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Phylogeny (evolutionary tree) 



How did life evolve on earth? 

•  Courtesy of the Tree of Life project 



DNA Sequence Evolution 
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…ACGGTGCAGTTACCA… 

…AC----CAGTCACCA… 

The true multiple alignment  
–  Reflects historical substitution, insertion, and deletion 

events 
–  Defined using transitive closure of pairwise alignments 

computed on edges of the true tree 

…ACGGTGCAGTTACCA… 

Mutation Deletion 

…ACCAGTCACCA… 



Input: unaligned sequences 

S1 = AGGCTATCACCTGACCTCCA 
S2 = TAGCTATCACGACCGC 
S3 = TAGCTGACCGC 
S4 = TCACGACCGACA 



Phase 1: Multiple Sequence Alignment (MSA) 

S1 = -AGGCTATCACCTGACCTCCA 
S2 = TAG-CTATCAC--GACCGC-- 
S3 = TAG-CT-------GACCGC-- 
S4 = -------TCAC--GACCGACA 

S1 = AGGCTATCACCTGACCTCCA 
S2 = TAGCTATCACGACCGC 
S3 = TAGCTGACCGC 
S4 = TCACGACCGACA 



Phase 2: Construct tree 

S1 = -AGGCTATCACCTGACCTCCA 
S2 = TAG-CTATCAC--GACCGC-- 
S3 = TAG-CT-------GACCGC-- 
S4 = -------TCAC--GACCGACA 

S1 = AGGCTATCACCTGACCTCCA 
S2 = TAGCTATCACGACCGC 
S3 = TAGCTGACCGC 
S4 = TCACGACCGACA 
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Major Challenges 
•  Current phylogenetic datasets contain hundreds 

to thousands of taxa, with multiple genes. Future 
datasets will be substantially larger. 

•  Poor MSAs result in poor trees, and standard 
MSA methods are poor on large datasets. 

•  Statistical estimation methods produce better 
results, but are computationally intensive. 

Large datasets beyond the scope of standard 
approaches. 



Phylogenetic “boosters”  
(meta-methods) 

Goal: improve accuracy, speed, robustness, or 
theoretical guarantees of base methods 

Examples: 
•  DCM-boosting for distance-based methods 
•  DCM-boosting for heuristics for NP-hard problems 
•  SATé-boosting for alignment methods 
•  SuperFine-boosting for supertree methods  
•  DACTAL-boosting for all methods 
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Disk-Covering Methods (DCMs) 
(starting in 1998)  



•  DCMs “boost” the performance of 
phylogeny reconstruction methods. 

DCM	
Base method M	
 DCM-M	




Neighbor joining has poor accuracy on large 
diameter model trees 

[Nakhleh et al. ISMB 2001] 

Simulation study 
based upon fixed 
edge lengths, K2P 
model of evolution, 
sequence lengths 
fixed to 1000 
nucleotides. 

Error rates reflect 
proportion of 
incorrect edges in 
inferred trees. 
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Statistical consistency, convergence 
rates, and absolute fast convergence 



Neighbor Joining is consistent, but its 
sequence length requirement is 

exponential 

•  Atteson: Let T be a General Markov model 
tree defining additive matrix D.  Then 
Neighbor Joining will reconstruct the true 
tree with high probability from sequences 
that are of length at least O(lg n e max{Dij}). 

•  Note: max {Dij} = O(g diam(T)), where g is 
the maximum length of any edge. 



DCM1-boosting distance-based methods 
[Nakhleh et al. ISMB 2001 and  

Warnow et al. SODA 2001] 

• Theorem:      
DCM1-NJ 
converges to 
the true tree 
from polynomial 
length 
sequences 
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Alignment Estimation 

•  Most phylogeny estimation methods 
assume that the true alignment is 
known. 

•  In fact, estimating the alignment is 
difficult, especially on large datasets. 



1000 taxon models, ordered by difficulty (Liu et al., 2009) 



SATé Algorithm 
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If new alignment/tree pair has worse ML score, realign using 
a different decomposition 

Repeat until termination condition (typically, 24 hours) 
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SATé compared to two-phase methods on 1000 taxon datasets 
Original SATé: Liu et al. Science 2009  

“Next” SATé: Liu et al., Systematic Biology (in press) 



SATé-boosting alignment methods 
•  Current alignment methods fail to return reasonable 

alignments on large datasets with high rates of indels and 
substitutions. 

•  SATé is an iterative divide-and-conquer technique that 
improves the accuracy of alignment methods. 

•  Trees computed on SATé-boosted alignments are much 
more accurate. 

•  SATé is very fast, finishing on 1000 taxon datasets on 
desktop computers in a few hours.  

In use by many biologists world-wide. 

Software: http://phylo.bio.ku.edu/software/sate/sate.html 



Why does SATé work well? 

•  Not because it finds the best alignment 
to optimize ML, treating gaps as missing 
data! 

•  Theorem: under Jukes-Cantor, if we 
allow the alignment to change 
arbitrarily, then the best alignment is 
“mono-typic”, and all trees are optimal.  



Each SATé iteration 
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Limitations of SATé-I and -II 
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DACTAL-boosting  
(Divide-And-Conquer Trees (without) ALignments) 

•  Input: set S of unaligned sequences 
•  Output: tree on S (but no alignment)  

Nelesen, Liu, Wang, Linder, and Warnow, in 
preparation 



DACTAL-boosting  

New supertree method: 
SuperFine

Base Method

pRecDCM3

BLAST-
based

Overlapping 
subsets

A tree for each 
subset

Unaligned 
Sequences

A tree for the 
entire dataset

Superfine: Swenson et al., Systematic Biology, in press. 



DACTAL-boosting 
Base method: ML(MAFFT) 

Benchmark: 3 very large biological 
datasets (with 6K to 28K sequences) 
from CRW website of curated rRNA 
sequence alignments 

DACTAL runs for 5 iterations starting   
from FT(Part), and computes RAxML 
trees on MAFFT alignments of    
subsets of 250 sequences 

PartTree and Quicktree are the only    
MSA methods that run on all 3    
datasets 

FastTree (FT) and RAxML are ML 
methods 



DACTAL vs SATé on the 16S.T dataset 
(~7000 sequences)  



Summary for DACTAL and SATé 
•  Both meta-methods are highly robust to starting trees.  DACTAL 

matches the accuracy of SATé on a per-iteration basis, but DACTAL 
iterations are faster and so it can analyze very large datasets very 
quickly. 

•  Following DACTAL with a SATé re-alignment yields very accurate 
alignments (and faster than just running SATé). 

•  Future work: 

–  DACTAL- and SATé-boosting for statistically-based methods like 
Bali-Phy 

–  DACTAL-boosting for estimating species trees from gene trees 

–  Developing mathematical theory explaining why these meta-methods 
improve estimations 
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Simulation Studies 
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Two-phase estimation 
Alignment methods 
•  Clustal 
•  POY (and POY*) 
•  Probcons (and Probtree) 
•  Probalign 
•  MAFFT 
•  Muscle 
•  Di-align 
•  T-Coffee  
•  Prank (PNAS 2005, Science 2008) 
•  Opal (ISMB and Bioinf. 2007) 
•  FSA (PLoS Comp. Bio. 2009) 
•  Infernal (Bioinf. 2009) 
•  Etc. 

Phylogeny methods 
•  Bayesian MCMC  
•  Maximum parsimony  
•  Maximum likelihood  
•  Neighbor joining 
•  FastME 
•  UPGMA 
•  Quartet puzzling 
•  Etc. 

RAxML: best heuristic for large-scale ML optimization 



Problems with the two-phase approach 
•  Current alignment methods fail to return 

reasonable alignments on large datasets with high 
rates of indels and substitutions. 

•  Manual alignment is time consuming and 
subjective.  

•  Potentially useful markers are often discarded if 
they are difficult to align. 

These issues seriously impact large-scale 
phylogeny estimation (and Tree of Life projects)  



1000 taxon models, ordered by difficulty 



1000 taxon models, ordered by difficulty 

24 hour SATé analysis, on desktop machines 

(Similar improvements for biological datasets) 



Research Projects 
•  Estimating multiple sequence alignments and phylogenies on 

large datasets 
•  Estimating species trees from gene trees  
•  Supertree methods 
•  Whole genome phylogeny using gene order and content  
•  Phylogenetic estimation under statistical models 
•  Datamining sets of trees and alignments 
•  Visualization of ultra-large trees  
•  Reticulate phylogeny detection and estimation 


