
 10.1101/gr.074492.107Access the most recent version at doi:
 2008 18: 821-829 originally published online March 18, 2008Genome Res.

Daniel R. Zerbino and Ewan Birney

graphs
Velvet: Algorithms for de novo short read assembly using de Bruijn

Material
Supplemental http://genome.cshlp.org/content/suppl/2008/04/08/gr.074492.107.DC1.html

References

 http://genome.cshlp.org/content/18/5/821.full.html#related-urls
Article cited in:

 http://genome.cshlp.org/content/18/5/821.full.html#ref-list-1
This article cites 25 articles, 14 of which can be accessed free at:

Related Content

 Genome Res. March , 2012 22: 557-567

Steven L. Salzberg, Adam M. Phillippy, Aleksey Zimin, et al.
GAGE: A critical evaluation of genome assemblies and assembly algorithms

 Genome Res. March , 2012 22: 549-556
Jared T. Simpson and Richard Durbin
structures
Efficient de novo assembly of large genomes using compressed data

 Genome Res. May , 2008 18: 802-809
David Hernandez, Patrice François, Laurent Farinelli, et al.
on a desktop computer
De novo bacterial genome sequencing: Millions of very short reads assembled

 Genome Res. May , 2008 18: 810-820
Jonathan Butler, Iain MacCallum, Michael Kleber, et al.
ALLPATHS: De novo assembly of whole-genome shotgun microreads

 Genome Res. November , 2007 17: 1697-1706
Juliane C. Dohm, Claudio Lottaz, Tatiana Borodina, et al.
novo genomic sequencing
SHARCGS, a fast and highly accurate short-read assembly algorithm for de

service
Email alerting

 click heretop right corner of the article or
Receive free email alerts when new articles cite this article - sign up in the box at the

 http://genome.cshlp.org/subscriptions
 go to: Genome ResearchTo subscribe to

Copyright © 2008, Cold Spring Harbor Laboratory Press

 Cold Spring Harbor Laboratory Press on March 22, 2012 - Published by genome.cshlp.orgDownloaded from

http://genome.cshlp.org/lookup/doi/10.1101/gr.074492.107
http://genome.cshlp.org/content/suppl/2008/04/08/gr.074492.107.DC1.html
http://genome.cshlp.org/content/18/5/821.full.html#ref-list-1
http://genome.cshlp.org/content/18/5/821.full.html#related-urls
http://genome.cshlp.org/content/genome/17/11/1697.full.html
http://genome.cshlp.org/content/genome/18/5/810.full.html
http://genome.cshlp.org/content/genome/18/5/802.full.html
http://genome.cshlp.org/content/genome/22/3/549.full.html
http://genome.cshlp.org/content/genome/22/3/557.full.html
http://genome.cshlp.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=genome;18/5/821&return_type=article&return_url=http://genome.cshlp.org/content/18/5/821.full.pdf
http://genome.cshlp.org/subscriptions
http://genome.cshlp.org/
http://www.cshlpress.com

Velvet: Algorithms for de novo short read assembly
using de Bruijn graphs
Daniel R. Zerbino and Ewan Birney1

EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom

We have developed a new set of algorithms, collectively called “Velvet,” to manipulate de Bruijn graphs for genomic
sequence assembly. A de Bruijn graph is a compact representation based on short words (k-mers) that is ideal for
high coverage, very short read (25–50 bp) data sets. Applying Velvet to very short reads and paired-ends
information only, one can produce contigs of significant length, up to 50-kb N50 length in simulations of
prokaryotic data and 3-kb N50 on simulated mammalian BACs. When applied to real Solexa data sets without read
pairs, Velvet generated contigs of ∼8 kb in a prokaryote and 2 kb in a mammalian BAC, in close agreement with our
simulated results without read-pair information. Velvet represents a new approach to assembly that can leverage
very short reads in combination with read pairs to produce useful assemblies.

[Supplemental material is available online at www.genome.org. The code for Velvet is freely available, under the
GNU Public License, at http://www.ebi.ac.uk/∼zerbino/velvet.]

Sequencing remains at the core of genomics. Applications in-
clude determining the genome sequence of a new species, deter-
mining the genome sequence of an individual within a popula-
tion, sequencing RNA molecules from a particular sample, and
using DNA sequence as a readout assay in molecular biology
techniques. Determining the complete genome sequence of a
species remains an important application of sequencing, and de-
spite the success in determining the human (International Hu-
man Genome Sequencing Consortium 2001; Venter et al. 2001),
mouse (Waterston et al. 2002), and numerous other genomes,
this is a tiny sample of the millions of species in the biosphere.

Recently, new sequencing technologies have emerged
(Metzker 2005), for example, pyrosequencing (454 Sequencing)
(Margulies et al. 2005) and sequencing by synthesis (Solexa)
(Bentley 2006), both commercially available. Compared to tradi-
tional Sanger methods, these technologies produce shorter reads,
currently ∼200 bp for pyrosequencing and 35 bp for Solexa. Until
recently, very short read information was only used in the con-
text of a known reference assembly, either for sequencing indi-
viduals of the same species as the reference, or readout assays—
for example, STAGE (Kim et al. 2005) and ChIPSeq (Johnson et al.
2007).

A critical stage in genome sequencing is the assembly of
shotgun reads, or piecing together fragments randomly extracted
from the sample, to form a set of contiguous sequences (contigs)
representing the DNA in the sample. Algorithms are available for
whole-genome shotgun (WGS) fragment assembly, including:
Atlas (Havlak et al. 2004), ARACHNE (Batzoglou et al. 2002),
Celera (Myers et al. 2000), PCAP (Huang et al. 2003), phrap (P.
Green, http://www.phrap.org), or Phusion (Mullikin and Ning
2003). All these programs rely on the overlap-layout-consensus
approach (Batzoglou 2005), representing each read as a node and
each detected overlap as an arc between the appropriate nodes.
These methods have proved their use through numerous de novo
genome assemblies.

Very short reads are not well suited to this traditional ap-

proach. Because of their length, they must be produced in large
quantities and at greater coverage depths than traditional Sanger
sequencing projects. The sheer number of reads makes the over-
lap graph, with one node per read, extremely large and lengthy to
compute. With long reads, repeats in the data are disambiguated
by careful metrics over long overlaps that distinguish repeat
matches from real overlaps, using, for example, high-quality base
disagreements. With short reads, and correspondingly short
overlaps to judge from, many reads in repeats will have only a
single or no base differences. This leads to many more ambiguous
connections in the assembly.

The EULER assembler (Pevzner et al. 2001) adopted a fun-
damentally different approach using de Bruijn graphs. In this
representation of data, elements are not organized around reads,
but around words of k nucleotides, or k-mers. Reads are mapped
as paths through the graph, going from one word to the next in
a determined order. Several teams (Shah et al. 2004; Bokhari and
Sauer 2005; Myers 2005; Jiang et al. 2007) have since expanded
on the use of de Bruijn graphs for sequence assembly. The fun-
damental data structure in the de Bruijn graph is based on k-
mers, not reads, thus high redundancy is naturally handled by
the graph without affecting the number of nodes. In addition,
each repeat is present only once in the graph with explicit links
to the different start and end points. Depending on available
information, it can be either resolvable or not, but it is readily
identifiable. Mis-assembly errors are therefore more easily
avoided than with overlap graphs. Finally, searches for overlaps
are simplified, as overlapping reads are mapped onto the same
arcs and can easily be followed simultaneously.

Despite the attractiveness of the de Bruijn graph data struc-
ture for short read assemblies, it has not been used extensively in
current production-based assembly methods. Chaisson et al.
(2004) and Sundquist et al. (2007) suggested ways of using these
graphs specifically for short read assembly (100–200 bp), but not
for very short reads (25–50 bp). More recently, programs such as
SSAKE (Warren et al. 2007), SHARCGS (Dohm et al. 2007), and
VCAKE (Jeck et al. 2007) implicitly use this framework, but at a
local level. With the advent of highly cost effective very short
reads, de Bruijn graph-based methods will grow in utility. How-
ever, it is necessary to develop efficient and robust methods to
manage experimental errors and repeats.

1Corresponding author.
E-mail birney@ebi.ac.uk; fax 44-1223-494-468.
Article published online before print. Article and publication date are at http://
www.genome.org/cgi/doi/10.1101/gr.074492.107

Resource

18:821–829 ©2008 by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/08; www.genome.org Genome Research 821
www.genome.org

 Cold Spring Harbor Laboratory Press on March 22, 2012 - Published by genome.cshlp.orgDownloaded from

http://genome.cshlp.org/
http://www.cshlpress.com

In this study, we present a set of algorithms, collectively
named “Velvet,” that manipulates these de Bruijn graphs effi-
ciently to both eliminate errors and resolve repeats. These two
tasks are done separately: first, the error correction algorithm
merges sequences that belong together, then the repeat solver
separates paths sharing local overlaps. We have assessed Velvet
on both simulated and real data. Using only very short paired
simulated reads, Velvet is capable of assembling bacterial ge-
nomes, with N50 contig lengths of up to 50 kb, and simulations
on 5-Mb regions of large mammalian genomes, with contigs of
∼3 kb.

Results

The de Bruijn graph

Structure

In the de Bruijn graph, each node N represents a series of over-
lapping k-mers (cf. Fig. 1 for a small example). Adjacent k-mers
overlap by k � 1 nucleotides. The marginal information con-
tained by a k-mer is its last nucleotide. The sequence of those
final nucleotides is called the sequence of the node, or s(N).

Each node N is attached to a twin node Ñ, which represents
the reverse series of reverse complement k-mers. This ensures that
overlaps between reads from opposite strands are taken into ac-
count. Note that the sequences attached to a node and its twin do
not need to be reverse complements of each other.

The union of a node N and its twin Ñ is called a “block.”
From now on, any change to a node is implicitly applied sym-
metrically to its twin. A block therefore has two distinguishable
sides, in analogy to the “k-mer edges” described in Pevzner et al.’s
2001 paper.

Nodes can be connected by a directed “arc.” In that case, the
last k-mer of an arc’s origin node overlaps with the first of its
destination node. Because of the symmetry of the blocks, if an arc

goes from node A to B, a symmetric arc goes from B̃ to Ã. Any
modification of one arc is implicitly applied symmetrically to its
paired arc.

On these nodes and arcs, reads are mapped as “paths” tra-
versing the graph. Extracting the nucleotide sequence from a
path is straightforward given the initial k-mer of the first node
and the sequences of all the nodes in the path.

Construction

The reads are first hashed according to a predefined k-mer length.
This variable k is limited on the upper side by the length of the
reads being hashed, to allow for a small amount of overlap, usu-
ally k = 21 for 25-bp reads. Smaller k-mers increase the connec-
tivity of the graph by simultaneously increasing the chance of
observing an overlap between two reads and the number of am-
biguous repeats in the graph. There is therefore a balance be-
tween sensitivity and specificity determined by k (cf. Methods).

For each k-mer observed in the set of reads, the hash table
records the ID of the first read encountered containing that k-mer
and the position of its occurrence within that read. Each k-mer is
recorded simultaneously to its reverse complement. To ensure
that each k-mer cannot be its own reverse complement, k must be
odd. This first scan allows us to rewrite each read as a set of
original k-mers combined with overlaps with previously hashed
reads. We call this new representation of the read’s sequence the
“roadmap.”

A second database is created with the opposite information.
It records, for each read, which of its original k-mers are over-
lapped by subsequent reads. The ordered set of original k-mers of
that read is cut each time an overlap with another read begins or
ends. For each uninterrupted sequence of original k-mers, a node
is created.

Finally, reads are traced through the graph using the road-
maps. Knowing the correspondence between original k-mers and
the newly created nodes, Velvet proceeds from one node to the
next, creating a new directed arc or incrementing an existing one
as appropriate at each step.

Simplification

After constructing the graph, it is generally possible to simplify it
without any loss of information. Blocks are interrupted each time
a read starts or ends. This leads to the formation of “chains” of
blocks, or linear connected subgraphs. This fragmentation of the
graph costs memory space and lengthens calculation times.

These chains can be easily simplified. Whenever a node A
has only one outgoing arc that points to another node B that has
only one ingoing arc, the two nodes (and their twins) are merged.
Iteratively, chains of blocks are collapsed into single blocks.

The simplification of two nodes into one is analogous to the
conventional concatenation of two character strings, and also to
some string graph based methods (Myers 2005). This straightfor-
ward transformation involves transferring arc, read, and se-
quence information as appropriate.

Error removal

Errors are corrected after graph creation to allow for simulta-
neous operations over the whole set of reads. In our framework,
errors can be due to both the sequencing process or to the bio-
logical sample, for example, polymorphisms. Distinguishing
polymorphisms from errors is a post-assembly task. A naive ap-
proach to error removal would be to use the difference between

Figure 1. Schematic representation of our implementation of the de
Bruijn graph. Each node, represented by a single rectangle, represents a
series of overlapping k-mers (in this case, k = 5), listed directly above or
below. (Red) The last nucleotide of each k-mer. The sequence of those
final nucleotides, copied in large letters in the rectangle, is the sequence
of the node. The twin node, directly attached to the node, either below or
above, represents the reverse series of reverse complement k-mers. Arcs
are represented as arrows between nodes. The last k-mer of an arc’s origin
overlaps with the first of its destination. Each arc has a symmetric arc.
Note that the two nodes on the left could be merged into one without
loss of information, because they form a chain.

Zerbino and Birney

822 Genome Research
www.genome.org

 Cold Spring Harbor Laboratory Press on March 22, 2012 - Published by genome.cshlp.orgDownloaded from

http://genome.cshlp.org/
http://www.cshlpress.com

the expected coverage of genuine sequences and that of random
errors. Therefore removing all the low coverage nodes (and their
corresponding arcs) would remove the errors. However, this relies
on the differences being due to genuine errors and not to bio-
logical variants present at a reasonable frequency in the sample,
and errors being randomly distributed in the reads.

Instead, Velvet focuses on topological features. Erroneous
data create three types of structures: “tips” due to errors at the
edges of reads, “bulges” due to internal read errors or to nearby
tips connecting, and erroneous connections due to cloning errors
or to distant merging tips. The three features are removed con-
secutively.

Removing tips

A “tip” is a chain of nodes that is disconnected on one end.
Removing these tips is a straightforward task. Discarding this
information results in only local effects, as no connectivity is
disrupted. Nonetheless, some restraint must be applied to the
process to avoid eroding genuine sequences that are merely in-
terrupted by a coverage gap. To deal with this issue, we define
two criteria: length and minority count.

A tip will only be removed if it is shorter than 2k. This
arbitrary cutoff length was chosen because it is greater than the
length in k-mers of an individual very short read. Erroneous con-
structs involving entire short reads are presumably extremely
rare. In the case of long reads, this cutoff is set to be the maxi-
mum length tip that can be created by two nearby mistakes. A tip
longer than 2k therefore represents either genuine sequence or
an accumulation of errors that is hard to distinguish from novel
sequence. In the latter case, clipping the read tips more strin-
gently might be necessary.

We define “minority count” as the property that, at the
node where the tip connects to the rest of the graph, the arc
leading to that tip has a multiplicity inferior to at least one of the
other arcs radiating out of that junction node. In other words,
starting from that node, going through the tip is an alternative to
a more common path.

This ensures that, at the local level, tips are removed in
increasing order of multiplicity. Velvet progressively uncovers
chains of high coverage nodes that are not destroyed by virtue of
the previous criteria, thus preserving the graph from complete
erosion.

Velvet iteratively removes tips from the graph under these
two criteria. When there are no more tips to remove, the graph is
simplified once again.

Removing bubbles with the Tour Bus algorithm

We consider two paths redundant if they start and end at the
same nodes (forming a “bubble”) and contain similar sequences.
Such bubbles can be created by errors or biological variants, such
as SNPs or cloning artifacts prior to sequencing. Erroneous
bubbles are removed by an algorithm called “Tour Bus.” The
criteria for deciding whether two paths justify simplification can
be complex, taking into account error models of the sequence or
(for the case of mixed haplotype samples) other features of the
sequence and graph, such as coverage. Currently, we apply
simple sequence identity and length thresholds.

Detection of redundant paths is done through a Dijkstra-like
breadth-first search. The algorithm starts from an arbitrary node
and progresses along the graph, visiting nodes in order of increas-
ing distance from the origin. In this application, the distance

between two consecutive nodes A and B is the length of s(B)
divided by the multiplicity of the arc leading from A to B. This ad
hoc metric gives priority to higher coverage, more reliable, paths.

Whenever the process encounters a previously visited node,
it backtracks from both the current node and the previously vis-
ited node, to find their closest common ancestor. From the two
retraced paths, the sequences are extracted and aligned. If judged
similar enough, they are merged. The path that reached the end
node first in the search, “shortest” according to the metric, is
used as the consensus path because of its higher coverage. The
metric implicitly imposes a majority vote in choosing the con-
sensus sequence. Figure 2 shows how the iteration proceeds on a
small example graph.

Merging two paths is a complex operation, as all the under-
lying graph structures must be remapped while maintaining their
connections with other nodes. The positioning of the different
elements is based on the sequence alignment of the paths. Al-
though straightforward on linear paths, that is, when no block is
visited more than once, this transformation is subtler in the pres-
ence of palindromes. Palindromes create “hairpin folds,” paths
that go through a block one way, then go through it again, in the
opposite direction. The need to preserve connectivity forbids
projecting hairpins onto linear paths.

To merge two paths, Tour Bus creates a chain of markers
along both of them, node by node. The paths are merged pro-

Figure 2. Example of Tour Bus error correction. (A) Original graph. (B)
The search starts from A and spreads toward the right. The progression of
the top path (through B� and C�) is stopped because D was previously
visited. The nucleotide sequences corresponding to the alternate paths
B�C� and BC are extracted from the graph, aligned, and compared. (C)
The two paths are judged similar, so the longer one, B�C�, is merged into
the shorter one, BC. The merging is directed by the alignment of the
consensus sequences, indicated in red lines in B. Note that node X, which
was connected to node B�, is now connected to node B. The search
progresses, and the bottom path (through C� and D�) arrives second in E.
Once again, the corresponding paths, C�D� and CD are compared. (D)
CD and C�D� are judged similar enough. The longer path is merged into
the shorter one.

Short read de novo assembly using de Bruijn graphs

Genome Research 823
www.genome.org

 Cold Spring Harbor Laboratory Press on March 22, 2012 - Published by genome.cshlp.orgDownloaded from

http://genome.cshlp.org/
http://www.cshlpress.com

gressively from one end to the next. At each step, the first un-
mapped minority node is compared to the corresponding major-
ity consensus node, using the local sequence alignment pro-
duced previously. All the information attached to that node,
including coverage, sequence identifiers, and arcs, is then
mapped accordingly onto the majority node. The presence of
markers allows Tour Bus to dynamically modify the marked path
as it corrects the graph. This can be especially useful when a path
goes through node A, then later through its twin node. After
remapping A, Velvet remaps Ã, and diverts the path markers
accordingly.

Removing erroneous connections

Erroneous connections are removed after Tour Bus. These un-
wanted connections do not create any recognizable loop or struc-
ture, so they cannot be readily identified from the topology of
the graph as with tips and bubbles. Also, they cannot be associ-
ated directly to a corresponding correct path. Therefore, Velvet
removes them with a basic coverage cutoff. Currently this cutoff
is set by the user, based on plots of node coverage after the re-
moval of bubbles.

It is important to stress that this simple node removal, be-
cause it is done after Tour Bus, does not contradict the cautious
approach in the design of that algorithm. Indeed, the purpose of
Tour Bus is to remove errors without destroying unique regions
with low coverage. Once this algorithm has run, most unique
regions are simplified into long straight nodes, where, by virtue
of the law of large numbers, the average coverage is close to the
expected value. Genuine short nodes
that cannot be simplified correspond to
low-complexity sequences that are gen-
erally present multiple times in the ge-
nome. Their overall coverage is therefore
proportionally higher. This means that
with a high probability, any low-
coverage node left after Tour Bus is a chi-
meric connection, due to spurious over-
laps created by experimental errors.

Testing error removal on simulated
data

We simulated reads from four different
reference genomes: Escherichia coli, Sac-
charomyces cerevisiae, Caenorhabditis el-
egans, and Homo sapiens. In the last three
species, we chose 5-Mb regions of each
genome, corresponding to the approxi-
mate amount of DNA that can be se-
quenced with a 50� coverage depth by a
single Solexa lane. Five megabytes is
therefore the largest amount of continu-
ous data that could be present on cur-
rent machine formats in a single lane;
currently there are significant laboratory
challenges to generate normalized clone
pools for a complete 5-Mb region, but
smaller units of genome, such as BACs,
(potentially using indexing technology
to track each clone) will present an easier
assembly problem. Reads 35 bp long
were randomly generated at different

coverage values, from 5� to 50�, then hashed by 21-mer words.
We only considered substitution errors as these are reported as
the most common class of error for current short read sequencing
technologies. The evolution of the N50, or median length-
weighted contig length, against coverage is displayed in Figure 3.

In the first test, the reads do not contain errors. Initially
coverage increases exponentially, as predicted by the Lander-
Waterman statistic (Lander and Waterman 1988). Then, when
coverage is sufficient, the N50 abruptly stops increasing, as it is
limited by the natural repetition of the reference genome. This
barrier has a different level depending on the reference genome.
Obviously, the more repetitive and complex the genome is, the
lower the maximum N50.

The second test is identical to the first, with the introduc-
tion of errors at a 1% rate. The results are consistent with the first
test, except that the maximum N50 is lower than with error-free
reads. In fact, as coverage rises to 50�, the N50 decreases slightly,
owing to the adjunction of errors without the closing of any
coverage gap.

Finally, the third test is identical to the second, but with
reads (with 1% error) generated from two copies of the reference
genome: the original one and one with SNPs randomly added at
a rate of 1/500 bp. Velvet is not significantly affected by these
variations.

Testing error removal on experimental data

A 173,428-bp human BAC was sequenced using Solexa sequenc-
ing machines, with an average coverage of 970�. The BAC was

Figure 3. Simulations of Tour Bus. The genome of E. coli and 5-Mb samples of DNA from three other
species (S. cerevisiae, C. elegans, and H. sapiens, respectively) were used to generate 35-bp read sets of
varying read depths (X-axis of each plot). We measured the contig length N50 (Y-axis, log scale) after
tip-clipping (black curve) then after the subsequent bubble smoothing (red curve). In the first column
are the results for perfect, error-free reads. In the second column, we inserted errors in the reads at a
rate of 1%. In the third column, we generated a slightly variant genome from the original by inserting
random SNPs at a rate of 1 in 500. The reads were then generated with errors from both variants, thus
simulating a diploid assembly.

Zerbino and Birney

824 Genome Research
www.genome.org

 Cold Spring Harbor Laboratory Press on March 22, 2012 - Published by genome.cshlp.orgDownloaded from

http://genome.cshlp.org/
http://www.cshlpress.com

also sequenced to finished quality using conventional methods.
The reads were 35 bp long, and the ensuing analysis was done
with 31-mers.

We removed errors using Velvet’s error correction algorithm
(cf. Table 1). Because of repeats, the Tour Bus method merged
similar paths in the finished sequence, smoothing out similar
(but not identical) repeats. The overcollapsing of repeats is not
drastic and potentially could be avoided with more sophisticated
detection of repeat differences.

To test the performance of Velvet against a virtual ideal assem-
bler, we built a de Bruijn graph from the known finished sequence
of the BAC. This is equivalent to an error-free, gap-free assembly.

Not only did the Tour Bus method significantly increase the
sensitivity and specificity of the correction, but it also preserved
the integrity of the graph structure. Indeed, the median and
maximum node lengths in the short read graph are comparable
to those in the finished BAC graph. The N50 for all nodes of the
graph was 1958 bp; for nodes >100 bp, 2041 bp; and for nodes
>1000 bp, 3266 bp. Direct sequence alignment showed that
nodes of length 100 bp or more from the short read graph cov-
ered 90.0% of the BAC with 99.989% sequence identity and no
mis-assembly. In comparison, in the ideal graph, nodes longer
than 100 bp represent 91.9% of the genome. Only one indel
(2-bp deletion) was observed.

Two million seven hundred thousand 36-bp reads were se-
quenced from the 2-Mb genome of Streptococcus suis P1/7, for a
mean coverage depth of 48�. The statistics of the resulting graph
are in Table 2. Again, no mis-assembly was created, while 96.5%
of the genome was covered with 99.996% identity. In the ideal
graph, 96.8% of the genome is covered by contigs longer than
100 bp. The N50 for all nodes of the graph was 8564 bp; for nodes
>100 bp, 8742 bp; and for nodes >1000 bp, 8871 bp. Excluding
contigs that mapped onto multiple copies of a repeat, only six
indels, up to 2 bp long, were observed.

On this data set, we tested the effect of coverage on the N50.
We built the graph for subsets of reads of various sizes. Figure 4
shows how the results with experimental reads are similar to
those of our simulations. The N50 goes up exponentially, then
hits a limit. To avoid biasing the results by setting an arbitrary
parameter for each data point, the removal of erroneous connec-
tions by coverage cutoff was omitted, hence the difference with
the results in Table 2.

Breadcrumb: Resolution of repeats with short read pairs

The previous simulations show that the short read assembly is
limited by the intrinsic repeat structure of the genome being
sequenced. It is therefore necessary to resolve these repeats; in
other words, to correctly extend and connect contigs through
repeated regions, which otherwise create “tangles” in the de
Bruijn graph. To do so, we developed another module within
Velvet, called “Breadcrumb” (Fig. 5), to exploit paired end read
information.

We suppose that the insert length distribution has a small
variance. We then determine a cutoff length longer than practi-
cally all inserts and designate as “long nodes” all the nodes
longer than that cutoff. The objective of this definition is to
include as many nodes of the graph as possible, while ensuring
that very few read pairs span over such chosen nodes. Note that
uniqueness is not an issue at this stage.

Using the read pairs, Breadcrumb starts by pairing up the
long nodes. Because we did not set any restriction on uniqueness,
some long nodes may consistently connect to several other long
nodes, but they are simply flagged as ambiguous and left un-
touched. This selection therefore eliminates duplicated nodes,
but not necessarily all of them.

For each of the unambiguous long nodes, Breadcrumb flags
all the nodes containing the mate reads of the reads in that long
node. If a single opposite long node is available, then all the
nodes that pair up to it are also flagged. Because of the node
length constraint, between two long contigs nearly all paired reads
map onto a read on either of the long reads. With low probabil-
ity, there will be mate pairs that are both in the low-complexity
region between the reads, which are essentially unusable.

Breadcrumb then extends the unique node by going as far as
possible from one connected flagged node to the next and stop-
ping if there are no, or several, options. In the best case, a simple
path can be found to the opposite long node, and the two contigs
can be merged.

To be robust, such a method must allow for erroneous reads.
First, Breadcrumb marks all the reads detected while removing
erroneous connections (cf. above) as unreliable and does not use
the corresponding read pairs. Second, despite this precaution,
several long nodes may be erroneously connected by very few
(<5) read pairs. Breadcrumb discards such weak connections be-
tween long nodes. Finally, because errors occur also in low-
complexity regions, it is necessary to apply a Tour Bus-like process
to the flagged nodes, unflagging them instead of destroying them.

Testing the use of read pairs

Using the same four species used previously, we tested the Bread-
crumb algorithm on artificially generated reads. We generated

Table 1. Efficiency of the Velvet error-correction pipeline on the
BAC data set

Step
No. of
nodes

N50
(bp)

Maximum
length
(bp)

Coverage
(percent
>50 bp)

Coverage
(percent
>100 bp)

Initial 1,353,791 5 7 0 0
Simplified 945,377 5 80 4.3 0.2
Tips clipped 4898 714 5037 93.5 78.7
Tour Bus 1147 1784 7038 93.4 90.1
Coverage

cutoff 685 1958 7038 92.0 90.0
Ideal 620 2130 9045 93.7 91.9

Each line in this table represents a different stage in Velvet. The initial
graph was built directly from the BAC reads. The second was the result of
node concatenation. The next three graphs were the result of the three
consecutive steps of error correction: tip clipping, Tour Bus, and coverage
cutoff. The last graph was obtained by building the graph of the refer-
ence sequence then submitting it to Tour Bus, to simulate an error-free
and gap-free assembly.

Table 2. Efficiency of the Velvet error-correction pipeline on the
Streptococcus data set

Step
No. of
nodes

N50
(bp)

Maximum
length
(bp)

Coverage
(percent
>50 bp)

Coverage
(percent
>100 bp)

Initial 3,621,167 16 16 0 0
Simplified 2,222,845 16 44 0.1 0
Tips clipped 15,267 2195 7949 96.2 95.4
Tour Bus 3303 4334 17,811 96.8 96.4
Coverage

cutoff 1496 8564 29,856 96.9 96.5
Ideal 1305 9609 29,856 97.0 96.8

Short read de novo assembly using de Bruijn graphs

Genome Research 825
www.genome.org

 Cold Spring Harbor Laboratory Press on March 22, 2012 - Published by genome.cshlp.orgDownloaded from

http://genome.cshlp.org/
http://www.cshlpress.com

random 35-bp reads with 50� coverage of the selected 5-Mb
samples. Our simulated read pair set assumes complete coverage
in read pairs with no mispairing rate and a restricted length dis-
tribution, which is an admittedly ideal scenario, although the
algorithm does not explicitly utilize the coverage or length dis-
tribution of read pairs.

Figure 6 shows the evolution of N50 against insert length.
We see that whereas insert lengths must be long enough to step
over obstacles in the graph, if they are too long, scaffolding the
contigs becomes problematic. Mis-assemblies were infrequent,
<0.5% for the most challenging case, i.e., the assembly of human
reads with errors and SNPs.

The errors generated by Velvet are concentrated in the re-
peat regions reconstructed by Breadcrumb. This is because in its
current implementation, Tour Bus simplifies small local variation
and errors alike, creating consensus sequences for repeated re-
gions. There is therefore a discrepancy between the reads being
used to resolve a repeat and the sequence of the nodes they are
mapped onto. This effect could be corrected by post-analysis of
the contigs and the reads they contain, or by training Tour Bus to
distinguish errors from biological variation.

Upon visual inspection of the actual contigs, we found that
the N50 in human is mainly limited by Alu repeats and other
common repeated structures. In other words, Breadcrumb re-
solves numerous short repeats and is blocked by the sparser and
more complex ones. These structures are present in large quan-
tities, sufficiently similar to present numerous overlaps, yet suf-
ficiently polymorphic to resist simplification by Tour Bus. There-
fore, they produced many long ambiguous loops that could not
be resolved by Breadcrumb.

We attempted to use paired reads to help scaffold the con-
tigs together, but rather than generating traditional super contigs
(which are separated by a gap of unknown sequence), in this case
we have complete, but unresolved, sequence between the two
contigs. We describe these super contigs as “Sequence Connected
Super Contigs” (SCSCs). This unresolved sequence could be used
to classify the repeat class of the intervening sequence or be used
in alignment of a novel sequence to the region, allowing one to
definitively exclude a novel sequence from a region, despite not
resolving the complete sequence of the region. The results of the
previous test with the addition of this rule are also shown in
Figure 6. The increase in N50 obtained by reporting SCSCs is
particularly marked in human and E. coli, where the N50 is raised
from 3 kb to 6 kb (for human) and from 50 kb to 100 kb in E. coli.

This is indicative of the different repeat structures with dispersed
repeats containing ambiguous central regions present in both of
these genomes. In contrast, the S. cerevisiae or C. elegans repeat
structure is either resolvable or not.

Complexity and scaling issues

Velvet has four stages: hashing the reads into k-mers, construct-
ing the graph, correcting errors, and resolving repeats. Each stage
has different computational requirements.

The main bottleneck, in terms of time and memory, is the
graph construction. The initial graph of the Streptococcus reads
needs 2.0 Gb of RAM. The scale of the problem will eventually
require memory persistent data structures for whole-genome as-
semblies. Admittedly, access times would be greater, but the
amount of storable data would be virtually unlimited.

The time complexity of Tour Bus depends primarily on the
number N of nodes in the graph, which itself depends on the
read coverage, error rate, and number of repeats. Idury and Wa-
terman (1995) estimated N but neglected to consider repeats. The
search itself is based on the Dijkstra algorithm, which has a time
complexity of O(N logN) when implemented with a Fibonacci
heap (Gross and Yellen 2004). The cost of individual path com-
parisons and the corresponding graph modifications can be lim-
ited by a length cutoff. In the latest implementation, correction
of the human BAC reads took 18 sec on a single processor, and
tests on large data sets have shown behavior close to the theo-
retical complexity.

The time cost of the Breadcrumb algorithm is also depen-
dent on the number of nodes, as a test is run for every long node.
The time for each test is proportional to the number of nodes
spanned by a read. This depends on the average length of inserts
and that of nodes. The latest implementation of the algorithm
run on a whole-genome shotgun data set of E. coli data took 1.5
sec.

Comparison to other very short read assemblers

We compared Velvet to recently published short read assemblers
SSAKE (Warren et al. 2007) and VCAKE (Jeck et al. 2007; Table 3).
These differ from each other mainly in the way they deal with
errors. SSAKE and VCAKE implicitly explore a de Bruijn graph
step by step by searching for reads in a hash table. Whereas Vel-

Figure 4. Effect of coverage on contig length with experimental Strep-
tococcus data.

Figure 5. Breadcrumb algorithm. Two long contigs produced after er-
ror correction, A and B, are joined by several paired reads (red and blue
arcs). The path between the two can be broken up because of a repeat
internal to the connecting sequence, because of an overlap with a distinct
part of the genome, or because of some unresolved errors. The small
square nodes represent either nodes of the path between A and B, or
other nodes of the graph connected to the former. Finding the exact path
in the graph from A to B is not straightforward because of all the alternate
paths that need to be explored. However, if we mark all the nodes that
are paired up to either A or B (with a blue circle), we can define a
subgraph much simpler to explore. Ideally, only a linear path connects
both nodes.

Zerbino and Birney

826 Genome Research
www.genome.org

 Cold Spring Harbor Laboratory Press on March 22, 2012 - Published by genome.cshlp.orgDownloaded from

http://genome.cshlp.org/
http://www.cshlpress.com

vet uses slightly more memory, it is significantly faster and pro-
duces larger contigs, without mis-assembly. Furthermore, it cov-
ers a large area of the genome with high precision.

We also tried using SHARCGS (Dohm et al. 2007) and
EULER (Pevzner et al. 2001) but were not able to make these
programs work with our data sets. This is probably due to differ-
ences in the expected input, particularly in terms of coverage
depth and read length.

Discussion

We have developed Velvet, a novel set of de Bruijn graph-based
sequence assembly methods for very short reads that can both
remove errors and, in the presence of read pair information, re-
solve a large number of repeats. With unpaired reads, the assem-
bly is broken when there is a repeat longer than the k-mer length.
With the addition of short reads in read pair format, many of
these repeats can be resolved, leading to assemblies similar to
draft status in bacteria and reasonably long (∼5 kb) SCSCs in
eukaryotic genomes.

For the latter genomes, the short read
contigs will probably have to be combined
with long reads or other sequencing strate-
gies such as BAC or fosmid pooling. Simu-
lations of Breadcrumb produced virtually
identical N50 lengths on both a continuous
5-Mb region and a discontinuous 5-Mb re-
gion made up of random 150-kb BACs, with

twofold variation in BAC concentration
(data not shown). This approach would
then require merging local assemblies.

Sequence connected supercontigs
have considerably more information
than gapped supercontigs, in that the se-
quence content separating the definitive
contigs is an unresolved graph. One can
easily imagine methods that can exclude
the presence of a novel sequence in the
SCSC completely by considering the
potential paths in the unresolved se-
quence regions, in contrast to tradi-
tional supercontigs, where one can
never make such a claim. In addition,
the unresolved regions will often be dis-
persed repeats, and as such the classifi-
cation of such regions as repeats is more
important than their sequence content
for many applications.

It is important to emphasize that
assembly is not a solved problem, in par-
ticular with very short reads, and there
will continue to be considerable algo-
rithmic improvements. Velvet can al-
ready convert high-coverage very short
reads into reasonably sized contigs with
no additional information. With addi-
tional paired read information to resolve
small repeats, almost complete genomes
can be assembled. We believe the Velvet
framework will provide a rich set of dif-
ferent algorithmic options tailored to
different tasks and thus provide a plat-

form for cheap de novo sequence assemblies, eventually for all
genomes.

Methods

Velvet parameters
Velvet was implemented in C and tested on a 64-bit Linux ma-
chine.

The results of Velvet are very sensitive to the parameter k as
mentioned previously. The optimum depends on the genome,
the coverage, the quality, and the length of the reads. One ap-
proach consists in testing several alternatives in parallel and pick-
ing the best.

Another method consists in estimating the expected num-
ber X of times a unique k-mer in a genome of length G is observed
in a set of n reads of length l. We can link this number to the
traditional value of coverage, noted C, with the relations:

E�X� =
n�l − k + 1�

G − k + 1
≈

n
G

�l − k + 1� = C
l − k + 1

l

Figure 6. Breadcrumb performance on simulated data sets. As in Figure 3, we sampled 5-Mb DNA
sequences from four different species (E. coli, S. cerevisiae, C. elegans, and H. sapiens, respectively) and
generated 50� read sets. The horizontal lines represent the N50 reached at the end of Tour Bus (see
Fig. 3) (broken black line) and after applying a 4� coverage cutoff (broken red line). Note how the
difference in N50 between the graph of perfect reads and that of erroneous reads is significantly
reduced by this last cutoff. (Black curves) The results after the basic Breadcrumb algorithm; (red curves)
the results after super-contigging.

Table 3. Comparison of short read assemblers on experimental Streptococcus suis Solexa
reads

Assembler
No. of
contigs N50

Average
error rate Memory Time Seq. Cov.

Velvet 0.3 470 8661 bp 0.02% 2.0G 2 min 57 sec 97%
SSAKE 2.0 265 1727 bp 0.20% 1.7G 1 h 47 min 16%
VCAKE 1.0 7675 1137 bp 0.64% 1.8G 4 h 25 min 134%

Short read de novo assembly using de Bruijn graphs

Genome Research 827
www.genome.org

 Cold Spring Harbor Laboratory Press on March 22, 2012 - Published by genome.cshlp.orgDownloaded from

http://genome.cshlp.org/
http://www.cshlpress.com

Experience shows that all the parameters should be set so
that E(X) is between 10 and 15. In practice, given the limited
number of possible values for k, it is common to try out various
values in parallel then choose the one that produces the highest
N50 contig length.

The Tour Bus algorithm decides whether to merge two paths
based on three thresholds. Firstly, both paths must contain less
than 200 nodes; secondly, their respective sequences must be
shorter than 100 bp; and thirdly, the sequences must be at least
80% similar.

Experimental data
The experimental trials were run on human BAC bCX98J21 by
Illumina. The reads are available from Illumina at info@
solexa.com. The 4,805,808 35-bp reads came from the 200 tiles of
lane 5 in Flowcell 2012M. They were selected by Illumina’s in-
house “purity filter.” Velvet was run with a hash length of 31 bp
and a coverage cutoff of 15�.

The experiments on S. suis were run by the Sanger Center on
strain P1/7. The data are available at http://www.sanger.ac.uk/
Projects/S_suis/. The 2,726,374 36-bp reads came from the 200
tiles of a single lane. The first lane of the flow cell was used, and
the reads were those passing the purity filter, but no other filter,
as supplied by the Solexa software. Velvet used a hash length of
21 and a final coverage cutoff of 7�. The test on coverage was
done with 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, and
100%, respectively, of the reads.

Both data sets will be publicly available through the Short
Read Archive when it will be in service.

Comparative tests were run on SSAKE version 2.0, VCAKE
version 1.0, SHARCGS, EULER version 2.0, and Velvet version
0.3. To settle different definitions, we only considered contigs
longer than 100 bp. SSAKE and VCAKE were run with default
options.

Simulations
Simulations were run on: E. coli K12 genome (GenBank: U00096);
S. cerevisiae chromosomes I to VIII (SGD1.01 assembly); C. elegans
chromosome V, between positions 5,000,000 and 10,000,000
(WS170 assembly); human chromosome 20, between positions
40,000,000 and 45,000,000 (NCBI 36 assembly).

The first (i.e., unpaired) simulations were run with coverage
depths of 5�, 10�, 15�, 20�, 25�, 30�, 35�, 40�, 45�, and
50�. The 35-bp reads were randomly placed and randomly ori-
entated on the genome.

Errors were simulated by random mutations uniformly dis-
tributed over the reads, at a rate of 1%.

The paired read simulations were all run with random 35-bp
reads, for a coverage of 50�. All the reads were paired and insert
lengths varied with a standard deviation of 5%.

Alignments of SCSCs onto the reference were done with
exonerate (Slater and Birney 2005). With the non-equivalenced
regions (ner) model, exonerate is able to jump over the buffer
regions that connect the SCSCs, thus forming long alignments.

Acknowledgments
D.R.Z. conceived the algorithms in discussions with E.B. All the
programming and analysis was done by D.R.Z. The paper was
written jointly by D.R.Z. and E.B. Both D.R.Z. and E.B. are funded
by EMBL central funds. We thank John-Mark Gurney for the use
of the BSD licensed Fibonacci heap method for the Dijkstra
search, Guy Slater for his C methods, and M. Pop for discussions

on AMOS. E.B. thanks Gene Myers, David Jaffe, and Phil Green
for insightful discussions on assembly methods. D.R.Z. thanks
Alison Meynert for her careful proofreading. We especially would
like to thank all the users for their comments and encourage-
ment. We apologize to authors of other assemblers for not having
the space to discuss the analogies between Velvet and their pro-
grams.

References

Batzoglou, S. 2005. Algorithmic challenges in mammalian genome
sequence assembly. In Encyclopedia of genomics, proteomics and
bioinformatics (eds. M. Dunn et al.), Part 4. John Wiley and Sons,
New York.

Batzoglou, S., Jaffe, D.B., Stanley, K., Butler, J., Gnerre, S., Mauceli, E.,
Berger, B., Mesirov, J.P., and Lander, E.S. 2002. ARACHNE: A whole
genome shotgun assembler. Genome Res. 12: 177–189.

Bentley, D.R. 2006. Whole-genome re-sequencing. Curr. Opin. Genet.
Dev. 16: 545–552.

Bokhari, S.H. and Sauer, J.R. 2005. A parallel graph decomposition
algorithm for DNA sequencing with nanopores. Bioinformatics
21: 889–896.

Chaisson, M., Pevzner, P.A., and Tang, H. 2004. Fragment assembly with
short reads. Bioinformatics 20: 2067–2074.

Dohm, J.C., Lottaz, C., Borodina, T., and Himmelbauer, H. 2007.
SHARCGS, a fast and highly accurate short-read assembly algorithm
for de novo genomic sequencing. Genome Res. 17: 1697–1706.

Gross, J.L. and Yellen, J. 2004. Handbook of graph theory. CRC Press LLC,
Boca Raton, FL.

Havlak, P., Chen, R., Durbin, J., Egan, A., Ren, Y., Song, X.-Z.,
Weinstock, G.M., and Gibbs, R.A. 2004. The Atlas genome assembly
system. Genome Res. 14: 721–732.

Huang, X., Wang, J., Aluru, S., Yang, S.-P., and Hillier, L. 2003. PCAP: A
whole-genome assembly program. Genome Res. 13: 2164–2170.

Idury, R.M. and Waterman, M.S. 1995. A new algorithm for DNA
sequence assembly. J. Comput. Biol. 2: 291–306.

International Human Genome Sequencing Consortium. 2001. Initial
sequencing and analysis of the human genome. Nature
409: 860–921.

Jeck, W.R., Reinhardt, J.A., Baltrus, D.A., Hickenbotham, M.T., Magrini,
V., Mardis, E.R., Dangl, J.L., and Jones, C.D. 2007. Extending
assembly of short DNA sequences to handle error. Bioinformatics
23: 2942–2944.

Jiang, Z., Tang, H., Ventura, M., Cardone, M.F., Marques-Bonet, T., She,
X., Pevzner, P.A., and Eichler, E.E. 2007. Ancestral reconstruction of
segmental duplications reveals punctuated cores of human genome
evolution. Nat. Genet. 39: 1361–1368.

Johnson, D.S., Mortazavi, A., Myers, R.M., and Wold, B. 2007.
Genome-wide mapping of in vivo protein-DNA interactions. Science
316: 1497–1502.

Kim, J., Bhinge, A.A., Morgan, X.C., and Iyer, V.R. 2005. Mapping
DNA-protein interactions in large genomes by sequence tag analysis
of genomic enrichment. Nat. Methods 2: 47–53.

Lander, E.S. and Waterman, M.S. 1988. Genomic mapping by
fingerprinting random clones: A mathematical analysis. Genomics
2: 231–239.

Margulies, M., Egholm, M., Altman, W.E., Attiya, S., Bader, J.S., Bemben,
L.A., Berka, J., Braverman, M.S., Chen, Y.-J., Chen, Z., et al. 2005.
Genome sequencing in microfabricated high-density picolitre
reactors. Nature 437: 376–380.

Metzker, M.L. 2005. Emerging technologies in DNA sequencing. Genome
Res. 15: 1767–1776.

Mullikin, J.C. and Ning, Z. 2003. The Phusion assembler. Genome Res.
13: 81–90.

Myers, E.W. 2005. The fragment assembly string graph. Bioinformatics
21: ii79–ii85.

Myers, E.W., Sutton, G.G., Delcher, A.L., Dew, I.M., Fasulo, D.P.,
Flanigan, M.J., Kravitz, S.A., Mobarry, C.M., Reinert, K.H.J.,
Remington, K.A., et al. 2000. A whole-genome assembly of
Drosophila. Science 287: 2196–2204.

Pevzner, P.A., Tang, H., and Waterman, M.S. 2001. An Eulerian path
approach to DNA fragment assembly. Proc. Natl. Acad. Sci.
98: 9748–9753.

Shah, M.K., Lee, H., Rogers, S.A., and Touchman, J.W. 2004. An
exhaustive genome assembly algorithm using k-mers to indirectly
perform n-squared comparisons in O(n). In Computational Systems
Bioinformatics Conference, pp. 740–741. IEEE, New York.

Slater, G.S.C. and Birney, E. 2005. Automated generation of heuristics

Zerbino and Birney

828 Genome Research
www.genome.org

 Cold Spring Harbor Laboratory Press on March 22, 2012 - Published by genome.cshlp.orgDownloaded from

http://genome.cshlp.org/
http://www.cshlpress.com

for biological sequence comparison. BMC Bioinformatics 6: 31. doi:
10.1186/1471-2105-6-31.

Sundquist, A., Ronaghi, M., Tang, H., Pevzner, P., and Batzoglou, S.
2007. Whole-genome sequencing and assembly with high
throughput, short-read technologies. PLoS ONE 2: e484. doi:
10.1371/journal.pone.0000484.

Venter, J.C., Adams, M.D., Myers, E.W., Li, P.W., Mural, R.J., Sutton,
G.G., Smith, H.O., Yandell, M., Evans, C.A., Holt, R.A., et al. 2001.
The sequence of the human genome. Science 291: 1304–1351.

Warren, R.L., Sutton, G.G., Jones, S.J.M., and Holt, R.A. 2007.

Assembling millions of short DNA sequences using SSAKE.
Bioinformatics 4: 500–501.

Waterston, R.H., Lindblad-Toh, K., Birney, E., Rogers, J., Abril, J.F.,
Agarwal, P., Agarwala, R., Ainscough, R., Alexandersson, M., An, P.,
et al. 2002. Initial sequencing and comparative analysis of the
mouse genome. Nature 420: 520–562.

Received November 16, 2007; accepted in revised form March 17, 2008.

Short read de novo assembly using de Bruijn graphs

Genome Research 829
www.genome.org

 Cold Spring Harbor Laboratory Press on March 22, 2012 - Published by genome.cshlp.orgDownloaded from

http://genome.cshlp.org/
http://www.cshlpress.com

