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How did life evolve on earth?
An international effort toAn international effort to
understand how lifeunderstand how life
evolved on earthevolved on earth

Biomedical applications:Biomedical applications:
drug design, proteindrug design, protein
structurestructure  and functionand function
prediction,prediction,  biodiversity.biodiversity.

• Courtesy of the Tree of Life project



DNA Sequence Evolution

AAGACTT

TGGACTTAAGGCCT

-3 mil yrs

-2 mil yrs

-1 mil yrs

today

AGGGCAT TAGCCCT AGCACTT

AAGGCCT TGGACTT

TAGCCCA TAGACTT AGCGCTTAGCACAAAGGGCAT

AGGGCAT TAGCCCT AGCACTT

AAGACTT

TGGACTTAAGGCCT

AGGGCAT TAGCCCT AGCACTT

AAGGCCT TGGACTT

AGCGCTTAGCACAATAGACTTTAGCCCAAGGGCAT



TAGCCCA TAGACTT TGCACAA TGCGCTTAGGGCAT

U V W X Y

U

V W

X

Y



1. Hill-climbing heuristics for hard optimization criteria
(Maximum Parsimony and Maximum Likelihood)

Phylogenetic reconstruction methods

Phylogenetic trees

Cost

Global optimum

Local optimum

2. Polynomial time distance-based methods, e.g. Neighbor
Joining, FastME, UPGMA,  etc.

3. Bayesian MCMC methods



Solving NP-hard problems
exactly is … unlikely

• Number of
(unrooted) binary
trees on n leaves is
(2n-5)!!

• If each tree on 1000
taxa could be
analyzed in 0.001
seconds, we would
find the best tree in

      2890 millennia
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Standard Markov models

• Sequences evolve just with substitutions
• Sites (i.e., positions) evolve i.i.d. (identically and

independently), and have “rates of evolution” that
are drawn from a common distribution (typically
gamma)

• Numerical parameters describe the probability of
substitutions of each type on each edge of the tree



Jukes-Cantor
 (simplest DNA model)

• DNA sequences (A,C,T,G) evolve just with substitutions
• Sites (i.e., positions) evolve i.i.d. (identically and independently)
• If a site changes on an edge, it changes with equal probability to the

remaining states (A,C,G,T)
• Numerical parameters p(e): for each edge in the tree, p(e) denotes the

probability that each site changes on e
A Jukes-Cantor model tree is a pair (T,θ), where T is a tree and θ denotes

the numerical parameters p(e), one for each edge e in the tree T.
Note that the JC model is time-reversible, so that without an assumption

of the molecular clock, the root cannot be identified, even given
infinite data



Questions

• Statistical consistency: Is the given phylogeny
reconstruction method guaranteed to reconstruct
the model tree when infinitely long sequences are
available?

• Convergence rate (sample size complexity): How
long do the sequences need to be for the method to
be accurate with high probability?

• Identifiability: Is the model tree uniquely
identified by the “pattern probabilities” (i.e.,  by
infinitely long sequences)?



Quantifying Error

FN: false negative
      (missing edge)
FP: false positive
      (incorrect edge)

50% error rate

FN

FP



Statistical consistency, exponential convergence, and
absolute fast convergence (afc)



Current state of knowledge
(for substitution-only models)

• We have established much of the statistical
performance (consistency and convergence rates)
of the major methods for phylogeny estimation.

• We have developed “fast converging” methods
(guaranteed to reconstruct the true tree from
polynomial length sequences) with excellent
performance in practice.

• We have very fast methods for solving maximum
likelihood and maximum parsimony, the major
optimization problems, even for large datasets.



Distance-based Phylogenetic Methods
(polynomial time)



Neighbor Joining’s sequence
length requirement is

exponential!

• Atteson: Let T be a General Markov model tree
defining distance matrix D.  Then Neighbor
Joining will reconstruct the true tree with high
probability from sequences that are of length at
least  O(lg n emax Dij), where n is the number of
leaves in T.



Neighbor joining has poor performance on large
diameter trees [Nakhleh et al. ISMB 2001]

Simulation study based
upon fixed edge
lengths, K2P model of
evolution, sequence
lengths fixed to 1000
nucleotides.

Error rates reflect
proportion of incorrect
edges in inferred trees.

NJ

0 400 800 16001200
No. Taxa

0

0.2

0.4

0.6

0.8

Er
ro

r R
at

e



DCM1-boosting distance-based methods
[Nakhleh et al. ISMB 2001]

•Theorem:
DCM1-NJ
converges to the
true tree from
polynomial
length sequences

NJ
DCM1-NJ
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Maximum Likelihood (ML)
• Given:  Set S of aligned DNA sequences, and a parametric model of

sequence evolution (e.g., Jukes-Cantor)
• Objective: Find model tree (T,θ) to maximize Pr[S|T,θ].

Statistically consistent, but not known to be afc (best upper bound on
sequence length requirement is exponential)

NP-hard

Excellent heuristics exist (e.g., RAxML) that produce highly accurate
trees
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Is phylogeny estimation Solved?

• Much mathematical theory about convergence rates for
phylogeny estimation methods

• Fast-converging polynomial time distance-based methods
with excellent performance in simulation (DCM1-NJ and
others).

• Maximum likelihood: statistically consistent, with
excellent heuristics, producing highly accurate trees
(established using simulations) on large datasets
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No, because standard Markov
models are too simple!

Simplifying assumptions:
• Sequences evolve just with substitutions
• Sites (i.e., positions) evolve identically and

independently, and have “rates of
evolution” that are drawn from a common
distribution (typically gamma)
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indels (insertions and deletions) also occur!

…ACGGTGCAGTTACCA…

…ACCAGTCACCA…

MutationDeletion



…ACGGTGCAGTTACCA…

…ACCAGTCACCA…

MutationDeletion The true pairwise alignment is:

      …ACGGTGCAGTTACCA…

      …AC----CAGTCACCA…

The true multiple alignment on a set of
homologous sequences is obtained by tracing
their evolutionary history, and extending the
pairwise alignments on the edges to a
multiple alignment on the leaf sequences.



Input: unaligned sequences

S1 = AGGCTATCACCTGACCTCCA
S2 = TAGCTATCACGACCGC
S3 = TAGCTGACCGC
S4 = TCACGACCGACA



Phase 1: Multiple Sequence Alignment

S1 = -AGGCTATCACCTGACCTCCA
S2 = TAG-CTATCAC--GACCGC--
S3 = TAG-CT-------GACCGC--
S4 = -------TCAC--GACCGACA

S1 = AGGCTATCACCTGACCTCCA
S2 = TAGCTATCACGACCGC
S3 = TAGCTGACCGC
S4 = TCACGACCGACA



Phase 2: Construct tree

S1 = -AGGCTATCACCTGACCTCCA
S2 = TAG-CTATCAC--GACCGC--
S3 = TAG-CT-------GACCGC--
S4 = -------TCAC--GACCGACA

S1 = AGGCTATCACCTGACCTCCA
S2 = TAGCTATCACGACCGC
S3 = TAGCTGACCGC
S4 = TCACGACCGACA

S1

S4

S2

S3



Many methods
Alignment methods
• Clustal
• POY (and POY*)
• Probcons (and Probtree)
• MAFFT
• Prank
• Muscle
• Di-align
• T-Coffee
• Opal
• Etc.

Phylogeny methods
• Maximum likelihood
• Bayesian MCMC
• Maximum parsimony
• Neighbor joining
• FastME
• UPGMA
• Quartet puzzling
• Etc.

RAxML: best heuristic for large-scale ML optimization



Question: How well do two-phase methods
perform?

• ROSE simulation:
– 1000, 500, and 100 sequences
– Evolution with substitutions and indels
– Varied gap lengths, rates of evolution

• Estimated alignments using leading methods
• Used RAxML to compute trees
• Recorded tree error (missing branch rate)
• Recorded alignment error

Liu et al., Science 2009



Simulation Studies

S1 S2

S3S4

S1 = -AGGCTATCACCTGACCTCCA
S2 = TAG-CTATCAC--GACCGC--
S3 = TAG-CT-------GACCGC--
S4 = -------TCAC--GACCGACA

S1 = AGGCTATCACCTGACCTCCA
S2 = TAGCTATCACGACCGC
S3 = TAGCTGACCGC
S4 = TCACGACCGACA

S1 = -AGGCTATCACCTGACCTCCA
S2 = TAG-CTATCAC--GACCGC--
S3 = TAG-C--T-----GACCGC--
S4 = T---C-A-CGACCGA----CA

Compare

True tree and
alignment

S1 S4

S3S2

Estimated tree and
alignment

Unaligned
Sequences



33

A

B

C
D

E

False negative (FN) - aka “missing branch” :
An edge in the true tree missing from the

estimated tree

FN

Quantifying Error

True Tree Estimated Tree

A

B

C
D

E



1000 taxon models, ordered by difficulty



Problems with the two-phase approach

• Current alignment methods fail to return reasonable
alignments on large datasets with high rates of indels
and substitutions.

• Manual alignment is time consuming and subjective.

• Systematists discard potentially useful markers if they
are difficult to align.

This issues seriously impact large-scale phylogeny
estimation (and Tree of Life projects)



S1 = AGGCTATCACCTGACCTCCA
S2 = TAGCTATCACGACCGC
S3 = TAGCTGACCGC
S4 = TCACGACCGACA

S1 = -AGGCTATCACCTGACCTCCA
S2 = TAG-CTATCAC--GACCGC--
S3 = TAG-CT-------GACCGC--
S4 = -------TCAC--GACCGACA

and

S1

S4

S2

S3

Statistical simultaneous estimation methods (BALiPhy, Alifritz,
Statalign) are not scalable.

POY and related methods are not more accurate than
standard two-phase methods.



SATé:
(Simultaneous Alignment and Tree Estimation)

• Liu, Nelesen, Raghavan, Linder, and Warnow
• Search strategy: search through tree space, and realigns

sequences on each tree using a novel divide-and-conquer
approach, attempting to optimize the GTR+Gamma
maximum likelihood score.

• Software at http://phylo.bio.ku.edu/software/sate/sate.html

• Science, 19 June 2009, pp. 1561-1564.



SATé Algorithm

Tree

Obtain initial alignment
and estimated ML tree



SATé Algorithm

Tree

Obtain initial alignment
and estimated ML tree

Use tree to
compute new
alignment

Alignment



SATé Algorithm

Estimate
GTR+Gamma ML
tree on new
alignment

Tree

Obtain initial alignment
and estimated ML tree

Use tree to
compute new
alignment

Alignment



SATé Algorithm

Estimate
GTR+Gamma ML
tree on new
alignment

Tree

Obtain initial alignment
and estimated ML tree

Use tree to
compute new
alignment

Alignment

If new alignment/tree pair has worse GTR+Gamma ML score,
realign using a different decomposition

Repeat until termination condition (typically, 24 hours)



A

B D

C

Merge
subproblems

Estimate ML tree
on merged
alignment

Decompose based on
input tree

A B

C D

Align
subproblems

A B

C D

ABCD

SATé iteration
(Actual decomposition produces 32 subproblems)

e



1000 taxon models, ordered by difficulty



1000 taxon models, ordered by difficulty

24 hour SATé analysis, on desktop machines

(Similar improvements for biological datasets)



Why is SATé so accurate?

• Not because it’s good to optimize ML under
a model treating gaps as missing data - we
prove that this optimization problem is a
bad approach.



Extended Jukes-Cantor model

• Sites evolve i.i.d
• The state at the root is random
• Substitution probabilities p(e) on each edge e

satisfy  0 ≤ p(e) < 3/4.
• If a substitution occurs on an edge e, the

nucleotide changes to the remaining nucleotides
with equal probability.



Negative result

• Let S be a set of DNA sequences, and let
Opt(S)= max Pr[A|T,θ], where A is an alignment
on S and (T,θ) is an EJC model tree for S.

• Let BestTrees(S)={T: for some θ and some
alignment A, Pr[A|T,θ]=Opt(S)}

• Theorem: For all sets S of unaligned DNA
sequences, BestTrees(S) contains all trees on S.



Why is SATé so accurate?

• Not because it’s good to optimize ML under
GTR+Gamma

• Instead, the key is the divide-and-conquer
technique used in the re-alignment strategy.



Does using ML help?



Since the Science paper: 
SATé-II:

• Uses a different re-alignment strategy, but same
general algorithm design.

• More accurate than SATé and much faster!



A

B D

C

Merge
subproblems

Estimate ML tree
on merged
alignment

Decompose based
on input tree

A B

C D

Align
subproblems

A B

C D

ABCD

SATé-II: same as SATé-I except for decomposition

e



1000 taxon models ranked by difficulty



SATé-I
vs.

SATé-II

SATé-II
• Faster and

more accurate
than SATé-I

• Longer analyses
or use of ML to
select
tree/alignment
pair slightly
better results



SATé Software

• Downloadable software (with user-friendly gui)
• Developers: Mark Holder and Jiaye Yu at the

University of Kansas
• Webpage
      http://phylo.bio.ku.edu/software/sate/sate.html



Complexity viz. The Tree of Life

• Algorithmic complexity (e.g., running time and
NP-hardness)

• Sample size complexity (e.g. how long do the
sequences need to be to obtain a highly accurate
reconstruction with high probability?)

• Stochastic model complexity (i.e., how realistic
are the models of evolution, and what are the
consequences of making the models more
realistic?)



Take-home lessons

• Current models of evolution are simplistic
• More realistic models may not be

“identifiable”
• Everything worth doing in phylogeny is

NP-hard
• But this doesn’t mean we (mathematcians

and computer scientists) can’t make
important contributions.
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Thoughts
• Current models of sequence evolution are clearly too

simple, and more realistic ones are not identifiable.
• The relative performance between methods can change as

the models become more complex or as the number of taxa
increases.

• We do not know how methods perform under realistic
conditions (nor how long we need to let computationally
intensive methods run).

• Therefore, simulations should be done under very realistic
(sufficiently complex) models, even if estimations are done
under simpler models (and it is likely that estimations are
best done under more realistic models, too).


