C

D

A

C

B

D



Maximum Likelihood
ML problem: Given set S of sequences, find the

model tree (T,Θ) such that Pr{S|T,Θ} is
maximized.

Notes:
• Computing Pr{S|T,Θ} is polynomial (using

Dynamic Programming) for the GTR model.



GTR Maximum Likelihood
Notes (cont.):
• ML is statistically consistent under the General Time Reversible

(GTR) model if solved exactly.
• Finding the best GTR model tree is NP-hard (Roch).
• Good heuristics exist, but can be computationally intensive

(days or weeks) on large datasets.  Memory requirements can
be high.

• Bootstrapping is used to produce support estimations on edges.

Questions:
What is the computational complexity of finding the best

parameters Θ on a fixed tree T?
What is the sequence length requirement for ML?



Maximum Integrated Likelihood
Problem: Given set S of sequences, find tree topology T such

that∫Pr{S| T,Θ} d(T,Θ) is maximized.

• Recall that computing Pr{S|T,Θ} is polynomial (using Dynamic
Programming) for models like Jukes-Cantor.

• We sample parameter values to estimate ∫Pr{S|T,Θ} d(T,Θ).
This allows us to estimate the maximum integrated likelihood
tree.

• Question: Can we compute this integral analytically?



Bayesian MCMC
• MCMC is used to perform a random walk through model tree

space. After burn-in, a distribution of trees is computed based
upon a random sample of the visited tree topologies.

• A consensus tree or the MAP (maximum a posteriori) tree can
also be returned.

• Support estimations provided as part of output.

• The MAP tree is a statistically consistent estimation for GTR (for
appropriate priors).

• Computational issues can be significant (e.g., time to reach
convergence).



Summary (so far)
• Distance-based methods are generally polynomial time and

statistically consistent.
• Maximum likelihood is NP-hard but statistically consistent if

solved exactly. Good heuristics have no guarantees but can be
fast on many datasets.

• Bayesian methods can be statistically consistent estimators, but
are computationally intensive.

• Maximum Parsimony is not guaranteed statistically consistent,
and is NP-hard to solve exactly.  Heuristics are computationally
intensive.



Part II
• Sequence alignment
• From gene trees to species trees
• Gene order phylogeny
• Reticulate evolution
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TATGCCCA
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Input: unaligned sequences

S1 = AGGCTATCACCTGACCTCCA
S2 = TAGCTATCACGACCGC
S3 = TAGCTGACCGC
S4 = TCACGACCGACA



Phase 1: Multiple Sequence
Alignment

S1 = -AGGCTATCACCTGACCTCCA
S2 = TAG-CTATCAC--GACCGC--
S3 = TAG-CT-------GACCGC--
S4 = -------TCAC--GACCGACA

S1 = AGGCTATCACCTGACCTCCA
S2 = TAGCTATCACGACCGC
S3 = TAGCTGACCGC
S4 = TCACGACCGACA



Phase 2: Construct tree

S1 = -AGGCTATCACCTGACCTCCA
S2 = TAG-CTATCAC--GACCGC--
S3 = TAG-CT-------GACCGC--
S4 = -------TCAC--GACCGACA

S1 = AGGCTATCACCTGACCTCCA
S2 = TAGCTATCACGACCGC
S3 = TAGCTGACCGC
S4 = TCACGACCGACA

S1

S4

S2

S3



…ACGGTGCAGTTACCA…

…ACCAGTCACCA…

MutationDeletion
The true pairwise alignment is:

      …ACGGTGCAGTTACCA…

      …AC----CAGTCACCA…

The true multiple alignment is defined by the transitive
closure of pairwise alignments on the edges of the true tree.



Estimating pairwise alignments
Pairwise alignment is often estimated by

computing the “edit distance”
(equivalently, finding a minimum cost
transformation).

This requires a cost for indels and
substitutions.



Example of pairwise alignment
s1 = ACAT,
s2 = ATGCAT,
cost indel = 2, cost substitution = 1
    Optimal alignment has cost 4:

   A  -  -  C A T
                               A T G C A T



Estimating alignments

• Pairwise alignment is typically
estimated by finding a minimum cost
transformation (cost for indels and
substitutions). Issues: local vs. global.

• Multiple alignment: minimum cost
multiple alignment is NP-hard, under
various formulations.



MSA methods, in practice
Typical approach:

1. Estimate an initial “guide tree”

2. Perform “progressive alignment” up the
tree, using Needleman-Wunsch (or a
variant) to align alignments



So many methods!!!
Alignment method
• Clustal
• POY (and POY*)
• Probcons (and Probtree)
• MAFFT
• Prank
• Muscle
• Di-align
• T-Coffee
• Satchmo
• Etc.
Blue = used by systematists
Purple = recommended by Edgar and

Batzoglou for protein alignments

Phylogeny method
• Bayesian MCMC
• Maximum parsimony
• Maximum likelihood
• Neighbor joining
• UPGMA
• Quartet puzzling
• Etc.



Simulation Studies

S1 S2

S3S4

S1 = -AGGCTATCACCTGACCTCCA
S2 = TAG-CTATCAC--GACCGC--
S3 = TAG-CT-------GACCGC--
S4 = -------TCAC--GACCGACA

S1 = AGGCTATCACCTGACCTCCA
S2 = TAGCTATCACGACCGC
S3 = TAGCTGACCGC
S4 = TCACGACCGACA

S1 = -AGGCTATCACCTGACCTCCA
S2 = TAG-CTATCAC--GACCGC--
S3 = TAG-C--T-----GACCGC--
S4 = T---C-A-CGACCGA----CA

Compare

True tree and
alignment

S1 S4

S3S2

Estimated tree and
alignment

Unaligned
Sequences



Quantifying Error

FN: false negative
      (missing edge)
FP: false positive
      (incorrect edge)

50% error rate

FN

FP



1000 taxon models, ordered by difficulty (Liu et al., Science 2009)



Problems with the two-phase approach
• Current alignment methods fail to return reasonable alignments on

large datasets with high rates of indels and substitutions.

• Manual alignment is time consuming and subjective.

• Systematists discard potentially useful markers if they are difficult to
align.

This issues seriously impact large-scale phylogeny estimation (and Tree
of Life projects)



Co-estimation methods
• Statistical methods (e.g., BAliPhy, StatAlign, Alifritz,

and others) have excellent statistical performance but
are extremely computationally intensive.

• Steiner Tree approaches based upon edit distances
(e.g., POY) are sometimes used, but these have poor
topological accuracy and are also computationally
intensive.

• SATé (new method) has very good empirical
performance and can run on large datasets, but no
guarantees under any statistical models.



SATé-1 and SATé-2 (“Next” SATé), on 1000 leaf models



Alignment-free methods
• Roch and Daskalakis (RECOMB 2010) show

that statistically consistent tree estimation is
possible under a single-indel model

• Nelesen et al. (in preparation) give practical
method (DACTAL) for estimating trees
without a full MSA.



DACTAL more accurate than all standard
methods, and much faster than SATé

Average results on 3 large RNA datasets
(6K to 28K)

CRW: Comparative RNA database,
structural alignments

3 datasets with 6,323 to 27,643 sequences
Reference trees: 75% RAxML bootstrap

trees
DACTAL (shown in red) run for 5 iterations

starting from FT(Part)

SATé-1 fails on the largest dataset
SATé-2 runs but is not more accurate than

DACTAL, and takes longer



Challenges
• Large-scale MSA
• Statistical estimation under “long” indels
• Understanding why existing MSA

methods perform well



Genomes As Signed Permutations

1 –5  3  4  -2  -6
or

6  2  -4 –3  5 –1
etc.



Whole-Genome Phylogenetics
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Genome-scale evolution

(REARRANGEMENTS)

Inversion
Translocation
Duplication



Other types of events
• Duplications, Insertions, and Deletions

(changes gene content)
• Fissions and Fusions (for genomes with more

than one chromosome)

These events change the number of copies of
each gene in each genome (“unequal gene
content”)



Huge State Space

• DNA sequences :   4 states per site
• Signed circular genomes with n genes:

                                 states, 1 site

• Circular genomes (1 site)

– with 37 genes (mitochondria):                                    states

– with 120 genes (chloroplasts):                                   states

)!1(2 1 !! nn

521056.2 !
2321070.3 !



Why use gene orders?
• “Rare genomic changes”: huge state space and

relative infrequency of events (compared to site
substitutions) could make the inference of deep
evolution easier, or more accurate.

• Much research shows this is true, but accurate
analysis of gene order data is computationally very
intensive!



Phylogeny reconstruction from
gene orders

• Distance-based reconstruction
• Maximum Parsimony for Rearranged

Genomes
• Maximum Likelihood and Bayesian methods



Phylogeny reconstruction from gene orders

Distance-based reconstruction:
• Compute edit distances between all pairs of

genomes
• Correct for unseen changes (statistically-

based distance corrections)
• Apply distance-based methods



Maximum Parsimony on Rearranged Genomes (MPRG)

• The leaves are rearranged genomes.
• NP-hard: Find the tree that minimizes the total number of

rearrangement events
• NP-hard: Find the median of three genomes

A

B

C

D

3 6
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3

4

A

B

C

D

E
F

Total length
=  18



Challenges
• Pairwise comparisons under complex models
• Estimating ancestral genomes
• Better models of genome evolution
• Combining genome-scale events with

sequence-scale events
• Accurate and scalable methods



Estimating species trees from
multiple genes



Multi-gene analyses
After alignment of each gene dataset:

• Combined analysis: Concatenate (“combine”)
alignments for different genes, and run
phylogeny estimation methods

• Supertree: Compute trees on alignment and
combine gene trees



. . .

Analyze
separately

 Supertree
Method

Two competing approaches
 gene 1     gene 2   . . .     gene k

. . . Combined
 Analysis

S
pe

ci
es



Supertree estimation vs. CA-ML

Scaffold Density (%)

(Swenson et al., In Press, Systematic Biology)



From Gene Trees to Species Trees

• Gene trees can differ from species trees
due to many causes, including
– Duplications and losses
– Incomplete lineage sorting
– Horizontal gene transfer
– Gene tree estimation error



Red gene tree ≠ species tree
(green gene tree okay)



Present

Past

Courtesy James Degnan



Gene tree in a species tree

Courtesy James Degnan



Incomplete Lineage Sorting
(deep coalescence)

• Population-level process leading to gene trees differing from
species trees

• Factors include short times between speciation events and
population size

• Methods for estimating species trees under ILS include
statistical approaches (*BEAST, BUCKy, STEM, GLASS, etc.)
and discrete optimization methods for MDC (minimize deep
coalescence).



Species Networks

A B C D E



Why Phylogenetic Networks?
• Lateral gene transfer (LGT)

– Ochman estimated that 755 of 4,288 ORF’s in
E.coli were from at least 234 LGT events

• Hybridization
– Estimates that as many as 30% of all plant

lineages are the products of hybridization
– Fish
– Some frogs



Species Networks

A B C D E



Gene Tree I in Species Networks

A B C D E

A B C D E



Gene Tree II in Species Networks

A B C D E

A B C D E A B C D E



. . .

Analyze
separately

Supernetwork
Method

Two competing approaches
 gene 1     gene 2   . . .     gene k

. . . Combined
 Analysis

S
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Most phylogenetic network methods do
not produce “explicit” models of
reticulate evolution, but rather visual
representations of deviations from
additivity.  This produces a lot of false
positives!



• Current methods may be fast enough for typical (almost) whole
genome analyses (small numbers of taxa and hundreds to
thousands of genes).

• New methods will need to be developed for larger numbers of
taxa.

• New methods are also needed to address the complexity of real
biological data (long indels, rearrangements, duplications,
heterotachy, reticulation, fragmentary data from NGS, etc.)

• Tree-of-life scale analyses will require many algorithmic
advances, and present very interesting mathematical questions.



Sequence length requirements

• The sequence length (number of sites) that a
phylogeny reconstruction method M needs to
reconstruct the true tree with probability at
least 1-ε depends on

• M (the method)
• ε
• f = min p(e),
• g = max p(e), and
• n, the number of leaves



Better distance-based methods

• Neighbor Joining
• Minimum Evolution
• Weighted Neighbor Joining
• Bio-NJ
• DCM-NJ
• And others



Neighbor joining has poor performance on large
diameter trees [Nakhleh et al. ISMB 2001]

Simulation study
based upon fixed
edge lengths, K2P
model of evolution,
sequence lengths
fixed to 1000
nucleotides.

Error rates reflect
proportion of
incorrect edges in
inferred trees.
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“Boosting” MP heuristics

• We use “Disk-covering methods”
(DCMs) to improve heuristic searches
for MP and ML

DCMBase method M DCM-M


