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Where do “sites” come from?

1. Storks

2. Alignment estimates
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Alignment ambiguity is common for divergent sequences.
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Alignment is often the first stage in a pipeline:

Bayesian
Max. Likelihood
Max. Parsimony
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Directly Observed

guide tree
mismatch costs
gap costs

There are two main sources of alignment ambiguity
» Parameter uncertainty + parameter sensitivity
» Near-optimal alignments

There are two additional sources of alignment error
» The score function isn't perfect.

» Failure to optimize score function.
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Positive selection? (Goldman & Yang, 1994)

Codon sites

Codon substitution model

» Must change 1 nucleotide at at time.

Qi = 7% 1 if transversion 1 if synonymous
B k if transition w if non-synonymous

w = preference for changes to amino acids.

Categories
» w < 1: amino acid changes happen slowly
» w = 1: neutrality

» w > 1: amino acid changes preferred — “positive selection!”
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Branch-Site models
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Human [C]
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Mouse

(Yang & Nielsen, 2002)

Rat
Model:
| Category #1 | Category #2 | Category#3 | Category#4
background w wo 1 wo 1
foreground w wWo 1 wo wWo
Frequency Po P1 P2a P2b
Test:

» Estimate wg, w2, po, P1.P2

» Compare Hp : wp =1 with Hy : wp > 1. (Zhang, Nielsen, and Yang, 2005)
» Problem: if any single site is misaligned... positive selection!
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Pr(A|7r,©): Insertion/Deletion probabilities

RS07 Pairwise alignment distribution on each branch of the tree:

» Pair HMM model with 2 parameters:

indel rate is A
indel lengths are Geometric(e)
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Goal: Sample (A, ©, M|r, data) from posterior distrubtion
» M = 1. positive selection

» M = 0: no positive selection.

Method: Randomly alter alignment, parameters
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Bayesian Tests

Priors
) .
Pofm ~ Un,form(o’ 1)
> po ~ Beta(1,10)

> logws ~ Gamma(4,0.25)

8 10

Bayes Factor
Pr(dataluw, > 1)

BF =
Pr(datalw, = 1)
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Simulation Parameters

Length = 300 codons

vV v.v Yy

w: Scheme #1:

Indel rate = (substitution rate)x0.05

(Fletcher & Yang, 2010)

Software: INDELible (Fletcher & Yang, 2010)

10 categories: all neutral or conserved.

v

w: Scheme #2:

Foreground branch has some positive selection
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Merits of different approaches?

ARSI

Fixed A (Muscle)

Fixed A, tree-based (Prank+codeml)

Average A, tree-based (Prank+codeml)

Average A, tree-based, MCMC (bali-phy+codeml)
Joint Estimation (bali-phy)

> Integrate alignment estimation into the inside of the test.



Generic Model Framework

bali-phy file.fasta --tree=file.tree --alphabet=Codons
--smodel=branch-site --disable=topology

(map  Ax.Mp(x) [wo, 1, wa]) — [Mo(wo), Mo(1), Mo(w2)]
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