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Abstract

Evolution operates on whole genomes through mutations, such as inver-

sions, transpositions, and inverted transpositions, that rearrange genes

within genomes. In this chapter we survey distance-based techniques for

estimating evolutionary history under these events. We present the math-

ematical derivation of three statistically-based evolutionary distance es-

timators, and show that the use of these new distance estimators with

methods such as neighbor joining and Weighbor can result in improved

reconstructions of evolutionary history.

1.1 Introduction

The genomes of some organisms have a single chromosome or contain single chro-
mosome organelles (such as mitochondria [5, 25] or chloroplasts [10, 24, 25, 27])
whose evolution is largely independent of the evolution of the nuclear genome
for these organisms. Evolutionary events can alter these orderings through re-
arrangements such as inversions and transpositions, collectively called genome
rearrangements. These events fall under the general category of “rare genomic
changes”, and are thought to have great potential for clarifying deep evolution-
ary histories [28]. In the last decade or so, a few researchers have used such data
in their phylogenetic analyses [3, 5–7,10,24,27,31].

Of the various techniques for estimating phylogenies from gene order data,
only distance-based methods are polynomial time. The first study that used
distance-based methods to reconstruct phylogenies from gene orders was done
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by Blanchette, Kunisawa, and Sankoff [5]. Their study gave a phylogenetic anal-
ysis using the neighbor joining [29] method applied to a matrix of “breakpoint
distances” defined on a set of mitochondrial genomes for six metazoan groups.
However, as this chapter will show, breakpoint distances do not provide partic-
ularly accurate estimations of evolutionary distances, and better estimations of
trees can be obtained using other distance estimators.

The rest of the chapter is organized as follows. Section 1.2 provides the
background on genome rearrangement evolution and describes the Generalized
Nadeau-Taylor model. In Section 1.3 we discuss distance-based phylogeny recon-
struction. We describe three new distance estimators for genome rearrangement
evolution in Sections 1.4 and 1.5. We report on simulation studies evaluating the
accuracy of these estimators, and of phylogenies estimated using these estimators
on random tree topologies in Section 1.6. Finally, in Section 1.7 we discuss recent
extensions to the Generalized Nadeau-Taylor model and discuss some relevant
open problems in phylogeny reconstruction that arise.

1.2 Whole genomes and events that change gene orders

In this chapter we will study phylogeny reconstruction on whole genomes under
the assumption that all genomes have exactly one copy of each gene; thus, all
genomes have exactly the same gene content.

1.2.1 Inversions and transpositions

The events we consider do not change the number of copies of a gene, but only
scramble the order of the genes within the genomes. Thus we will not consider
events such as duplications, insertions, or deletions, but will restrict ourselves to
inversions (also called “reversals”) and transpositions.

Inversions operate by picking up a segment within the genome and reinserting
the segment in the reverse direction; thus, the order and strandedness of the genes
involved change. A transposition has the effect of moving a segment from between
two genes to another location (between two other genes), without changing the
order or strandedness of the genes within the segment. If the transposition is
combined with an inversion, then the order and strandedness change as well -
this is called an inverted transposition. Examples of these events are shown in
Fig. 1.1.

1.2.2 Representations of genomes

In order to analyze gene order evolution mathematically, we represent each
genome (whether linear or circular) as a signed permutation of (1, 2, . . . , n),
where n is the number of genes and where the sign indicates the strand on which
the gene occurs. Thus, a circular genome can be represented as a signed cir-
cular permutation, and a linear genome can be represented as a signed linear
permutation. In the case of circular genomes, we use linear representations by
beginning at any of its genes, in either orientation. We consider two such repre-
sentations of a circular genome equivalent. As an example, the circular genome
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(a) 1 2 3 4 5 6 7 8 9 10

(b) 1 2 3 -8 -7 -6 -5 -4 9 10

(c) 1 2 3 9 4 5 6 7 8 10

(d) 1 2 3 9 -8 -7 -6 -5 -4 10

Fig. 1.1. Examples of genome rearrangements. Genome (a) is the starting point
for all the events we demonstrate. Genome (b) is obtained by applying an
inversion to Genome (a). Genome (c) is obtained by applying a transposition
to Genome (a). Genome (d) is obtained by applying an inverted transposition
to Genome (a). In each of these events we have affected the same target seg-
ment of genes (genes 4 through 8, underlined in Genome (a)), and indicated
its location (also by underlining) in the resultant genome.

given by the linear ordering (1, 2, 3, 4, 5) is equivalently represented by the linear
orderings (2, 3, 4, 5, 1) and (−2,−1,−5,−4,−3). As an example of how an inver-
sion acts, if we apply an inversion on the segment 2, 3 to (1, 2, 3, 4, 5), we obtain
(1,−3,−2, 4, 5). For an example of a transposition, if we then apply a transposi-
tion moving the segment −2, 4 to between 1 and −3, we obtain (1,−2, 4,−3, 5).

For the rest of the chapter we focus on circular genomes unless stated oth-
erwise (our simulations show that all results can be directly applied to linear
genomes without any significant difference in accuracy).

1.2.3 Edit distances between genomes: inversion and breakpoint distances

The kinds of distances we are most interested in estimating are evolutionary
distances – the number of events that took place in the evolutionary history
between two genomes. However, the two common ways of defining distances be-
tween genomes are breakpoint distances and inversion distances, neither of which
provides a good estimate of evolutionary distances. We obtain our evolutionary
distance estimators (described later in the chapter) by “correcting” these two
distances.
Inversion distance The inversion distance between genomes G and G′ is the
minimum number of inversions needed to transform G into G′ (or vice-versa, as
it is symmetric); we denote this distance by dINV(G,G′). The first polynomial
time algorithm for computing this distance was obtained by Hannenhalli and
Pevzner [15], and later improved by Kaplan, Shamir, and Tarjan [16] and Bader,
Moret, and Yan [2] (the latter obtained an optimal linear-time algorithm). See
Chapter 10 in this Volume for a review of these algorithms.
Breakpoint distance Another popular distance measure between genomes is the
breakpoint distance [4]. A breakpoint occurs between genes g and g′ in genome
G′ with respect to genome G if g is not followed immediately by g′ in G. As an
example, consider circular genomes G = (1, 2,−3, 4, 5) and G′ = (1, 2, 3,−5,−4).
There is a breakpoint between 2 and 3 in G′, since 2 is not followed by 3 in G,
but there is no breakpoint between −5 and −4 in G′ (since G can be equivalently
written as (−1,−5,−4, 3,−2)). The breakpoint distance between two genomes
is the number of breakpoints in one genome with respect to the other, which is
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clearly symmetric; we denote this distance by dBP(G,G′). In the example above
the breakpoint distance is 3.

1.2.4 The Nadeau-Taylor model and its generalization

The Nadeau-Taylor model [22] assumes that only inversions occur (i.e., no trans-
positions or inverted transpositions occur), and all inversions have the same
probability of occurring. This assumption that inversions are equiprobable was
inspired by the observation made in [22] that the length of conserved segments
between the human and mouse genomes (relative to each other) seems to be
uniformly randomly distributed.

In [40] we proposed a generalized version of the Nadeau-Taylor model which
allows for transpositions and inverted transpositions to occur. In the Generalized
Nadeau-Taylor (GNT) model, all inversions have equal probability, as do differ-
ent transpositions and inverted transpositions. Each model tree thus has param-
eters wI , wT , and wIT , where wI is the probability that a rearrangement event is
an inversion, wT is the probability a rearrangement event is a transposition, and
wIT is the probability that a rearrangement event is an inverted transposition.
Because we assume that all events are of these three types, wI + wT + wIT = 1.
Given a model tree, we will let X(e) be the random variable for the number of
evolutionary events that takes place on the edge e. We assume that X(e) is a
Poisson random variable with mean λe; hence, λe can be considered the length of
the edge e. We also assume that events on one edge are independent of the events
on other edges. Thus, the GNT model requires O(m) parameters, where m is the
number of genomes (i.e., leaves): the length λe of each edge e, and the triplet
wI , wT , wIT . We let GNT(wI , wT , wIT ) denote the set of model trees with the
triplet (wI , wT , wIT ). Thus, the Nadeau-Taylor model is simply the GNT(1, 0, 0)
model.

1.3 Distance-based phylogeny reconstruction

There are many methods for reconstructing phylogenies, such as maximum par-
simony and maximum likelihood, which are computationally intensive. In this
chapter we focus on phylogeny reconstruction techniques that are polynomial
time. For gene order phylogeny reconstruction, the fast methods are primarily
distance-based methods. We briefly review the basic concepts here, and direct
the interested reader to the chapter in this volume by Desper and Gascuel on
distance-based methods for a more in-depth discussion.

1.3.1 Additive and near-additive matrices

Suppose we have a phylogenetic tree T on m leaves, and we assign a positive
length l(e) to each edge e in the tree. Consider the m×m matrix (Dij) defined by
Dij =

∑
e∈Pij

l(e), where Pij is the path in T between leaves i and j. This matrix

is said to be “additive”. Interestingly, given the matrix (Dij), it is possible to
construct T and the edge lengths in polynomial time, up to the location of the
root [41,42], provided that we assume that T has no nodes of degree two.
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The connection between this discussion and the inference of evolutionary
histories is obtained by setting l(e) to be the actual number of changes on the
edge e. Then, Dij =

∑
e∈Pij

l(e) is the actual number of events (in our case,

inversions, transpositions, and inverted transpositions) that took place in the
evolutionary history relating genomes i and j.

Since estimations of evolutionary distances have some error, the matrices
(dij) given as input to distance-based methods generally are not additive. There-
fore, we may wish to understand the conditions under which a distance-based
method will still correctly reconstruct the tree, even though the edge lengths
may be incorrect. Research in the last few years has established that various
methods, including neighbor joining [1], will still reconstruct the true tree as
long as L∞(D, d) = maxij |Dij − dij | is small enough, where (dij) is the input
matrix and (Dij) is the matrix for the true tree (see [1,17] and Chapter 1 in this
Volume).

Consequently, methods such as neighbor joining which have some error tol-
erance will yield correct estimates of the true tree, as long as each Dij can be
estimated with sufficient accuracy.

1.3.2 The two steps of a distance-based method

Using these observations, it is clear why distance-based methods have these two
steps:

• Step 1: Estimate “evolutionary distances” (expected or actual number of
changes) between every pair of taxa, producing matrix (dij).

• Step 2: Use a method (such as neighbor joining) to infer an edge-weighted
tree from (dij).

The second step is fairly standard at this point, with neighbor joining [29]
the most popular of the distance-based methods. However, the first step is very
important as well. Extensive simulation studies under DNA models of site substi-
tution have shown that phylogenies obtained using distance-based methods (such
as neighbor joining) applied to statistically-based distance estimation techniques
are closer to the true tree than when used with uncorrected distances. If, how-
ever, the evolutionary model obeys the molecular clock, so that the expected
number of changes is proportional to time, then statistically based estimations
of distance are unnecessary – correct trees can be reconstructed by applying sim-
ple reconstruction methods such as UPGMA [33] applied to Hamming distances.
However, since the molecular clock assumption is not generally applicable, bet-
ter distance estimation techniques are necessary for phylogeny reconstruction
purposes.

The use of breakpoint distances and inversion distances in whole genome phy-
logeny reconstruction is problematic because these typically underestimate the
actual number of events; therefore, they are not statistically consistent distance-
estimators under the GNT model. This theoretical observation, coupled with
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empirical results, motivates us to produce statistically-based distance estimators
for the GNT model.

1.3.3 Method of moments estimators

The distance estimators we describe in this chapter are all method of mo-
ments estimators. Let X be a real-valued random variable whose distribution
is parametrized by p; as a result E[X] is a function f of p. The estimator
p̂ = f−1(x), where x is the observed value for the mean of X, is a method
of moments estimator of the parameter p. In our case, since there is only one
observation for X, the mean of X is simply the observed value for X. Method of
moments estimators are common in many statistical applications, and generally
have good accuracy; see any standard statistics textbook (such as Section 7.1
in [9]) for details.

In the context of gene order phylogeny, we have developed two functions
which estimate the expected breakpoint distance produced by k random events
under the GNT(wI , wT , wIT ) model, for each way of setting wI , wT and wIT .
One of these two functions is provably correct, and the other is approximate
(with provable error bounds), but both have almost identical performance in
simulation. We also have a function which estimates the expected inversion dis-
tance produced by k random inversions (i.e., random events in the GNT(1, 0, 0)
model).

Each of these functions is invertible, and thus can be used to estimate the
number of events in the evolutionary history between two genomes in a simple
way. For example, given the function f(k) for the expected breakpoint distance
produced by k random events in the GNT(wI , wT , wIT ) model on n genes (see
Section 1.5), we can define a distance estimation technique, which we call IEBP,
for “Inverting the Expected Breakpoint Distance” as follows:

• Step 1: Given genomes G and G′, compute their breakpoint distance d.

• Step 2: Using the assumed values for wI , wT and wIT , compute f−1(d).
This is the estimate of the evolutionary distance between G and G′.

We demonstrate this technique in Fig. 1.2.
We have also developed a distance estimation technique called EDE, for the

“Empirically Derived Estimator”, which estimates the evolutionary distance be-
tween two genomes by inverting the expected inversion distance. (See Section 1.4
for the derivation of EDE.)

In the next sections we describe these three distance-estimators: Exact-IEBP,
which is based upon an exact formula for the expected breakpoint distance,
Approx-IEBP, which is based upon an approximate formula (with guaranteed
error bounds) for the expected breakpoint distance, and EDE, which is based upon
a heuristic for the expected inversion distance. All three estimators improve upon
both breakpoint and inversion distances as evolutionary distance estimators,
and produce better phylogenetic trees, especially when the datasets come from
model trees with high evolutionary diameters (so that the datasets are close to
saturation). Of the three, Exact-IEBP and Approx-IEBP have the best accuracy
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Fig. 1.2. Illustration of the IEBP technique, a method of moments estimator.
The backdrop is the scatter plot of simulations with 120 genes, inversion-only
evolution. The dashed line is the expected breakpoint distance (the function f
in the paragraph describing IEBP), as a function of the number of inversions.
In the first step we compute the breakpoint distance d (the y-axis coordinate);
in the second step we find f−1(d) as the estimate of the actual number of
inversions.

with respect to distance estimation, but surprisingly phylogeny reconstruction
based upon EDE is somewhat more accurate than phylogeny reconstruction based
upon the other estimators.

In the next sections we provide the derivations for these three evolutionary
distance estimators. We begin with EDE because it is the simplest to explain, and
the mathematics is the least complicated.

1.4 EDE: The “Empirically Derived Estimator”

Our first method of moments estimator is EDE, which is based upon inverting the
expected inversion distance produced by random inversions. Because our tech-
nique in deriving EDE is empirical (i.e., we do not have theory to establish any
performance guarantees for EDE’s distance estimation), we call it the “Empiri-
cally Derived Estimator.” However, despite the lack of provable theory, of our
three evolutionary distance estimators, EDE produces the best results whether
we use neighbor joining or Weighbor [8] (a variant of neighbor joining that uses
the variance of the evolutionary distance estimators as well). EDE is quite robust,
and performs well even when the model does not permit inversions. The results
in this section are taken from [20,39].

1.4.1 The method of moments estimator: EDE

The EDE estimator is based upon inverting the expectation of the inversion
distance produced by a sequence of random inversions under the GNT(1, 0, 0)
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model. Thus, to create EDE we have to find a function which will estimate the ex-
pected inversion distance produced by a sequence of random inversions. Theoret-
ical approaches (i.e., actually trying to analytically solve the expected inversion
distance produced by k random inversions) proved to be quite difficult, and so we
studied this under simulation. Our initial studies showed little difference in the
behavior under 120 genes (typical for chloroplasts) and 37 genes (typical of mi-
tochondria), and in particular suggested that it should be possible to express the
normalized expected inversion distance as a function of the normalized number
of random inversions. Therefore, we attempted to define a simple function Q( k

n
)

that approximates E[dINV(G0, Gk)/n] well, for k the number of random inver-
sions, n the number of genes, G0 the initial genome, and Gk the result of applying
k random inversions to G0. This function Q should have the following properties:

(1) 0 ≤ Q(x) ≤ x, since the inversion distance is always less than or equal to
the actual number of inversions.

(2) limx→∞ Q(x) ' 1, as simulation shows the normalized expected inversion
distance is close to 1 when a large number of random inversions is applied.

(3) Q′(0) = 1, since a single random inversion always produces a genome that
is inversion distance 1 away.

(4) Q−1(y) is defined for all y ∈ [0, 1], so that we may invert the function.

We use nQ(x) to estimate E[dINV(Gnx, G0)], the expected inversion distance
after nx inversions are applied. The nonlinear formula

Q(x) =
ax2 + bx

x2 + cx + b

satisfies constraints (2)-(4).
The quantity limx→∞ Q(x) = a in constraint (2) has the following interpre-

tation. When a large number of random inversions are being applied to a genome
G, the resultant genome should look random with respect to G. This quantity
is very close to one as n, the number of genes in G, increases, but for finite n
a does not equal 1. Nonetheless, by simply setting a = 1 the formula produces
very accurate results in practice.

The estimation of b and c amounts to a least-squares nonlinear regression. We
found that setting b = 0.5956 and c = 0.4577 produced a good fit to the empirical
data. However, with this setting for a, b, and c, the formula does not satisfy the
first constraint. Hence, we modify the formula to ensure that constraint (1) holds,
and obtain:

Q∗(x) = min{x,Q(x)} = min{x,
ax2 + bx

x2 + cx + b
}.

Please refer to Fig. 1.3 for our simulation study evaluating the performance
of this formula in fitting the expectation.
EDE’s algorithm We can define a method of moments estimator EDE, using the
function Q∗, as follows:

• Step 1: Given genomes G and G′, compute the inversion distance d.
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Fig. 1.3. Comparison of the regression formula Q∗ for the expected inversion
distance in EDE with simulated data. Both the x- and y-axis coordinates are
normalized – both are divided by the number of genes.

• Step 2: Return k = n(Q∗)−1( d
n
), where n is the number of genes.

As the number of actual events must be an integer, another way to obtain an
estimate of the evolutionary distance is to choose either bkc and dke. However, in
practice there is almost no difference in the accuracy of the tree inferred whether
we use the inverted function or the closest integer criterion to compute the EDE

distance matrix.
We summarize the EDE distance estimator as follows.

Definition 1.1 Let G and G′ be two genomes with genes {1, 2, . . . , n}. Define

Q∗(x) = min{x,Q(x)} = min{x,
x2 + 0.5956x

x2 + 0.4577x + 0.5956
}.

The EDE distance between G and G′ is

EDE(G,G′) = n(Q∗)−1(
d

n
),

where d = dINV(G,G′) is the inversion distance between G and G′.

EDE therefore is a method of moments estimator of the actual number of inver-
sions that took place in transforming G into G′ under the GNT(1, 0, 0) model
(i.e., inversion-only evolution).

Let m be the number of genomes and let n be the number of genes. Computing
the inversion distance between each pair of genomes takes only O(n) time, for
a total of O(nm2) time. Once the inversion distance matrix is computed, as the
formula Q∗ used in EDE is directly invertible, computing the entire EDE distance
matrix takes an additional O(m2) time.

Note that EDE, our first method of moments estimator, was derived on the
basis of a simulation study involving 120 genes under an inversion-only evolu-
tionary model. Therefore, the distance estimated by EDE is independent of the
model condition: we will get the same estimated distance no matter what we
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know about the model conditions. Despite this rigidity in EDE’s structure and
origin, we can apply EDE to any pair of genomes and use it to estimate evolu-
tionary distances. Interestingly, we will see that EDE is quite robust to model
violations, and can be used with methods such as neighbor joining to produce
highly accurate estimations of phylogenies. See Section 1.6 for experimental re-
sults evaluating the accuracy of EDE and of distance-based tree reconstruction
methods using EDE in simulation.

1.4.2 The variance of the inversion and EDE distances

In order to use EDE with methods such as Weighbor, we need also to have an es-
timate for the variance of the EDE distance. We therefore developed an estimator
(presented in [39]) for the standard deviation of the normalized inversion distance
produced by nx random inversions, where n is the number of genes. The approach
we used to obtain this estimate is similar to the approach we used to derive EDE.
The variance of the inversion distance The first step is to obtain the variance of
the inversion distance. After several experiments with simulated data, we decided
to use the following regression formula:

σn(x) = nq ux2 + vx

x2 + wx + t
.

The constant term in the numerator is zero because we know σn(0) = 0. As we
did in our derivation of the EDE technique, we make the assumption that the
actual number of inversions is no more than 3n.

Note that

ln(
1

3n

3n∑

i=0

σn(
i

n
)) = q lnn + ln(

1

3n

3n∑

i=0

u( i
n
)2 + v( i

n
)

( i
n
)2 + w( i

n
) + t

)

' q lnn + ln

(
1

3

∫ 3

0

ux2 + vx

x2 + wx + t
dx

)

is linear in lnn. Thus we can obtain q as the slope in the linear regression using
lnn as the independent variable and ln( 1

3n

∑3n

0 σn(i/n)) as the dependent vari-
able. Our simulation results, shown in Fig. 1.4(a), suggest that

ln( 1
3n

∑3n

i=0 σn( i
n
)) indeed is (almost) linear in lnn.

After obtaining q = −0.6998, we applied nonlinear regression to obtain u, v,
w, and t, using the simulated data for 40, 80, 120, and 160 genes, and obtained
the values q = −0.6998, u = 0.1684, v = 0.1573, w = −1.3893, and t = 0.8224.
The resultant functions are shown as the solid curves in Fig. 1.4(b).
Estimating the variance of EDE The variance of EDE can now be obtained using
a common statistical technique called the delta method [23] as follows. Assume
Y is a random variable with variance Var[Y ], and let X = f(Y ). Then Var[X]

can be approximated by
(

dX
dY

)2
Var[Y ].

To apply the delta method to EDE, we set Y to be the normalized inver-
sion distance between genomes G and G′ (i.e., the inversion distance divided by
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Fig. 1.4. (a) regression of coefficient q (see Section 1.4); for every point corre-
sponding to n genes, the y coordinate is the average of all data points in the
simulation. (b) simulation (points) and regression (solid lines) of the standard
deviation of the inversion distance.

the number of genes), and set X = Q−1(Y ) (we do not use Q∗ since it is not
differentiable in its entire range).

Let G and G′ be two genomes with genes {1, 2, . . . , n}. Let x = EDE(G,G′)/n.

Since d
dY

Q−1(Y ) =
(
Q′(Q−1(Y ))

)−1
, the variance of the EDE distance can be

approximated as

Var[EDE(G,G′)] ' n2

(
1

Q′(x)

)2 (
n−0.6998 0.1684x2 + 0.1573x

x2 − 1.3893x + 0.8224

)
.

Here Q(x) is the function defined in Section 1.4, upon which Q∗, the expected
inversion distance, is based.

1.5 IEBP: “Inverting the Expected Breakpoint distance”

Exact-IEBP and Approx-IEBP are two method of moments estimators based
upon functions for estimating the expected breakpoint distance produced by k
random events under the GNT(wI , wT , wIT ) model, where wI , wT , and wIT are
given. Thus, “IEBP” stands for “inverting the expected breakpoint distance”.
Exact-IEBP is based upon an exact calculation of the expected breakpoint dis-
tance, and Approx-IEBP is based upon an approximate estimation of the ex-
pected breakpoint distance which we can prove has very low error. In order to
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use IEBP (Exact- or Approx-) with Weighbor, we also developed a technique for
estimating the variance of the IEBP distance; this is presented in Section 1.5.3.

1.5.1 The method of moments estimator, Exact-IEBP

We begin with the derivation of the expected breakpoint distance produced by
a sequence of random events under the GNT(wI , wT , wIT ) model. By linearity
of expectation and symmetry of the model, it suffices to find the distribution of
the presence/absence of a single breakpoint (a zero-one variable).

We consider how a circular genome evolves under the Generalized Nadeau-
Taylor model (the analysis for linear genomes can be obtained easily using the
same techniques). Let the number of genes in the genome be n. We start with
genome G0 = (1, 2, . . . , n), and we let Gk denote the genome obtained after k
random rearrangement events are applied under the Generalized Nadeau-Taylor
model.

We begin by defining a character L on circular genomes which will have states
in {±1,±2, . . . ,±(n− 1)}. The state of this character on a genome is defined as
follows:

• In G′, do genes 1 and 2 have the same sign, or different signs? If the same
sign, then L(G′) is positive, and otherwise L(G′) is negative.

• We then count the number of genes between 1 and either 2 or −2 in G′

(depending upon which one appears in G′’s representation when we use
gene 1 in its positive strand), and add 1 to that value; this is |L(G′)|.

We present some examples of how L is defined on different genomes with 6
genes. If G′ = (1, 2, 4, 5,−3, 6) then L(G′) = 1, while if G′ = (1,−2, 3, 4, 5, 6)
then L(G′) = −1. A somewhat harder example is G′ = (1, 5, 3,−2, 4, 6), for
which L(G′) = −3 (gene 2 is the third gene to follow gene 1, and it is located on
the other strand).

The following lemma shows the number of rearrangement events transforming
G into genome G′ only depends on L(G), L(G′) and the number n of genes. Thus,
the distribution of a breakpoint is a (2n−2)-state Markov chain, and we use the
character L defined above to assign states to genomes. We sketch the proof for
the transposition-only situation.

To facilitate the proof, we formally characterize transpositions on circular
genomes. A transposition on G has three indices, a, b, c, with 1 ≤ a < b ≤
n and 2 ≤ c ≤ n, c /∈ [a, b], and operates on G by picking up the interval
ga, ga+1, . . . , gb−1 and inserting it immediately after gc−1. Thus the genome G =
(g1, g2, . . . , gn) (with the additional assumption of c > b) is replaced by

(g1, . . . , ga−1, gb, gb+1, . . . , gc−1, ga, ga+1, . . . , gb−1, gc, . . . , gn)

Lemma 1.2 [38] Let n be the number of genes. Let ιn(u, v), τn(u, v) and
νn(u, v) be the number of inversions, transpositions, and inverted transpositions,
respectively, that bring a genome in state u to state v. Assume the genome is
circular. Then



IEBP: “INVERTING THE EXPECTED BREAKPOINT DISTANCE” 13

ιn(u, v) =






min{|u|, |v|, n − |u|, n − |v|} if uv < 0
0 if u 6= v, uv > 0(
|u|
2

)
+

(
n−|u|

2

)
if u = v

τn(u, v) =






0 if uv < 0
(min{|u|, |v|})(n − max{|u|, |v|}) if u 6= v, uv > 0(
|u|
3

)
+

(
n−|u|

3

)
if u = v

νn(u, v) =






(n − 2)ιn(u, v) if uv < 0
τn(u, v) if u 6= v, uv > 0
3τn(u, v) if u = v

Proof The formula for ι is first shown in [32]. Here we sketch the proof for τ .
Assume the current genome is in state u. Let v be the new state of the

genome after the transposition with indices (a, b, c), 1 ≤ a < b < c ≤ n. Since
transpositions do not change the sign, τn(u, v) = τn(−u,−v), and τn(u, v) = 0 if
uv < 0. Therefore we only need to analyze the case where u, v > 0.

We first analyze the case when u = v. Suppose that either a ≤ u < b or
b ≤ u < c. In the first case, we immediately have v = u + (c − b), therefore
v − u = c − b > 0. In the second case, we have v = u + (a − b), therefore
v − u = a − b < 0. Both cases contradict the assumption that u = v, and the
only remaining possibilities that makes u = v are when 1 ≤ u = v < a or
c ≤ u = v ≤ n − 1. This leads to the third line in the τn(u, v) formula.

Next, the total number of solutions (a, b, c) for the following two problems is
τn(u, v) when u 6= v and u, v > 0:

(1) u < v : b = c − (v − u), 1 ≤ a ≤ u < b < c ≤ n, u < v ≤ c,

(2) u > v : b = a + (u − v), 1 ≤ a < b ≤ u < c ≤ n, a ≤ v < u.

In the first case τn(u, v) = u(n − v), and in the second case τn(u, v) = v(n − u).
The second line in the τn(u, v) formula follows by combining the two results.
2

We now derive the distribution of the Markov chain. To simplify the formulas,
we index all vectors and matrices by the states {±1,±2, . . . ,±(n − 1)}. Let
Gk be the result of applying k random rearrangements to genome G0 under
GNT(wI , wT , wIT ). We first obtain the transition matrix.

Lemma 1.3 Let MI , MT , and MIT be the transition matrices of the Markov
chain when only inversions, transpositions, or inverted transpositions occur, re-
spectively. We let wI be the probability of an inversion, wT be the probability
of a transposition, and wIT be the probability of an inverted transposition (with
wI + wT + wIT = 1). Then

(a) MI [u, v] =
ιn(u, v)(

n

2

) , MT [u, v] =
τn(u, v)(

n

3

) , MIT [u, v] =
νn(u, v)

3
(
n

3

) .

(b) The transition matrix M of the breakpoint Markov chain is

M = wIMI + wT MT + wIT MIT .
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Proof Results in (a) follow from Lemma 1.2 together with the observation that
there are

(
n

2

)
distinct inversions,

(
n

3

)
distinct transpositions, and 3

(
n

3

)
distinct

inverted transpositions. 2

Theorem 1.4 Let M be the transition matrix of the breakpoint Markov chain
as described above. Then

E[dBP(G0, Gk)] = n(1 − Mk[1, 1]).

Proof Let L be the character defined for the Markov chain (i.e., L(G′) is the
state of genome G′) and let xk be the distribution vector of L(Gk). Because
L(G0) = 1, we can set x0 as follows:

x0[1] = 1,

x0[u] = 0, u ∈ {−1,±2, . . . ,±(n − 1)}.

Since xk = Mkx0,

Pr(L(Gk) = 1) = (Mkx0)[1, 1] = Mk[1, 1]

⇒ E[dBP(G0, Gk)] = nPr(L(Gk) 6= 1) = n(1 − Mk[1, 1]).

2

We summarize the Exact-IEBP distance as follows.

Definition 1.5 Assume the evolutionary model is GNT(wI , wT , wIT ). Let G
and G′ be two genomes with genes {1, 2, . . . , n}. Let

Y (k) = n(1 − Mk[1, 1]),

where M is defined in Lemma 1.3. The Exact-IEBP distance is the nonnegative
integer k that minimizes |Y (k) − d|:

Exact-IEBP(G,G′) = argmin
integer k≥0

|Y (k) − d|,

where d = dBP(G,G′) is the breakpoint distance between G and G′.

Thus, Exact-IEBP is a method of moments estimator of the actual number of
evolutionary events under the GNT model, which uses assumed values of wI , wT

and wIT .
Note the following. First, computing the expected breakpoint distance pro-

duced by k random events is done recursively, and the calculation takes O(n2k)
time. Second, because breakpoints are not independent, extending the approach
in order to study higher order statistics such as the variance is difficult. To see
why breakpoints are not independent, consider the following argument. If break-
points were independent, then the probability of having breakpoint distance 1
would be positive, as it is a product of n positive values. Since no two genomes
can differ by one breakpoint, this is impossible.
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Let m be the number of genomes, and n be the number of genes in each
genome. Computing the breakpoint distance matrix takes O(m2n) time total.
To compute the Exact-IEBP distance matrix the first step of the algorithm is to
compute Y (k), the expected breakpoint distance produced by k random events,
for each k between 1 and 3n. This amounts to 3n (transition) matrix-(state prob-
ability) vector multiplications, and uses O(n3) time. To invert Y (k) (as a method
of moments estimator requires) we use binary search in O(log n) time (we assume
the number of rearrangement events never exceed 3n). Because there are at most
n different breakpoint distance values, computing the Exact-IEBP distance ma-
trix when the breakpoint distance is known takes O(n3 +m2 +min{m2, n} log n)
time.

1.5.2 The method of moments estimator, Approx-IEBP

In this section we present an approximate version of Exact-IEBP, which we
call Approx-IEBP (see [40] for the details). Rather than exactly computing the
expected number of breakpoints produced by a sequence of random events in the
GNT model, we compute an approximation of that value. Because we allow an
approximation, we can obtain the estimation faster; thus, the main advantage
over Exact-IEBP is the running time. Fortunately, we are able to provide very
good error bounds on the estimation. Our simulation results, shown later in this
chapter, also show that Approx-IEBP is almost as accurate as Exact-IEBP, and
that trees inferred based upon either version of IEBP are almost indistinguishable.
The technique we used to obtain Approx-IEBP is based upon an analysis using
2-state Markov Chains. We describe that approach here.

Without loss of generality, consider the 2-state stochastic process indicating
the presence of a breakpoint between genes 1 and 2. We let 0 denote the absence
of a breakpoint between 1 and 2 (i.e., that gene 2 immediately follows gene
1), and we let 1 indicate the presence of the breakpoint (i.e., that gene 1 is
not immediately followed by gene 2). The 2-state stochastic process is shown in
Fig. 1.5. While the transitional probability s of jumping from state 0 to 1 in one
step is a constant, the transitional probability u of jumping from state 1 to 0 in
one step depends on both the sign of gene 2 and the number of genes between
the two genes. Thus, no Markov chain with only these two states (presence or
absence of a breakpoint) can completely specify the stochastic process. However,
we can always find tight bounds on u.

Lemma 1.6 Let G0 be a signed circular genome with n genes. Let the model of
evolution be GNT(wI , wT , wIT ). The transitional probability s of jumping from
state 0 to state 1 after a rearrangement event occurs is given by

s =
2 + wT + wIT

n

and the transitional probability u of jumping from state 1 to state 0 after a
rearrangement event occurs is between 0 and uH, where
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10

u

s

1−s

1−u

Fig. 1.5. The two-state stochastic process of the breakpoint between genes 1
and 2 under the Generalized Nadeau-Taylor model.

uH =
2(n − 2) + 4wT (n − 2) + 2wIT n

n(n − 1)(n − 2)
.

Based on these bounds we can devise two 2-state Markov chains with different
values of u (s is always fixed) so that the probability of having a breakpoint can
be bounded. A good approximation of the expected breakpoint distance can then
be obtained by taking the product of n with the average of the two probabilities
of having a breakpoint.

Theorem 1.7 (From [40]) Assume the genome is signed and circular, and the
evolutionary model is GNT(wI , wT , wIT ). Let Bk be the random variable for the
presence of a breakpoint between genes 1 and 2 after k rearrangement events. Let

L(k) = s

(
1 − (1 − s − uH)k

s + uH

)
, and

H(k) = s

(
1 − (1 − s)k

s

)
= 1 − (1 − s)k.

Then for any integer k ≥ 0, L(k) ≤ Pr(Bk = 1) ≤ H(k). The function

F (k) =
n

2
(L(k) + H(k))

provides an approximation of the expected breakpoint distance between G0 and
Gk with small absolute and relative error:

|F (k) − E[dBP(G0, Gk)]| = O(1), and

φ−1 ≤
F (k)

E[dBP(G0, Gk)]
≤ φ,

where φ = 1 + O(
1

n
).

Summary We summarize the Approx-IEBP distance as follows.

Definition 1.8 Assume the evolutionary model is GNT(wI , wT , wIT ). Let G
and G′ be two genomes with genes {1, 2, . . . , n}. Let d = dBP(G,G′) be the break-
point distance between G and G′. Let F be the function defined in Theorem 1.7.
The Approx-IEBP distance is the nonnegative integer k minimizing |F (k) − d|:

Approx-IEBP(G,G′) = argmin
integer k≥0

|F (k) − d|.
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Thus, Approx-IEBP is a method of moments estimator which estimates the
actual number of rearrangement events between two genomes in the GNT model.
Like Exact-IEBP, it requires values for wI , wT and wIT .

Let m be the number of genomes, and n be the number of genes in each
genome. Computing the breakpoint distance matrix takes O(m2n) time total.
To compute the Approx-IEBP distance matrix, we invert F (k), the estimate of
the expected breakpoint distance in Approx-IEBP, for each pairwise breakpoint
distance between two genomes. Computing F (k) takes constant time for each k.
To invert F (k) for each pairwise breakpoint distance (as a method of moments
estimator requires) we use binary search, which takes O(log n) time (we assume
the number of rearrangement events never exceed 3n). Because there are at most
n different breakpoint distance values, computing the Approx-IEBP distance ma-
trix when the breakpoint distance is known takes O(m2+min{n,m2} log n) time.

1.5.3 The variance of the breakpoint and IEBP distances

In this section, we show how to calculate the variance of the breakpoint distance,
so that we can use IEBP with methods such as Weighbor.
The variance of the breakpoint distance To estimate the variance of the break-
point distance, we have to examine at least two breakpoints at the same time.
To use a straightforward approach like Exact-IEBP we have to analyze a Markov
chain with O(n3) states, where n is the number of genes in each genome. How-
ever, if we are willing to relax the model a bit, we can get a good approximation
of the variance, and in fact of all the moments of the breakpoint distance under
the Generalized Nadeau-Taylor model, through the use of a “box model.” We
present this box model here (see [39] for the full details).

Assume all genomes are circular, and that the genome before random rear-
rangements occur is (1, . . . , n). Note that if the number of genes is sufficiently
large, once the breakpoint between genes i and i + 1 is created, it is unlikely that
a later rearrangement event will bring the two genes back together.

We let G′ = Gk denote the genome obtained by k rearrangement events. As
k increases, G′ changes, and so new breakpoints appear in G with respect to G′.
We will let each box represent the presence of a breakpoint in G relative to G′.
Thus, for i = 1, 2, . . . , n − 1, box i will be empty if there is no breakpoint in G
between genes i and i + 1, and non-empty otherwise. We let box n indicate the
presence or absence of a breakpoint between n and 1.
The box model for the inversion-only scenario To illustrate the box model, we
begin with the GNT(1, 0, 0) model in which only inversions occur. We start with
n empty boxes, and repeat the following procedure k times. In each iteration we
choose two distinct boxes (since an inversion creates two breakpoints). For each
box chosen, if the box is empty, we put a ball in it, and otherwise we do not
change anything. We let bk denote the number of nonempty boxes obtained after
k iterations. Under our assumption that breakpoints do not disappear, this is an
estimate of the number of breakpoints produced by k random inversions.

Let
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S(x1, x2, . . . , xn) =
x1x2 + x1x3 + · · · + xn−1xn(

n

2

) .

Consider Sk(x1, x2, . . . , xn), the expansion of S to the kth power. Each term in
the expansion corresponds to a particular combination of choosing two boxes k
times so the total number of times box i is chosen is the power of xi, for each
1 ≤ i ≤ n. The coefficient of that term is the total probability of these ways.
For example, the coefficient of x3

1x2x
2
3 in Sk (when k = 3) is the probability of

choosing box 1 three times, box 2 once, and box 3 twice. Let ui,k be the sum of
the coefficients of all terms taking the form xa1

1 xa2

2 · · ·xai

i (aj > 0, 1 ≤ j ≤ i), in
the expansion of Sk. Then

(
n

i

)
ui,k is the probability i boxes are nonempty after k

iterations. This is due to the symmetry in S, in the sense that S is not changed by
permuting {x1, x2, . . . , xn}. Let Aj be the value of S when we make the following
substitutions: x1 = x2 = · · · = xj = 1 and xj+1 = xj+2 = · · · = xn = 0. For
integers j, 0 ≤ j ≤ n, we have

j∑

i=0

(
j

i

)
ui,k = Sk(1, 1, 1, . . . , 1︸ ︷︷ ︸

j 1′s

, 0, . . . , 0) = Ak
j .

Let

Za =

n∑

i=0

i(i− 1) · · · (i− a + 1)

(
n

i

)
ui,k =

n∑

i=a

n(n− 1) · · · (n− a + 1)

(
n − a

i − a

)
ui,k

for all a, 1 ≤ a ≤ n. However, each Za can be represented as a linear combination
of Ai, for 0 ≤ i ≤ n. To obtain the variance of bk we only need Z1 and Z2.

Lemma 1.9

(a) Z1 = nu1,k = n(Ak
n − Ak

n−1).

(b) Z2 = n(n − 1)u2,k = n(n − 1)(1 − 2Ak
n−1 + Ak

n−2).

We then have the following theorem.

Theorem 1.10 [39] Let bk be the number of nonempty boxes in the box model
after k iterations. The expectation and variance of bk are

E[bk] = n(1 − Ak
n−1),

Var[bk] = nAk
n−1 − n2A2k

n−1 + n(n − 1)Ak
n−2,

where

An−1 = 1 −
2

n
, and

An−2 =
(n − 3)(n − 2)

n(n − 1)
.
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Proof The first identity follows immediately from the fact that E[bk] = Z1 and
that An = 1. To prove (b), note

E[bk(bk − 1)] = Z2 = n(n − 1)(1 − 2Ak
n−1 + Ak

n−2)

⇒ E[b2
k] = E[bk(bk − 1)] + E[bk] = Z2 + Z1

= n(n − 1)(1 − 2Ak
n−1 + Ak

n−2) + n(1 − Ak
n−1)

= n2 − n(2n − 1)Ak
n−1 + n(n − 1)Ak

n−2

⇒ Var[bk] = E[b2
k] − (E[bk])2

= n2 − n(2n − 1)Ak
n−1 + n(n − 1)Ak

n−2 − n2(1 − Ak
n−1)

2

= nAk
n−1 − n2A2k

n−1 + n(n − 1)Ak
n−2

2

A natural idea is to use An−1 as an estimate of the expected breakpoint distance
in computing IEBP. The estimate is quite accurate when n is large, though unlike
Approx-IEBP the formula does not have provable error bounds.
The box model for the general case. Though we assumed only inversions occur
in the derivation of Theorem 1.10, it is only reflected in our definition of S.
The derivation of Theorem 1.10 only requires S is symmetric, i.e. that S is not
changed when we permute x1, . . . , xn. Therefore, it is easy to extend the result to
the general case, i.e., to GNT(wI , wT , wIT ): at each iteration, with probability wI

we choose two boxes, and with probability wT +wIT we choose three boxes (since
each transposition and inverted transposition creates at most three breakpoints).
Therefore, we can prove the following generalization:

Corollary 1.11 [39] Let bk be the number of nonempty boxes in the box model
after k iterations. Assume in each iteration, with probability wI two boxes are
picked at random, and with probability wT +wIT = 1−wI three boxes are picked
at random. The expectation and variance of bk are

E[bk] = n(1 − Ak
n−1),

Var[bk] = nAk
n−1 − n2A2k

n−1 + n(n − 1)Ak
n−2,

where

An−1 = 1 −
3 − wI

n
, and

An−2 =
(n − 3)(n − 4 + 2wI)

n(n − 1)
.

Proof We set S as follows:

S =
wI(
n

2

) (
∑

1≤i1<i2≤n

xi1xi2) +
wT + wIT(

n

3

) (
∑

1≤i1<i2<i3≤n

xi1xi2xi3).

The values An−1, An−2 in Theorem 1.10 are changed according to S.
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An−1 =
wI

(
n−1

2

)
(
n

2

) +
(wT + wIT )

(
n−1

3

)
(
n

3

) = 1 −
3 − wI

n
,

An−2 =
wI

(
n−2

2

)
(
n

2

) +
(wT + wIT )

(
n−2

3

)
(
n

3

) =
(n − 3)(n − 4 + 2wI)

n(n − 1)
.

2

The variance of the IEBP distance We begin by observing that Exact-IEBP and
Approx-IEBP have almost identical performance, and so we will refer to them
collectively as IEBP.

Let G and G′ be two genomes with genes {1, 2, . . . , n}. Let Db = IEBP(G,G′)
and J(k) = E[bk] be the expected number of nonempty boxes in the box model.
The variance of the IEBP distance can be approximated using the delta method
(see Section 1.4.2) toegether with the expectation and variance of the box model:

Var[IEBP(G,G′)] ' (
1

J ′(Db)
)2Var[J(Db)].

1.6 Simulation studies

In this section we report on the accuracy of the various techniques for defining
distances between genomes (both the original inversion and breakpoint distances,
and also EDE, Exact-IEBP, and Approx-IEBP). All these studies are based upon
simulation under the Generalized Nadeau-Taylor model, for various settings of
the model parameters. All model trees are drawn from the uniform distribution.

We also report on the accuracy of trees reconstructed using either neighbor
joining or Weighbor under these various distances. We test these distance esti-
mators under optimal conditions – where the true model parameters are known
– as well as under conditions where the true model parameters are incorrectly
specified. We explore performance on datasets containing 40 or 160 genomes (i.e.,
moderate and large size), and examine performance for both 37 and 120 genes
(typical values for mitochondria and chloroplast genomes, respectively).

1.6.1 Accuracy of the evolutionary distance estimators

In this section we report on our simulation studies evaluating the performance of
the evolutionary distance estimators, by comparison to breakpoint and inversion
distances.

In our simulations we see that distances estimated by Exact-IEBP and Approx-

IEBP have almost identical error (there is a slight advantage of Exact-IEBP over
Approx-IEBP, but it is fairly negligible); therefore, we refer to them collectively
as IEBP.

The results of our simulations show how using either breakpoint and inversion
distances is problematic: compared to IEBP and EDE, breakpoint and inversion
distances are highly biased when the number of rearrangement events is large.
The inversion distance is a good evolutionary distance estimator when the un-
derlying evolutionary model is inversion-only and the rates of evolution are low
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(see Fig. 1.6), but is in general not as accurate as either EDE or IEBP under an
inversion-only model.

We also explored the robustness of our estimators by simulating evolution un-
der models other than inversion-only, or by giving incorrect parameter values to
IEBP. In these cases we see that all five estimators (BP, INV, EDE, Exact-IEBP,

and Approx-IEPB) become less accurate; thus, none of these estimators, includ-
ing our new ones, is robust to model violations (data not shown).

On the other hand, inaccuracy in distances may not lead to inaccuracy in
the trees that are constructed using those distances, provided that the estimated
distances are just scalar multiples of the evolutionary distances. This is because
any such matrix is still an additive matrix for the same underlying tree, but with
different edge lengths. Therefore, the estimated distances can be evaluated ac-
cording to whether they scale linearly with the number of events. Our simulations
(data not shown) reveal that all the distance estimators initially scale linearly,
implying that all are able to reconstruct good trees when the evolutionary rate is
low enough (as indicated by the evolutionary diameter in the dataset). Interest-
ingly, each of the three evolutionary distance estimators seem to scale linearly for
a long initial range (IEBP more so than EDE), even when their assumptions about
the model are violated. The worst with respect to linear scaling is clearly BP, as
seen in Fig. 1.6. These observations may suggest that trees reconstructed from
breakpoint distances will have the worst accuracy, especially close to saturation,
than trees reconstructed from other methods, and that trees reconstructed from
IEBP or EDE should have the greatest accuracy.

1.6.2 Performance of NJ and Weighbor Using IEBP and EDE

As we saw in the previous section, the best estimator of evolutionary distances
is IEBP (whether Approx- or Exact-), but EDE is also quite accurate, and each
is more accurate (except under unusual circumstances) than INV and BP. The
question we investigate in this section is whether the improvement in accuracy
of the distance estimators corresponds to an improvement in the accuracy of the
resultant phylogenies, as predicted.

We see that the accuracy of trees computed by neighbor joining using ei-
ther Exact-IEBP or Approx-IEBP is essentially unchanged, and we similarly see
unchanged behavior for Weighbor. Therefore, we will collectively call both dis-
tances IEBP. In particular, the results shown in Fig. 1.7 for Exact-IEBP apply
to Approx-IEBP as well.
Model tree generation In our simulations we produce model trees under the
GNT model with 40 or 160 leaves. These model trees have topologies drawn from
the uniform distribution on trees leaf-labeled by 1, 2, . . . ,m, where m = 40 or 160.

For each model tree we must define branch lengths λe, where λe is the ex-
pected number of changes on the edge. We define these branch lengths in two
steps: we assign an initial length, and then we scale all edge lengths to obtain a
fixed target maximum path length D for the tree. This maximum path length
is defined by ∆ = maxij Dij , where Dij =

∑
e∈Pij

λe and Pij is the path in T
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Fig. 1.6. The distribution of genomic distances under the Nadeau-Taylor model
(i.e., GNT(1,0,0), or inversion-only evolution). The number of genes is 120,
the x-axis is the measured distance, and the y-axis is the actual number
of rearrangement events (inversions in this case). For each vertical line, the
middle point is the mean, and the top and bottom tips of the line represent
one standard deviation away from the mean. In computing Exact-IEBP we
use correct values of wI , wT and wIT .
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between leaves i and j. This value ∆ is called the “evolutionary diameter” of T .
Our initial assignment of lengths is obtained by choosing random positive inte-
gers between 1 and 18 for each edge independently. Then, for each target value
of ∆, we scale the edge lengths to obtain the desired evolutionary diameter. The
target diameters are drawn from 0.1n, 0.2n, 0.4n, 0.8n, 1.6n, and 3.2n, where n
is the number of genes; these settings result in datasets which have maximum
normalized inversion lengths ranging from approximately 0.1 up to almost 1, the
maximum possible.
Performance criteria We study the performance of trees reconstructed using
these five distances (BP, INV, EDE, Approx-IEBP, and Exact-IEBP). We used
neighbor joining [29], the most frequently used distance-based method, and
Weighbor [8], for comparative purposes. We evolved genomes down different
GNT model trees, using different values for wI , wT and wIT , thus producing syn-
thetic data (genomes) at the leaves of the trees. During each run, we noted which
edges of the model tree have had no events on them (these are the “zero-event”
edges); these edges are not included in the comparison to the reconstructed trees.
We then computed distances between the genomes, using the five different dis-
tance estimators. (Since IEBP requires values for wI , wT , and wIT , in order to
test robustness we included incorrect as well as correct values for these param-
eters.) Each distance matrix was then given to neighbor joining and Weighbor,
thus producing trees for each matrix. These trees were then compared to the
true tree (the model tree minus the zero-event edges) for topological accuracy.

This accuracy was measured as follows. Each edge e in a tree T defines a
bipartition πe = A|B on the leaves of T in the obvious way (deleting e separates
S into two sets A and B); we let C(T ) = {πe : e ∈ E(T )}. However, we do not
include zero-event edges in the character encoding. Similarly we can define the
set C(T ′), where T ′ is the inferred tree. The set of false positives is C(T ′)−C(T ),
and the set of false negatives is C(T )−C(T ′). The false negative and false positive
rates are obtained by dividing the number of false negatives and false positives,
respectively, by n−3 (the number of internal edges in a binary tree on n leaves).
The false negative rate is informative of the true tree edges that are found in
the inferred tree (i.e., the true positive rate). A low false negative rate does not
indicate that the inferred tree obtained is highly resolved and close to the true
tree, but only that it does not miss many edges in the true tree. Therefore, when
the true tree has very low resolution, a low false positive rate is not indicative
of a highly resolved accurate inferred tree. The false negative rate will be most
significant when the true tree is close to fully resolved, i.e., when the datasets
are close to saturation. Our experiments examine performance under all rates
of evolution, but the performance under higher rates of evolution allows us to
observe whether tree reconstruction can be done accurately when every edge is
expected to have changes on it.
Results In Figs. 1.7 and 1.8 we present a sample of the simulation study, show-
ing the accuracy of neighbor joining and Weighbor trees constructed using the
different distance estimators.



24 DISTANCE-BASED GENOME REARRANGEMENT PHYLOGENY

Our model trees have 160 leaves, and we evolve genomes with 120 genes
down the model trees. The model conditions include both an inversion-only
scenario (GNT(1, 0, 0)) and a scenario with half inversions and half transpo-
sitions/inverted transpositions (GNT(.5, .25, .25)).

We gave IEBP correct parameter values for wI , wT , wIT in this experiment.
The model trees have rates of evolution that range from low to almost saturated,
as indicated by the x-axis which measures the normalized maximum inversion
distance in the dataset. For each experimental setting, we bin the datasets ac-
cording to their diameters (maximum pairwise inversion distance between any
two genomes). The x− and y-axis coordinates of each point in the figure are
the average diameter and average false negative rates of the corresponding bin,
respectively.
False positive rates Trees returned by neighbor joining or Weighbor are always
binary. However, since true trees may not be binary (due to the presence of
zero-event edges), some false positive edges may be artifacts. In fact, in our
experiments, except when quite close to saturation, the true tree will in general
be quite unresolved. As a result, any reconstruction method that always returns
binary trees will necessarily have a high false positive rate, since the false positive
rate must be at least as high as the percentage of edges missing in the true
tree. However, in our experiments we see that the false positive rates we obtain
generally are not much higher than the percentage of missing edges, indicating
quite good performance (see Fig. 1.7).
False negative rates We see clearly from Fig. 1.8 that for extremely low evolu-
tionary diameters, all methods can reconstruct a good estimate of the true tree,
but as the diameter increases, the false negative rates increase for all methods.
We also see that overall NJ(BP) has the worst performance, and that Weigh-
bor(IEBP) is generally inferior to the other methods (even when it is given the
correct parameter values, for a reason we do not understand). On the other
hand, Weighbor(EDE) is extremely accurate, even when the model condition is
not inversion-only. Second best is NJ(EDE), which is also quite accurate even
when the model condition is not inversion-only. Thus, although we saw that EDE
is not robust to model violations with respect to estimating distances correctly,
its apparent linear scaling with the actual distance makes it a good technique
for phylogeny reconstruction.

Some of the other trends are also worth noting:

1. As the number of genes increases, the inferred trees become more accurate,
at all evolutionary diameters (data not shown). Thus, inferring phylogenies
from chloroplast genomes (which contain on average 120 genes) is more reli-
able than inferring phylogenies from mitochondrial genomes (which contain
on average 37 genes).

2. As the number of taxa increases, the inferred trees become less accurate,
at all evolutionary diameters (data not shown).
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Fig. 1.7. Simulation study of false negative rates of distance-based tree recon-
struction methods on 160 circular genomes with 120 genes: (Top) Breakpoint
distance based methods, (Bottom) Inversion distance based methods. The
x-axis is the normalized diameter (maximum inversion distance between all
pairs of genomes) of the dataset, and the y-axis is the false negative rate. The
model of evolution is (left) the Nadeau-Taylor model (i.e., GNT(1, 0, 0)), or
(right) the GNT model with half inversions, one-fourth transpositions and
one-fourth inverted transpositions (i.e., GNT(1/2, 1/4, 1/4)). In computing
Exact-IEBP we use correct values of wI , wT and wIT .

3. Neighbor joining trees are more accurate when based upon corrected dis-
tances (IEBP or EDE) than uncorrected distances (breakpoint or inversion
distance). The distinction is the greatest when the dataset has a high evo-
lutionary diameter (i.e., when the dataset contains some pair of genomes
that look almost random with respect to each other).

4. NJ(IEBP) and Weighbor(IEBP) perform comparably with incorrect values
for the parameters as with correct values; however,
Weighbor(IEBP) is not particularly accurate, and neither is as good as
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Fig. 1.8. Simulation study of the false positive rates of NJ(INV) and Weigh-
bor(EDE) on 160 circular genomes with 120 genes. We do not include the
false positive rates of NJ(EDE) because the curve is very close to that of
Weighbor(EDE). The x-axis is the normalized diameter (maximum inver-
sion distance between all pairs of genomes) of the dataset, and the y-axis
is the false positive rate. The model of evolution is (left) the Nadeau-Tay-
lor model (i.e., GNT(1, 0, 0)), or (right) the GNT model with half inver-
sions, one-fourth transpositions and one-fourth inverted transpositions (i.e.,
GNT(1/2, 1/4, 1/4)). Refer to Section 1.6.1 for how these figures are gener-
ated.

NJ(EDE) or Weighbor(EDE).

5. In general, Weighbor(EDE) seems to provide better estimates of evolution-
ary history than all other methods we examined, especially when the num-
ber of genomes and genes are large, and the evolutionary rate is high,
but NJ(EDE) is a close second. Both give highly accurate estimations of
phylogenies even when the model is not inversion-only.

These observations are specifically for the uniform tree topology case, but most
of them hold for other models, including birth-death trees generated by the r8s
program [30]. In particular, Weighbor(EDE) is still the most accurate of these
methods.

We conclude this section with the following observation. Perhaps the most
significant indicator of the difficulty of a dataset is its evolutionary diameter:
if the diameter is low, all methods will get a good estimate of the tree, even if
the distance estimation is based upon incorrect assumptions, but for the largest
diameters (approaching saturation), only Weighbor and NJ on EDE distances are
reliably accurate.

1.7 Summary

We have shown that statistically-based estimations of evolutionary distances
can be quite robust to some model violations, and can help make phylogeny
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reconstructions much more accurate – especially when the dataset is close to
saturation. However, one of the interesting observations to come out of our ex-
periments is that the accuracy of a phylogeny reconstruction is usually, but not
always improved by having a better estimate of the evolutionary distance. For
example, NJ(EDE) gives better estimates of trees than NJ(IEBP), although IEBP

gives more accurate estimates of distances than EDE. Clearly, the interplay be-
tween phylogeny reconstruction methods themselves, and the distance estimates,
cannot be simply summarized and explained.

Several problems for the Generalized Nadeau-Taylor model are still open.
First, the distribution of the inversion distance is still unknown, as are its ex-
pectation and variance. Results along these lines will help us understand why
neighbor joining based upon the inversion distance gives better results in phy-
logeny reconstruction than neighbor joining based upon the breakpoint distance.
Also several studies suggest minimum evolution methods also produce highly ac-
curate trees (see Chapter 1 in this Volume) for DNA sequence evolution. It will
be interesting to see whether minimum evolution methods produce accurate trees
for gene order data.

A maximum likelihood approach for genome rearrangement phylogeny esti-
mation is another approach that will be interesting to explore. MCMC meth-
ods are also interesting, but have not been able to scale to reasonable dataset
sizes [18]. Maximum likelihood distance estimation is another interesting area
to investigate, and it is unknown if the method of moments estimators used for
correcting breakpoint and inversion distances are maximum likelihood distance
estimators. Another challenging problem is to estimate wI , wT , and wIT from
the data.

The models we have studied have all presumed that evolutionary events occur
with probabilities that only depend upon the type of event. Therefore, a main
research question is to explore the estimation of evolutionary distances under
newer models of genome evolution. Such models might assume that the proba-
bility of the rearrangement events may depend upon the lengths of the affected
segments (see [26] for one such model), or may make other assumptions that
incorporate hotspots or break the chromosome into distinct regions and require
events to stay within these regions [37]. Also of interest are models which al-
low for deletions, duplications, and other events which change the gene content
and not just the gene order. Calculations of distances in these models are much
more complicated; initial results along these lines have been obtained by El-
Mabrouk, Moret, and others (see [11–14, 19, 34] and Chapters 11 and 12 in this
Volume). Similarly, models which handle multiple chromosomes, and which allow
for translocations, need to be considered, and there is much less that has been
established for this multi-chromosomal case than for the unequal gene content
case [35,36].

Finally, as we have noted, the reconstructions of trees we obtain can have
a high false positive rate, due to the high incidence of zero-event edges in the
model tree (and hence low resolution in the true tree). Determining which edges
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in the reconstructed tree are valid, and which are not, is a general problem facing
phylogenetic analysis. In DNA systematics, bootstrapping and other techniques
can be used to assess the confidence in a given edge, and so potentially identify
the false positive edges. However, in gene order phylogeny it is not possible to
perform bootstrapping, since there is only one character. Consequently, other
techniques would need to be used to identify false positives.

One potential approach would be to use GRAPPA (see [21], and also Chapter 12
in this Volume) to try to identify the false positives, as follows. First we could
assign genomes (i.e., signed circular permutations of (1, 2, . . . , n)) to internal
nodes in order to minimize the total number of events on the tree, and then we
could contract all edges that are assigned the same genomes at the endpoints.
Such a technique might be able to identify edges on the tree that have no events
on them, but is most likely to succeed when the reconstructed tree is a refinement
of the true tree. In our experiments, since the false negative rate is either 0 or
close to 0, this would be the case. Future research will investigate this as a
potential second phase in the phylogenetic analysis.
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