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Phylogenetics 

 Study of evolutionary 

relationship between 

different species 

 Applications to many fields 

such as drug discovery, 

agriculture, and 

biotechnology 

 Critical are tools for 

alignment and phylogeny 

estimation. 

Courtesy of Tree of Life Project 



Gather Sequences 

S1 = AGGCTATCACCTGACCTCCA 

S2 = TAGCTATCACGACCGC 

S3 = TAGCTGACCGC 

S4 = TCACGACCGACA 



Align Sequences 

S1 = AGGCTATCACCTGACCTCCA 

S2 = TAGCTATCACGACCGC 

S3 = TAGCTGACCGC 

S4 = TCACGACCGACA 

S1 = -AGGCTATCACCTGACCTCCA 

S2 = TAG-CTATCAC--GACCGC-- 

S3 = TAG-CT-------GACCGC-- 

S4 = -------TCAC--GACCGACA 



Estimate Tree 

S1 

S4 

S2 

S3 

S1 = AGGCTATCACCTGACCTCCA 

S2 = TAGCTATCACGACCGC 

S3 = TAGCTGACCGC 

S4 = TCACGACCGACA 

S1 = -AGGCTATCACCTGACCTCCA 

S2 = TAG-CTATCAC--GACCGC-- 

S3 = TAG-CT-------GACCGC-- 

S4 = -------TCAC--GACCGACA 



Multiple Sequence Alignment 
 

 Fundamental step in bioinformatics pipelines 

 Used in phylogeny estimation, prediction of 2D/3D protein 

structure, and detection of conserved regions 

 Can be formulated as an NP-hard optimization problem 

 Popular heuristics include progressive alignment methods 

and iterative methods 

 Heuristics do not scale linearly with the number of sequences 

 Not as accurate on large datasets or evolutionary divergent datasets 

 



• Statistical model for representing an MSA 

• Uses include  

• inserting sequences into an alignment 

• taxonomic identification 

• homology detection 

• functional annotation 
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Metagenomics 

Courtesy of Wikipedia 

• Study of sequencing genetic material 
directly from the environment 
 

• Applications to biofuel production, 
agriculture, human health 

 
• Sequencing technology produces 

millions of short reads from unknown 
species 

 
• Fundamental step in analysis is 

identifying taxa of read 
 



ACT..TAGA..A 
  (species5) 

AGC...ACA 
 (species4) 

TAGA...CTT 
 (species3) 

TAGC...CCA 
 (species2) 

AGG...GCAT 
 (species1) 

• ACCG 
• CGAG 
• CGG 
• GGCT 
• TAGA 
• GGGGG 
• TCGAG 
• GGCG 
• GGG 
• . 
• . 
• . 
• ACCT 

(60-200 bp long) 

Fragmentary Reads: Known Full length Sequences, 
 and an alignment and a tree 

(500-10,000 bp long) 

Phylogenetic Placement 



Phylogenetic Placement 

• Input: (Backbone) Alignment and tree on full-length 

sequences and a query sequence (short read) 

• Output: Placement of the query sequence on the backbone 

tree 

• Use placement to infer relationship between query sequence 

and full-length sequences in backbone tree 

• Applications in metagenomic analysis 

• Millions of reads 

• Reads from different genomes mixed together 

• Use placement to identify read 



Phylogenetic Placement 

 Align each query sequence to backbone 

alignment to produce an extended 

alignment 

 

 Place each query sequence into the 

backbone tree using extended alignment 

 



Align Sequence 

S1 

S4 

S2 

S3 

S1  = -AGGCTATCACCTGACCTCCA-AA 

S2  = TAG-CTATCAC--GACCGC--GCA 

S3  = TAG-CT-------GACCGC--GCT 

S4  = TAC----TCAC--GACCGACAGCT 

Q1  = TAAAAC 



Align Sequence 

S1 

S4 

S2 

S3 

S1  = -AGGCTATCACCTGACCTCCA-AA 

S2  = TAG-CTATCAC--GACCGC--GCA 

S3  = TAG-CT-------GACCGC--GCT 

S4  = TAC----TCAC--GACCGACAGCT 

Q1  = -------T-A--AAAC-------- 



Place Sequence 

S1 

S4 

S2 

S3 Q1 

S1  = -AGGCTATCACCTGACCTCCA-AA 

S2  = TAG-CTATCAC--GACCGC--GCA 

S3  = TAG-CT-------GACCGC--GCT 

S4  = TAC----TCAC--GACCGACAGCT 

Q1  = -------T-A--AAAC-------- 



Place Sequence 

S1 

S4 

S2 

S3 Q1 

S1  = -AGGCTATCACCTGACCTCCA-AA 

S2  = TAG-CTATCAC--GACCGC--GCA 

S3  = TAG-CT-------GACCGC--GCT 

S4  = TAC----TCAC--GACCGACAGCT 

Q1  = -------T-A--AAAC-------- Q1 

Q2 
Q3 

Query sequences are aligned and placed independently 



Phylogenetic Placement 

 Align each query sequence to backbone 

alignment: 

 HMMALIGN (Eddy, Bioinformatics 1998) 

 PaPaRa (Berger and Stamatakis, Bioinformatics 

2011) 

 Place each query sequence into 

backbone tree, using extended alignment: 

 pplacer (Matsen et al., BMC Bioinformatics 2010) 

 EPA (Berger et al., Systematic Biology 2011) 



Phylogenetic Placement 

 Align each query sequence to backbone 

alignment: 

 HMMALIGN (Eddy, Bioinformatics 1998) 

 PaPaRa (Berger and Stamatakis, Bioinformatics 

2011) 

 Place each query sequence into 

backbone tree, using extended alignment: 

 pplacer (Matsen et al., BMC Bioinformatics 2010) 

 EPA (Berger et al., Systematic Biology 2011) 



HMMER and PaPaRa results 

Increasing rate evolution 

0.0 

Backbone size: 500 
5000 fragments 
20 replicates 



Reducing Evolutionary Distance 
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Reducing Evolutionary Distance 



Family of HMMs (fHMM) 

 Represents the MSA with multiple HMMs 

 Input: backbone alignment and tree on full-length 

sequences S and max decomposition size N 

 Two steps: 

 Decompose tree into subtrees of closely related sequences, 

with at most N leaves in each subtree 

 Build HMMs on subalignments induced by subtrees 
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Alignment using fHMM 

 Score query sequence against every HMM and select 

HMM that yields best bit score 

 Insert query sequence into subalignment, and by 

transitivity align query sequence to backbone 

alignment 
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Alignment using fHMM 

 Score query sequence against every HMM and select 

HMM that yields best bit score 

 Insert query sequence into subalignment, and by 

transitivity align query sequence to backbone 

alignment 

 

 



SEPP 

 SEPP = SATé-Enabled Phylogenetic Placement 

 Developers: Mirarab, Nguyen, and Warnow 

 Two stages of decomposition: 

 Placement decomposition 

 Alignment decomposition 

 Parameterized by N and M 

 N: maximum size of alignment subsets 

 M: maximum size of placement subsets 

 N ≤ M 

 Published at Pacific Symposium on Biocomputing 2012 

 



Stage 1: Placement decomposition 

S1 
S2 

S3 

S4 

S6 

S7 

S8 

S9 

S10 

S11 

S12 

S13 

S14 
S15 

S5 

N=4, M=8 

Decompose tree into placement sets of size ≤ 8 

Decompose each placement set into alignment sets of size ≤ 4 



SEPP 4/8: Decompose Tree 

N=4, M=8 

Decompose tree into placement sets of size ≤ 8 

Decompose each placement set into alignment sets of size ≤ 4 
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Stage 2: Alignment decomposition 

S1 
S2 

S3 

S4 

S6 

S7 

S8 

S9 

S10 

S11 

S12 

S13 

S14 

S5 

N=4, M=8 

Decompose tree into placement sets of size ≤ 8 

Decompose each placement set into alignment sets of size ≤ 4 

S9 
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Align and Place Fragment 

Align to best HMM 

Place within placement subtree containing HMM 
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Align and Place Fragment 

Align to best HMM 

Place within placement subtree containing HMM 
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Align and Place Fragment 

Align to best HMM 

Place within placement subtree containing HMM 
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SEPP Parameters: Simulated 

M2 model condition, 500 true backbone 
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M2 model condition, 500 true backbone 

SEPP Parameters: Simulated 



16S.B.ALL dataset,  13k curated backbone 

SEPP Parameters: Biological 

Decreasing 
Alignment 
Size: 
 
 



SEPP Parameters: Biological 

16S.B.ALL dataset,  13k curated backbone 

Decreasing 
Alignment 
Size: 
1000 



16S.B.ALL dataset,  13k curated backbone 

SEPP Parameters: Biological 

Decreasing 
Alignment 
Size: 
1000,250 



16S.B.ALL dataset,  13k curated backbone 

SEPP Parameters: Biological 

Decreasing 
Alignment 
Size: 
1000,250, 
100 



16S.B.ALL dataset,  13k curated backbone 

SEPP Parameters: Biological 

Decreasing 
Alignment 
Size: 
1000,250, 
100,50 
 
 
 
 



16S.B.ALL dataset,  13k curated backbone 

SEPP Parameters: Biological 

Decreasing 
Alignment 
Size: 
1000,250, 
100,50 
 
Increases: 
Running time 
Accuracy 
 
 
 



SEPP (10% rule) Simulated Results 

0.0 0.0 

Increasing rate evolution 

Backbone size: 500 
5000 fragments 
20 replicates 



SEPP Biological Results 

16S.B.ALL dataset, curated alignment/tree, 13k backbone, 13k 

total fragments 

For 1 million fragments: 

PaPaRa+pplacer: ~133 days 

HMMER+pplacer: ~30 days 

SEPP 1000/1000:  ~6 days 

 



SEPP summary 

 Two stages of decomposition 

 Placement decomposition to form placement sets 

 Alignment decomposition to form fHMM 

 Results in 40% lower placement error than HMMER+pplacer 

on divergent datasets 

 1/5 running time of HMMER+pplacer on large backbones 

 Local placement uses less than 2 GB peak memory 

compared to 60-70 GB peak memory for global placement 
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Taxonomic Identification and Profiling 

 Taxonomic identification 

 Objective: Given a query sequence, identify the taxon (species, genus, 

family, etc...) of the sequence 

 Classification problem 

 Methods include Megan, PhymmBL, Metaphyler, and MetaPhylAn 

 Taxonomic profiling 

 Objective: Given a set of query sequences collected from a sample, 

estimate the population profile of the sample 

 Estimation problem 

 Can be solved via taxonomic identification 



ACT..TAGA..A 
  (species5) 

AGC...ACA 
 (species4) 

TAGA...CTT 
 (species3) 

TAGC...CCA 
 (species2) 

AGG...GCAT 
 (species1) 

• ACCG 
• CGAG 
• CGG 
• GGCT 
• TAGA 
• GGGGG 
• TCGAG 
• GGCG 
• GGG 
• . 
• . 
• . 
• ACCT 

(60-200 bp long) 

Fragmentary Unknown Reads: Known Full length Sequences, 
 and an alignment and a tree 

(500-10,000 bp long) 

Using SEPP 

ML placement 
   40% 



ACT..TAGA..A 
  (species5) 

AGC...ACA 
 (species4) 

TAGA...CTT 
 (species3) 

TAGC...CCA 
 (species2) 

AGG...GCAT 
 (species1) 

• ACCG 
• CGAG 
• CGG 
• GGCT 
• TAGA 
• GGGGG 
• TCGAG 
• GGCG 
• GGG 
• . 
• . 
• . 
• ACCT 

(60-200 bp long) 

Fragmentary Unknown Reads: Known Full length Sequences, 
 and an alignment and a tree 

(500-10,000 bp long) 

Taxonomic Identification using 

Phylogenetic Placement Adding uncertainty 

2nd highest likelihood  
        placement  38% 

ML placement 
   40% 



• Developers: Nguyen, Mirarab, Pop, and Warnow 

• SEPP takes the best extended alignment and finds the ML 

placement.   

• We modify SEPP to use uncertainty:    
• Find many extended alignments of fragments to each 

reference alignment to reach support alignment 

threshold 

• Find many placements of fragments for each extended 

alignment to reach placement support threshold 
 

• Takes alignment and placement support values   

• Classify each fragment at the Lowest Common Ancestor of 

all placements obtained for the fragment 

•   Under review 

TIPP: Taxonomic identification and phylogenetic profiling 
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Experimental Design 

 Taxonomic identification 

 Used leave-one-out experiments to examine classification 

accuracy on classifying novel taxa 

 Used non-leave-one-out experiments with fragments simulated 

under different error models to examine robustness 

 Fragments simulated under Illumina-like and 454-like error 

models 

 Taxonomic profiling 

 Collected simulated datasets from various studies 

 Estimated profiles on simulated samples 

 Computed Root Mean Squared Error for each profile 

 

 

 



Leave-one-out comparison 



Robustness to sequencing error 

454_3 error model has reads with average 

length of 285 bps, with 60 indels per read 



Taxonomic profiling 

•  Selected 9 different simulated metagenomic model 

conditions 

•  Divided datasets into two groups:  

• short fragments (<= 100 bps)  

• long fragments (>= 100 bps). 

• Report RMSE relative to TIPP’s RMSE 



Profiling: Short Fragments 



Profiling: Short Fragments 

Note: PhymmBL does not 
report species level 
classification 
           



Profiling: Long Fragments 

Note: PhymmBL does not 
report species level 
classification 
           



TIPP Summary 

 Combines SEPP with statistical support threshold to increase 

precision with minor reduction in sensitivity 

 Better sensitivity for classifying novel reads compared to 

MetaPhyler 

 Very robust to sequencing errors 

 Results in overall more accurate profiles (lowest average 

error in 10 of 12 conditions) 

 Can be parameterized for precision or sensitivity 

 

 

 



Summary 

• fHMM as a statistical model for MSA 

• Algorithm for alignment using fHMM 

• Computes HMMs on closely related subsets 

• Aligns query sequence to fHMM 

• fHMM improves sequence alignment to an existing alignment 



Future work 

• Use fHMM as a replacement for profile HMM in other domains 

– Homology detection 

– Functional annotation 

• Use different alignment methods within fHMM framework 

• TIPP 

– Statistical models for combining profiles on different markers 

– Expand marker sets to include more genes 
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1KP P450 transcriptome dataset 

Full-length P450 gene  
~500 AA 
 
Total sequences before 
filtering ~225K 
 



Ultra-large sequence alignment 

 Most MSA techniques do not grow linearly with number 

of sequences 

 Alignments are needed on very large datasets 

 Pfam contains families with more than 100,000 sequences 

 More than 1 million 16S sequences in Green Genes DB 

 Datasets can contain fragmentary and full-length 

sequences 



HMMs for MSA 

 

 Given seed alignment (e.g., in PFAM) and a collection of 

sequences for the protein family: 

 Represent seed alignment using HMM 

 Align each additional sequence to the HMM 

 Use transitivity to obtain MSA 

 

 Can we do something like this without a seed 

alignment? 



UPP: Ultra-large alignment using SEPP 

 Developers: Nguyen, Mirarab, and Warnow 

 Input: set of sequences S, backbone size B, and 

alignment subset size A 

 Output: MSA on S 

 Algorithm 

 Select B random full-length sequences (backbone set) from S 

 Estimate backbone alignment and backbone tree on backbone set 

 Align remaining sequences to backbone alignment 

 Uses nested hierarchical fHMM 

 In preparation 



Disjoint HMMs 

HMM 1 

HMM 2 HMM 3 

HMM 4 



HMM 1 

Nested HMMs 



m 

HMM 2 

HMM 3 

HMM 1 

Nested HMMs 



m 

HMM 2 

HMM 3 

HMM 1 

HMM 4 

HMM 5 HMM 6 

HMM 7 

Nested HMMs 
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Experimental Design 

 Examined both simulated and biological DNA, RNA, and 

AA datasets 

 Generated fragmentary datasets from the full-length 

datasets 

 Compared Clustal-Omega, Mafft, Muscle, and UPP 

 ML trees estimated on alignments using FastTree 

 Scored alignment and tree error 

 Tree error measured in FN rate or Delta FN rate 

 

 



Tree error on simulated RNA datasets 

UPP(Fast): Backbone size=100, Alignment size=10 
Average full-length sequence size 1500 bps 
Only UPP completes on all datasets within 24 hours on a 12 core machine with 24 GB 



Running time on simulated RNA datasets 

UPP has close to linear scaling 



Tree Error on fragmentary RNASim 10K dataset 

UPP(Default): Backbone size=1000, Alignment size=10 
Average fragment length of 500 bps 
Average full-length sequence size 1500 bps 
Delta FN error: ML(Estimated)-ML(True) 



      One Million Sequences: Tree Error  

UPP(100,100): 1.6 days  

using 12 processors   

 

UPP(100,10): 7 days 

using 12 processors   

Note: UPP Decomposition improves accuracy 



UPP summary 

 Uses nested hierarchical fHMM for sequence alignment 

 Overall, results in the most accurate alignments (not shown) 

and trees on full-length simulated datasets 

 Larger differences on highly divergent datasets 

 Results in comparable or more accurate alignments and 

trees on biological datasets (not shown) 

 Yields most accurate trees on both full-length and mixed 

datasets 

 Only method that can complete within 24 hours on datasets 

with up to 200K sequences, 1M in less than 2 days 

 

 

 

 

 



Tree Error 
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Profile HMM 

Q: 
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Profile HMM 

Q:At 



Profile HMM 

Q:Atc 



Profile HMM 
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Profile HMM 

Q:A 



Profile HMM 

Q:A- 



Profile HMM 

Q:A-tcTCA-tATG 



Metagenomic data analysis 

NGS data produce fragmentary sequence data 

Metagenomic analyses include unknown species 

 

Taxon identification: given short sequences, identify the 
species for each fragment 

 

Applications: Human Microbiome and other metagenomic 
projects 

Issues: accuracy and speed 
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Placement Error 
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 Delta Error: the difference in FN of the 

extended tree and the backbone tree 

         Delta Error = 2 – 1 = 1 

Q1 Q1 



Alignment using fHMM 

` ̀  

Align query 
to best 
scoring 
HMM 

Insert query sequence 
into backbone 
alignment using 
transitivity 


