Family of HMMs

Nam Nguyen University of Texas at Austin

Outline of Talk

- Background
- Family of HMMs
 - Model
 - Alignment algorithm
- Applications of fHMM
 - SEPP (Mirarab, Nguyen, and Warnow. PSB 2012)
 - TIPP (Nguyen, et al. Under review)
- Conclusions and future work

Phylogenetics

- Study of evolutionary relationship between different species
- Applications to many fields such as drug discovery, agriculture, and biotechnology
- Critical are tools for alignment and phylogeny estimation.

Courtesy of Tree of Life Project

Gather Sequences

- S1 = AGGCTATCACCTGACCTCCA
- S2 = TAGCTATCACGACCGC
- S3 = TAGCTGACCGC
- S4 = TCACGACCGACA

Align Sequences

- = AGGCTATCACCTGACCTCCA S1 = -AGGCTATCACCTGACCTCCA S1
- S2
- S3 = TAGCTGACCGC
- S4 = TCACGACCGACA
- = TAGCTATCACGACCGC S2 = TAG-CTATCAC--GACCGC--
 - S3 = TAG-CT----GACCGC--
 - S4 = ----TCAC -GACCGACA

Estimate Tree

- S1 = AGGCTATCACCTGACCTCCA S1 = -AGGCTATCACCTGACCTCCA
- S2 = TAGCTATCACGACCGC
- S3 = TAGCTGACCGC
- S4 = TCACGACCGACA

- S2 = TAG-CTATCAC--GACCGC--
 - S3 = TAG-CT----GACCGC--

S4 = ----TCAC--GACCGACA

Multiple Sequence Alignment

- Fundamental step in bioinformatics pipelines
- Used in phylogeny estimation, prediction of 2D/3D protein structure, and detection of conserved regions
- Can be formulated as an NP-hard optimization problem
- Popular heuristics include progressive alignment methods and iterative methods
 - Heuristics do not scale linearly with the number of sequences
 - Not as accurate on large datasets or evolutionary divergent datasets

Profile Hidden Markov Model (HMM)

- Statistical model for representing an MSA
- Uses include
 - inserting sequences into an alignment
 - taxonomic identification
 - homology detection
 - functional annotation

Profile Hidden Markov Model (HMM)

- Statistical model for representing an MSA
- Uses include
 - inserting sequences into an alignment
 - taxonomic identification
 - homology detection
 - functional annotation

Profile Hidden Markov Model (HMM)

- Statistical model for representing an MSA
- Uses include
 - inserting sequences into an alignment
 - taxonomic identification
 - homology detection
 - functional annotation

Metagenomics

- Study of sequencing genetic material directly from the environment
- Applications to biofuel production, agriculture, human health
- Sequencing technology produces millions of short reads from unknown species
- Fundamental step in analysis is identifying taxa of read

Courtesy of Wikipedia

- Input: (Backbone) Alignment and tree on full-length sequences and a query sequence (short read)
- Output: Placement of the query sequence on the backbone tree
- Use placement to infer relationship between query sequence and full-length sequences in backbone tree
- Applications in metagenomic analysis
 - Millions of reads
 - Reads from different genomes mixed together
 - Use placement to identify read

 Align each query sequence to backbone alignment to produce an extended alignment

 Place each query sequence into the backbone tree using extended alignment

Align Sequence

Q1 = TAAAAC

Align Sequence

S2

S3

Place Sequence

Place Sequence

Query sequences are aligned and placed independently

- Align each query sequence to backbone alignment:
 - HMMALIGN (Eddy, Bioinformatics 1998)
 - PaPaRa (Berger and Stamatakis, Bioinformatics 2011)
- Place each query sequence into backbone tree, using extended alignment:
 - pplacer (Matsen et al., BMC Bioinformatics 2010)
 - EPA (Berger et al., Systematic Biology 2011)

- Align each query sequence to backbone alignment:
 - HMMALIGN (Eddy, Bioinformatics 1998)
 - PaPaRa (Berger and Stamatakis, Bioinformatics 2011)
- Place each query sequence into backbone tree, using extended alignment:
 - pplacer (Matsen et al., BMC Bioinformatics 2010)
 - EPA (Berger et al., Systematic Biology 2011)

HMMER and PaPaRa results

Family of HMMs (fHMM)

- Represents the MSA with multiple HMMs
- Input: backbone alignment and tree on full-length sequences S and max decomposition size N
- Two steps:
 - Decompose tree into subtrees of closely related sequences, with at most N leaves in each subtree
 - Build HMMs on subalignments induced by subtrees

Family of HMMs (fHMM)

- Represents the MSA with multiple HMMs
- Input: backbone alignment and tree on full-length sequences S and max decomposition size N
- Two steps:
 - Decompose tree into subtrees of closely related sequences, with at most N leaves in each subtree
 - Build HMMs on subalignments induced by subtrees

Family of HMMs (fHMM)

- Represents the MSA with multiple HMMs
- Input: backbone alignment and tree on full-length sequences S and max decomposition size N
- Two steps:
 - Decompose tree into subtrees of closely related sequences, with at most N leaves in each subtree
 - Build HMMs on subalignments induced by subtrees

Alignment using fHMM

- Score query sequence against every HMM and select HMM that yields best bit score
- Insert query sequence into subalignment, and by transitivity align query sequence to backbone alignment

Alignment using fHMM

- Score query sequence against every HMM and select HMM that yields best bit score
- Insert query sequence into subalignment, and by transitivity align query sequence to backbone alignment

Alignment using fHMM

- Score query sequence against every HMM and select HMM that yields best bit score
- Insert query sequence into subalignment, and by transitivity align query sequence to backbone alignment

SEPP

- SEPP = SATé-Enabled Phylogenetic Placement
- Developers: Mirarab, Nguyen, and Warnow
- Two stages of decomposition:
 - Placement decomposition
 - Alignment decomposition
- Parameterized by N and M
 - N: maximum size of alignment subsets
 - M: maximum size of placement subsets
 - N ≤ M
- Published at Pacific Symposium on Biocomputing 2012

Stage 1: Placement decomposition

N=4, M=8

Decompose tree into placement sets of size ≤ 8

Decompose each placement set into alignment sets of size ≤ 4

SEPP 4/8: Decompose Tree

N=4, M=8

Decompose tree into placement sets of size ≤ 8

Decompose each placement set into alignment sets of size ≤ 4

Stage 2: Alignment decomposition

N=4, M=8

Decompose tree into placement sets of size ≤ 8

Decompose each placement set into alignment sets of size ≤ 4

Align and Place Fragment

Align to best HMM

Place within placement subtree containing HMM

Align and Place Fragment

Align to best HMM

Place within placement subtree containing HMM

Align and Place Fragment

Align to best HMM

Place within placement subtree containing HMM

M2 model condition, 500 true backbone

M2 model condition, 500 true backbone

SEPP Parameters: Simulated 7 Increasing Placement ←PPR+pp 6 Size: 10,50,250,500 5 Delta Error (edges) Increases: Accuracy 4 €+MMH→ 3 € ~ 250/250 2 100/100 10/10 10/ 50 -50/50 10/250 -10/500 50/100 5072.50 1 0 10 20 30 40 50 0 60 Time (minutes)

M2 model condition, 500 true backbone

SEPP (10% rule) Simulated Results

Backbone size: 500 5000 fragments 20 replicates

SEPP Biological Results

16S.B.ALL dataset, curated alignment/tree, 13k backbone, 13k total fragments

For 1 million fragments:

PaPaRa+pplacer: ~133 days

HMMER+pplacer: ~30 days

SEPP 1000/1000: ~6 days

SEPP summary

- Two stages of decomposition
 - Placement decomposition to form placement sets
 - Alignment decomposition to form fHMM
- Results in 40% lower placement error than HMMER+pplacer on divergent datasets
- 1/5 running time of HMMER+pplacer on large backbones
- Local placement uses less than 2 GB peak memory compared to 60-70 GB peak memory for global placement

Outline of Talk

- Background
- Family of HMMs
 - Model
 - Alignment algorithm
- Applications of fHMM
 - SEPP (Mirarab, Nguyen, and Warnow. PSB 2012)
 - TIPP (Nguyen, et al. Under review)
- Conclusions and future work

Taxonomic Identification and Profiling

• Taxonomic identification

- Objective: Given a query sequence, identify the taxon (species, genus, family, etc...) of the sequence
- Classification problem
- Methods include Megan, PhymmBL, Metaphyler, and MetaPhylAn
- Taxonomic profiling
 - Objective: Given a set of query sequences collected from a sample, estimate the population profile of the sample
 - Estimation problem
 - Can be solved via taxonomic identification

Using SEPP

Fragmentary Unknown Reads:

(60-200 bp long)

Known Full length Sequences, and an alignment and a tree (500-10,000 bp long)

Adding uncertainty

Fragmentary Unknown Reads:

(60-200 bp long)

Known Full length Sequences, and an alignment and a tree (500-10,000 bp long)

TIPP: Taxonomic identification and phylogenetic profiling

- Developers: Nguyen, Mirarab, Pop, and Warnow
- SEPP takes the best extended alignment and finds the ML placement.
- We modify SEPP to use uncertainty:
 - Find many extended alignments of fragments to each reference alignment to <u>reach support alignment</u> <u>threshold</u>
 - Find many placements of fragments for each extended alignment to reach placement support threshold
- Takes alignment and placement support values
- Classify each fragment at the Lowest Common Ancestor of all placements obtained for the fragment
- Under review

Experimental Design

- Taxonomic identification
 - Used leave-one-out experiments to examine classification accuracy on classifying novel taxa
 - Used non-leave-one-out experiments with fragments simulated under different error models to examine robustness
 - Fragments simulated under Illumina-like and 454-like error models
- Taxonomic profiling
 - Collected simulated datasets from various studies
 - Estimated profiles on simulated samples
 - Computed Root Mean Squared Error for each profile

Leave-one-out comparison

(a) Illumina error model

(b) 454 error model

Robustness to sequencing error

454_3 error model has reads with average length of 285 bps, with **60 indels** per read
Taxonomic profiling

- Selected 9 different simulated metagenomic model conditions
- Divided datasets into two groups:
 - short fragments (<= 100 bps)
 - long fragments (>= 100 bps).
- Report RMSE relative to TIPP's RMSE

Dataset	# Genomes	Complex.	Seq. Model	Reads	Length
MetaPhlAn HC	100	High	NA	1000000	88
MetaPhlAn LC	25	Low	NA	240000	88
FAMeS HC	113	High	DOE-JGI	116771	949
FAMeS MC	113	Medium	DOE-JGI	114457	969
FAMeS LC	113	Low	DOE-JGI	97495	951
FACS HC	19	High	454	26984	268
FACS HC Illumina	19	High	Illumina	300000	100
WebCarma	25	High	454	25000	265
WebCarma Illumina	25	High	Illumina	300000	100

Profiling: Short Fragments

Profiling: Short Fragments

Note: PhymmBL does not report species level classification

Profiling: Long Fragments

Note: PhymmBL does not report species level classification

TIPP Summary

- Combines SEPP with statistical support threshold to increase precision with minor reduction in sensitivity
- Better sensitivity for classifying novel reads compared to MetaPhyler
- Very robust to sequencing errors
- Results in overall more accurate profiles (lowest average error in 10 of 12 conditions)
- Can be parameterized for precision or sensitivity

Summary

- fHMM as a statistical model for MSA
- Algorithm for alignment using fHMM
 - Computes HMMs on closely related subsets
 - Aligns query sequence to fHMM
- fHMM improves sequence alignment to an existing alignment

Future work

- Use fHMM as a replacement for profile HMM in other domains
 - Homology detection
 - Functional annotation
- Use different alignment methods within fHMM framework
- TIPP
 - Statistical models for combining profiles on different markers
 - Expand marker sets to include more genes

Acknowledgements

Siavash Mirarab

Mihai Pop

Bo Liu

Tandy Warnow

Supported by NSF DEB 0733029 University of Alberta

1KP P450 transcriptome dataset

Ultra-large sequence alignment

- Most MSA techniques do not grow linearly with number of sequences
- Alignments are needed on very large datasets
 - Pfam contains families with more than 100,000 sequences
 - More than 1 million 16S sequences in Green Genes DB
- Datasets can contain fragmentary and full-length sequences

HMMs for MSA

- Given seed alignment (e.g., in PFAM) and a collection of sequences for the protein family:
 - Represent seed alignment using HMM
 - Align each additional sequence to the HMM
 - Use transitivity to obtain MSA

 Can we do something like this without a seed alignment?

UPP: Ultra-large alignment using SEPP

- Developers: Nguyen, Mirarab, and Warnow
- Input: set of sequences S, backbone size B, and alignment subset size A
- Output: MSA on S
- Algorithm
 - Select B random full-length sequences (backbone set) from S
 - Estimate backbone alignment and backbone tree on backbone set
 - Align remaining sequences to backbone alignment
- Uses nested hierarchical fHMM
- In preparation

Disjoint HMMs

Nested HMMs

Nested HMMs

Nested HMMs

Experimental Design

- Examined both simulated and biological DNA, RNA, and AA datasets
- Generated fragmentary datasets from the full-length datasets
- Compared Clustal-Omega, Mafft, Muscle, and UPP
- ML trees estimated on alignments using FastTree
- Scored alignment and tree error
 - Tree error measured in FN rate or Delta FN rate

Tree error on simulated RNA datasets

UPP(Fast): Backbone size=100, Alignment size=10 Average full-length sequence size 1500 bps Only UPP completes on all datasets within 24 hours on a 12 core machine with 24 GB

Running time on simulated RNA datasets

UPP has close to linear scaling

Tree Error on fragmentary RNASim 10K dataset

UPP(Default): Backbone size=1000, Alignment size=10 Average fragment length of 500 bps Average full-length sequence size 1500 bps Delta FN error: ML(Estimated)-ML(True)

One Million Sequences: Tree Error

UPP summary

- Uses nested hierarchical fHMM for sequence alignment
- Overall, results in the most accurate alignments (not shown) and trees on full-length simulated datasets
 - Larger differences on highly divergent datasets
- Results in comparable or more accurate alignments and trees on biological datasets (not shown)
- Yields most accurate trees on both full-length and mixed datasets
- Only method that can complete within 24 hours on datasets with up to 200K sequences, 1M in less than 2 days

- False Negative (FN): an edge in the true tree that is missing from the estimated tree
- Delta Error: the difference in FN of the backbone tree+placement and the backbone tree

- False Negative (FN): an edge in the true tree that is missing from the estimated tree
- Delta Error: the difference in FN of the backbone tree+placement and the backbone tree

- False Negative (FN): an edge in the true tree that is missing from the estimated tree
- Delta Error: the difference in FN of the backbone tree+placement and the backbone tree

S1 A----ATC--TG---A S2 A----GTT--TG---A S3 AC--C-TT-A-AA-GA S4 AC-AC-TCCA-GATGA S5 TC-TCGT--T-CTTTA Sn A-TTC-GC-A-GA--A

Q:

Q:

Q:A

Q:

Q:A

Q:At

Q:Atc

Q:

Q:A

Q:A-

Q:A-tcTCA-tATG
NGS data produce fragmentary sequence data Metagenomic analyses include unknown species

Taxon identification: given short sequences, identify the species for each fragment

Applications: Human Microbiome and other metagenomic projects

Issues: accuracy and speed

Contributions

- MRL and SuperFine+MRL: new supertree methods. Nguyen, Mirarab, and Warnow. AMB 2012
- SEPP: SATé-Enabled phylogenetic placement. Mirarab, Nguyen, and Warnow. PSB 2012
- TIPP: Taxonomic identification and phylogenetic profiling. Nguyen, Mirarab, Pop, and Warnow. Under review.
- UPP: Ultra-large alignment using SEPP. Nguyen, Mirarab, Kumar, Guo, Wang, and Warnow. In preparation.
- Comparison of different methods for masking alignments. Nguyen, Linder, and Warnow. In preparation.

Contributions

- MRL and SuperFine+MRL: new supertree methods. Nguyen, Mirarab, and Warnow. AMB 2012
- SEPP: SATé-Enabled phylogenetic placement. Mirarab, Nguyen, and Warnow. PSB 2012
- TIPP: Taxonomic identification and phylogenetic profiling. Nguyen, Mirarab, Pop, and Warnow. Under review.
- UPP: Ultra-large alignment using SEPP. Nguyen, Mirarab, Kumar, Guo, Wang, and Warnow. In preparation.
- Comparison of different methods for masking alignments. Nguyen, Linder, and Warnow. In preparation.

False Negative (FN): an edge in the true tree that is missing from the estimated tree

Placement Error

 Delta Error: the difference in FN of the extended tree and the backbone tree

Placement Error

 Delta Error: the difference in FN of the extended tree and the backbone tree

Placement Error

 Delta Error: the difference in FN of the extended tree and the backbone tree

Delta Error = 2 - 1 = 1

Alignment using fHMM

