Methods for estimating ultra-large phylogenies and alignments

Tandy Warnow Microsoft Research New England The University of Texas at Austin

Phylogeny (evolutionary tree)

From the Tree of the Life Website, University of Arizona

How did life evolve on earth?

Courtesy of the Tree of Life project

NP-hard optimization problems

Millions of taxa

Important applications

Current projects (e.g., iPlant) will attempt to estimate phylogenies with upwards of 500,000 species

DNA Sequence Evolution

Indels (insertions and deletions) also occur!

The true multiple alignment

- Reflects historical substitution, insertion, and deletion events
- Defined using transitive closure of pairwise alignments computed on edges of the true tree

Input: unaligned sequences

- S1 = AGGCTATCACCTGACCTCCA
- S2 = TAGCTATCACGACCGC
- S3 = TAGCTGACCGC
- S4 = TCACGACCGACA

Phase 1: Multiple Sequence Alignment

- S1 = AGGCTATCACCTGACCTCCA
- S2 = TAGCTATCACGACCGC
- S3 = TAGCTGACCGC
- S4 = TCACGACCGACA

- S1 = -AGGCTATCACCTGACCTCCA
- S2 = TAG-CTATCAC--GACCGC--
- S3 = TAG-CT----GACCGC--
- S4 = ----TCAC -GACCGACA

Phase 2: Construct tree

S4 = TCACGACCGACA

- S1 = -AGGCTATCACCTGACCTCCA
- S2 = TAG-CTATCAC--GACCGC--
- S3 = TAG-CT----GACCGC--
- S4 = ----TCAC -GACCGACA

Two-phase estimation

Alignment methods

- Clustal
- POY (and POY*)
- Probcons (and Probtree)
- Probalign
- MAFFT
- Muscle
- Di-align
- T-Coffee
- Prank (PNAS 2005, Science 2008)
- Opal (ISMB and Bioinf. 2007)
- FSA (PLoS Comp. Bio. 2009)
- Infernal (Bioinf. 2009)
- Etc.

Phylogeny methods

- Bayesian MCMC
- Maximum parsimony
- Maximum likelihood
- Neighbor joining
- FastME
- UPGMA
- Quartet puzzling
- Etc.

RAxML: best heuristic for large-scale ML optimization

Simulation Studies

1000 taxon models, ordered by difficulty (Liu et al., 2009)

Problems with the two-phase approach

- Current alignment methods fail to return reasonable alignments on large datasets with high rates of indels and substitutions.
- Manual alignment is time consuming and subjective.
- *Biologists discard potentially useful markers* if they are difficult to align.

These issues seriously impact large-scale phylogeny estimation (and Tree of Life projects)

- SATé: Simultaneous Alignment and Tree Estimation (Liu et al., Science 2009, and Liu et al. Systematic Biology, in press)
- DACTAL: Divide-and-Conquer Trees without alignments (Nelesen et al., submitted)

Part 1: SATé

Liu, Nelesen, Raghavan, Linder, and Warnow, *Science*, 19 June 2009, pp. 1561-1564.

- Kansas SATé software developers: Mark Holder and Jiaye Yu
- Downloadable software for various platforms
- Easy-to-use GUI
- <u>http://phylo.bio.ku.edu/software/sate/sate.html</u>

1000 taxon models, ordered by difficulty (Liu et al., 2009)

If new alignment/tree pair has worse ML score, realign using a different decomposition

Repeat until termination condition (typically, 24 hours)

One SATé iteration (really 32 subsets)

1000 taxon models, ordered by difficulty

1000 taxon models, ordered by difficulty

24 hour SATé analysis, on desktop machines (Similar improvements for biological datasets)

Why does SATé work well?

- We have proven that optimizing ML (treating gaps as missing data) is completely uninformative (all trees are optimal).
- Reconsidering why SATé works well led to a new divide-and-conquer strategy, SATé-II, with even better accuracy and speed.

Liu et al., Systematic Biology (in press)

Negative result

- Optimization problem: given sequence set S (unaligned), find alignment A and Jukes-Cantor model tree (T,θ) for S such that Pr(A|T,θ) is maximized (treating gaps as missing data).
- Theorem: For any input S of unaligned sequences and for all trees T there is an alignment A and set θ of Jukes-Cantor parameters on T s.t. Pr(A|T,θ) is maximum.

Thus, all trees T can optimize the maximum likelihood score.

Understanding SATé

- Observations: (1) subsets of taxa that are small enough, closely related, and densely sampled are aligned more accurately than others.
- SATé-1 produces subsets that are closely related and densely sampled, but not small enough.
- SATé-2 ("next SATé") changes the design to produce smaller subproblems.
- The next iteration starts with a more accurate tree. This leads to a better alignment, and a better tree.

1000 taxon models ranked by difficulty

SATé-I vs. SATé-II

SATé-II

- Faster and more accurate than SATé-I
- Longer

 analyses or use
 of ML to select
 tree/alignment
 pair slightly
 better results

Part II: DACTAL (Divide-And-Conquer Trees (without) ALignments)

- Input: set S of unaligned sequences
- Output: tree on S (but no alignment)

(Nelesen, Liu, Wang, Linder, and Warnow, submitted)

Disk-Covering Methods (DCM) (starting in 1998)

DACTAL outperforms SATé

 DACTAL faster and matches or improves upon accuracy of SATé for datasets with 1000 or more taxa

 The biggest gains are on the very large datasets

Average of 3 Largest CRW Datasets

- CRW: Comparative RNA database, datasets 16S.B.ALL, 16S.T, and 16S.3
- 6,323 to 27,643 sequences
- These datasets have curated alignments based on secondary structure
- Reference trees are 75% RAxML bootstrap trees

DACTAL (shown in red) run for 5 iterations starting from FT(Part)
DACTAL is robust to starting trees
PartTree and Quicktree are the only MSA methods that run on all 3 datasets
FastTree (FT) and RAxML are ML methods

Implications

- Standard alignment methods do not provide adequate accuracy on large datasets.
- When markers tend to yield poor alignments and trees, develop better methods - don't throw out the data.
- Phylogenetic analyses of large (10,000 taxa and up) need new techniques.

Other Research Projects

- Supertree methods
- Faster maximum likelihood methods
- Datamining sets of trees and alignments
- Visualization of ultra-large trees and multiple sequence alignments
- Comparative genomics: whole genome phylogeny using gene order and content
- Estimating species trees from gene trees
- Reticulate phylogeny detection and estimation

Acknowledgments

- Microsoft Research New England
- National Science Foundation: Assembling the Tree of Life (ATOL), ITR, and IGERT grants (0733029, 0331453, 0114387)
- Current and former students: Kevin Liu, Luay Nakhleh, Serita Nelesen, Sindhu Raghavan, Jerry Sun, Rahul Suri, Shel Swenson, and Li-San Wang
- Collaborators
 - Randy Linder, Integrative Biology, UT-Austin
 - Mark Holder and Jiaye Yu (Kansas) for software at <u>http://phylo.bio.ku.edu/software/sate/sate.html</u>