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How did life evolve on earth?
An international effort toAn international effort to
understand how lifeunderstand how life
evolved on earthevolved on earth

Biomedical applications:Biomedical applications:
drug design, proteindrug design, protein
structurestructure  and functionand function
prediction,prediction,  biodiversity.biodiversity.

• Courtesy of the Tree of Life project



 How did human languages evolve?
(Possible Indo-European tree, Ringe, Warnow and

Taylor 2000)



DNA Sequence Evolution
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Standard Markov models

• Sequences evolve just with substitutions
• Sites (i.e., positions) evolve identically and

independently, and have “rates of evolution” that
are drawn from a common distribution (typically
gamma)

• Numerical parameters describe the probability of
substitutions of each type on each edge of the tree



Questions

• Statistical consistency: Is the given phylogeny
reconstruction method guaranteed to reconstruct
the model tree when infinitely long sequences are
available?

• Convergence rate (sample size complexity): How
long do the sequences need to be for the method to
be accurate with high probability?

• Identifiability: Is the model tree uniquely
identified by the “pattern probabilities” (i.e.,  by
infinitely long sequences)?



Quantifying Error

FN: false negative
      (missing edge)
FP: false positive
      (incorrect edge)

50% error rate

FN

FP



Statistical consistency, exponential convergence, and
absolute fast convergence (afc)



Complexity viz. The Tree of Life

• Algorithmic complexity (e.g., running time and
NP-hardness)

• Sample size complexity (e.g. how long do the
sequences need to be to obtain a highly accurate
reconstruction with high probability?)

• Stochastic model complexity (i.e., how realistic
are the models of evolution, and what are the
consequences of making the models more
realistic?)



Current state of knowledge
(for substitution-only models)

• We have established much of the statistical
performance (consistency and convergence rates)
of the major methods for phylogeny estimation.

• We have developed “fast converging” methods
(guaranteed to reconstruct the true tree from
polynomial length sequences) with excellent
performance in practice.

• We have very fast methods for solving maximum
likelihood and maximum parsimony, the major
optimization problems, even for large datasets.



Distance-based Phylogenetic Methods
(polynomial time)



Neighbor Joining’s sequence
length requirement is

exponential!

• Atteson: Let T be a General Markov model tree
defining distance matrix D.  Then Neighbor
Joining will reconstruct the true tree with high
probability from sequences that are of length at
least  O(lg n emax Dij), where n is the number of
leaves in T.



Neighbor joining has poor performance on large
diameter trees [Nakhleh et al. ISMB 2001]

Simulation study based
upon fixed edge
lengths, K2P model of
evolution, sequence
lengths fixed to 1000
nucleotides.

Error rates reflect
proportion of incorrect
edges in inferred trees.
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DCM1-boosting distance-based methods
[Nakhleh et al. ISMB 2001]

•Theorem:
DCM1-NJ
converges to the
true tree from
polynomial
length sequences
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Other “fast-converging” methods

• The “short quartet” methods (Erdös, Steel,
Székéley and Warnow 1997) were the first fast-
converging methods, published in RSA 1999 and
TCS 1999.

• Csüros and Kao (SODA 1999)
• Cryan, Goldberg, and Goldberg (SICOMP 2001)
• Csüros (J Comp Bio 2002)
• Daskalakis et al. (RECOMB 2006)
• Daskalakis, Mossel and Roch (STOC 2006)
• Gronau, Moran and Snir (SODA 2008)



Maximum Likelihood (ML)

• Given:  Set S of aligned DNA sequences, and a
parametric model of sequence evolution

• Objective: Find tree T and numerical parameter
values (e.g, substitution probabilities) so as to
maximize the probability of the data.

NP-hard
Statistically consistent for standard models if solved

exactly



Maximum Parsimony
(Hamming distance Steiner Tree problem)

ACT

ACA

GTT

GTA
ACA GTA

1 2 1

MP score = 4

Not statistically consistent (even under simple models)
Finding the optimal MP tree is NP-hard.

Input: set of aligned sequences
Output: tree with minimum total length (“MP score”) 



Solving NP-hard problems
exactly is … unlikely

• Number of
(unrooted) binary
trees on n leaves is
(2n-5)!!

• If each tree on 1000
taxa could be
analyzed in 0.001
seconds, we would
find the best tree in

      2890 millennia

4.5 x 10190100
2.2 x 102020

2.7 x 1029001000

202702510
1351359
103958
9457
1056
155
34

#trees#leaves



Problems with techniques for Maximum
Parsimony

Shown here is the performance of a very good heuristic (TNT) for maximum
parsimony analysis on a real dataset of almost 14,000 sequences. (“Optimal” here
means best score to date, using any method for any amount of time.)  Acceptable error
is below 0.01%.

Performance of TNT with time



Rec-I-DCM3 significantly improves performance
(Roshan et al. CSB 2004)

Comparison of TNT to Rec-I-DCM3(TNT) on one large dataset.
Similar improvements obtained for RAxML (maximum likelihood).

Current best techniques

DCM boosted version of best techniques



Current state of knowledge
(for substitution-only models)

• We have established much of the statistical performance
(consistency and convergence rates) of the major methods
for phylogeny estimation.

• We have developed “fast converging” methods
(guaranteed to reconstruct the true tree from polynomial
length sequences) with excellent performance in practice.

• We have very fast methods for solving maximum
likelihood and maximum parsimony, the major
optimization problems, even for large datasets.



But the Standard Markov models
are too simple!

• Sequences evolve just with substitutions
• Sites (i.e., positions) evolve identically and

independently, and have “rates of evolution” that
are drawn from a common distribution (typically
gamma)

• Numerical parameters describe the probability of
substitutions of each type on each edge of the tree

And all the positive results we’ve shown disappear
under more realistic models



The “tree of life” is not a tree

Reticulate evolution (horizontal gene transfer and hybridization)Reticulate evolution (horizontal gene transfer and hybridization)
is also a problemis also a problem
    



Languages also evolve with
reticulation (Nakhleh et al., 2005)



Genome-scale evolution

(REARRANGEMENTS)

Inversion
Translocation
Duplication



indels (insertions and deletions) also occur!

…ACGGTGCAGTTACCA…

…ACCAGTCACCA…

MutationDeletion



…ACGGTGCAGTTACCA…

…ACCAGTCACCA…

MutationDeletion The true pairwise alignment is:

      …ACGGTGCAGTTACCA…

      …AC----CAGTCACCA…

The true multiple alignment on a set of
homologous sequences is obtained by tracing
their evolutionary history, and extending the
pairwise alignments on the edges to a
multiple alignment on the leaf sequences.



Input: unaligned sequences

S1 = AGGCTATCACCTGACCTCCA
S2 = TAGCTATCACGACCGC
S3 = TAGCTGACCGC
S4 = TCACGACCGACA



Phase 1: Multiple Sequence Alignment

S1 = -AGGCTATCACCTGACCTCCA
S2 = TAG-CTATCAC--GACCGC--
S3 = TAG-CT-------GACCGC--
S4 = -------TCAC--GACCGACA

S1 = AGGCTATCACCTGACCTCCA
S2 = TAGCTATCACGACCGC
S3 = TAGCTGACCGC
S4 = TCACGACCGACA



Phase 2: Construct tree

S1 = -AGGCTATCACCTGACCTCCA
S2 = TAG-CTATCAC--GACCGC--
S3 = TAG-CT-------GACCGC--
S4 = -------TCAC--GACCGACA

S1 = AGGCTATCACCTGACCTCCA
S2 = TAGCTATCACGACCGC
S3 = TAGCTGACCGC
S4 = TCACGACCGACA

S1

S4

S2

S3



DNA sequence evolution

Simulation using ROSE: 100 taxon model trees, models 1-4 have “long gaps”,
and 5-8 have “short gaps”, site substitution is HKY+Gamma



SATé Algorithm (unpublished)

T

A

Use new tree (T)
to compute new
alignment (A)

Estimate ML tree on
new alignment

Obtain initial alignment
and estimated ML tree T

SATé keeps track of the maximum likelihood scores of the
tree/alignment pairs it generates, and returns the best pair it finds



Models 1-3 have 1000 taxa, Models 4-6 have 500 taxa

(gap length distributions: long, medium, short)



Complexity viz. The Tree of Life

• Algorithmic complexity (e.g., running time and
NP-hardness)

• Sample size complexity (e.g. how long do the
sequences need to be to obtain a highly accurate
reconstruction with high probability?)

• Stochastic model complexity (i.e., how realistic
are the models of evolution, and what are the
consequences of making the models more
realistic?)



Thoughts
• Current models of sequence evolution are clearly too

simple, and more realistic ones are not identifiable.
• The relative performance between methods can change as

the models become more complex or as the number of taxa
increases.

• We do not know how methods perform under realistic
conditions (nor how long we need to let computationally
intensive methods run).

• Therefore, simulations should be done under very realistic
(sufficiently complex) models, even if estimations are done
under simpler models (and it is likely that estimations are
best done under more realistic models, too).
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Simulated Model Conditions

ANHD is the average normalized Hamming distance. MNHD is
the maximum normalized Hamming distance. (Normalized
Hamming distances are also known as p-distances.)
Standard deviations are given parenthetically for average gap
length, and standard errors are given parenthetically for all other
statistics.

Model Condition Average gap length ANHD MNHD Percent gaps

1 1000 9.2 (7.2)

2 1000 5 (4.4)

3 1000 2 (1.2)

4 500 9.2 (7.2)

5 500 5 (4.4)

6 500 2 (1.2)

Taxa

69.2 (.01) 76.7 (.01) 72.1 (.19)

68.0 (.02) 75.7 (.02) 70.4 (.10)

69.1 (.01) 76.6 (.01) 41.7 (.14)

66.1 (.02) 74.3 (.01) 76.7 (.11)

66.3 (.02) 74.2 (.01) 64.7 (.14)

66.1 (.02) 74.2 (.02) 42.8 (.14)



Biological datasets
• We used 8 different biological datasets with curated

alignments (produced by Robin Gutell (UT-Austin))
based upon secondary structures.

• We computed various alignments, and maximum
likelihood trees on each alignment.

• We ran SATé for 24 hours, producing an
alignment/tree pair.

• We evaluated alignments and trees in comparison to
the curated alignment and to the reference tree (the
75% bootstrap maximum likelihood tree on the
curated alignment), respectively.



Results for 23S rRNA dataset


