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The Tree of Life: Multiple Challenges
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Large-scale statistical phylogeny estimation
Ultra-large multiple-sequence alignment

Estimating species trees from incongruent gene trees
Supertree estimation

Genome rearrangement phylogeny

Reticulate evolution

Visualization of large trees and alignments

Data mining techniques to explore multiple optima
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Large datasets:
100,000+ sequences
10,000+ genes

“BigData” complexity

Large-scale statistical phylogeny estimation

Ultra-large multiple-sequence alignment

Estimating species trees from incongruent gene trees This ta|k

Supertree estimation

Genome rearrangement phylogeny

Reticulate evolution

Visualization of large trees and alignments
Data mining techniques to explore multiple optima



Phylogenomics
Phylogenetic estimation from whole genomes
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Avian Phylogenomics Project

Erich Jarvis, MTP Gilbert, G Zhang, T. Warnow S. Mirarab Md. S. Bayzid,
HHMI Copenhagen BGI UIUC UT-Austin

) Plus many many other people...
« Approx. 50 species, whole genomes

e 8000+ genes, UCEs

Challenges:

 Maximum likelihood estimation on a
million-site genome-scale alignment

 Massive gene tree conflict consistent with
incomplete lineage sorting

Jarvis, Mirarab, et al., Science 2014
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1kp: Thousand Transcriptome Project

G. Ka-Shu Wong  J. Leebens-Mack N. Wickett N. Matasci T. Warnow, S. Mirarab, N. Nguyen,
U Alberta U Georgia Northwestern  iPlant uiuc UT-Austin UT-Austin

Plus many many other people...

o Plant Tree of Life based on transcriptomes of ~1200 species
o More than 13,000 gene families (most not single copy)

Challenges:
 Multiple sequence alignment of >100,000
sequences (with lots of fragments!)
 Massive gene tree conflict consistent with
incomplete lineage sorting

Wickett, Mirarab et al., PNAS 2014
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This talk

Gene tree estimation and statistical consistency

Gene tree conflict due to incomplete lineage
sorting

The multi-species coalescent model

— ldentifiability and statistical consistency

The challenge of gene tree estimation error
New methods for species tree estimation

— Statistical Binning (Science 2014)
— ASTRAL (Bioinformatics 2014)



DNA Sequence Evolution (Idealized)

AAGACTT -3 mil yrs|

-2 mil yrs|

AAGGCCT TGGACTT

-1 mil yrs|

AGGGCAT TAGCCCT AGCACTT

AGGGCAT TAGCCCA  TAGACTT AGCACAA AGCGCTT today



Markov Model of Site Evolution

Simplest (Jukes-Cantor, 1969):

 The model tree T is binary and has substitution probabilities p(e) on
each edge e.

* The state at the root is randomly drawn from {A,C,T,G} (nucleotides)

* If asite (position) changes on an edge, it changes with equal probability
to each of the remaining states.

* The evolutionary process is Markovian.

The different sites are assumed to evolve i.i.d. (independently and
identically) down the tree (with rates that are drawn from a gamma
distribution).

More complex models (such as the General Markov model) are also
considered, often with little change to the theory.



Maximum Likelihood Phylogeny Estimation

Input: Sequence set S

Output: Jukes-Cantor model tree T (with substitution probabilities on
edges) such that Pr(S|T) is maximized

ML tree estimation is usually performed under other more realistic models
(e.g., the Generalized Time Reversible model)

Maximum Likelihood is NP-hard, and the number of trees grows
exponentially with the number of leaves, but good heuristics (e.g.,
RAxML) are available.

Even moderate-sized datasets can take multiple CPU years (e.g., the Avian
phylogeny with 50 species and multi-million sites took >200 CPU years)
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Maximum Likelihood is
Statistically Consistent

error

Data



Maximum Likelihood is
Statistically Consistent

error

Data

Data are sites in an alignment
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Using multiple genes
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Concatenation
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Red gene tree # species tree
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Avian Phylogenomics Project

E Jarvis, MTP Gilbert, G Zhang, T. Warnow S. Mirarab Md. S. Bayzid,
HHMI Copenhagen BGI UT-Austin T-Austin~ UT-Austin

. ——— =
y » ) £
y -
\ g
- e
, & . ==
\ o
!
S

Plus many many other pe&e
e Approx. 50 'Xs‘whole genomes

o 80 ‘@ CEs
quence alignments computed using SATé (Liu et al., Science 2009
and Systematic Biology 2012)



1P: Thousand TranscriptomgeProjec

U Alberta U Georgia iPlant UT-Austin UT-Austin UT-Austin UT-Austin

G. Ka-Shu Wong . Leebens-Mack N.&e‘(e N. Matasci T. Warnow, S. Mirarab, N. Nguyen, Md. S.Bayzid
éorth stérn

e 120 anscriptomes

o Moré“than 13,000 gene families (most not single copy)
o Multi-institutional project (10+ universities)

o iPLANT (NSF-funded cooperative)

o Gene sequence alignments and trees computed using SATe (Liu et al.,
Science 2009 and Systematic Biology 2012)



Gene Tree Incongruence

* Gene trees can differ from the species tree
due to:

— Duplication and loss

— Horizontal gene transfer
— Incomplete lineage sorting (ILS)



Incomplete Lineage Sorting (ILS)

1000+ papersin 2013 alone
* Confounds phylogenetic analysis for many groups:
— Hominids
— Birds
— Yeast
— Animals
— Toads
— Fish
— Fungi
 There is substantial debate about how to analyze
phylogenomic datasets in the presence of ILS.



Species tree estimation: difficult,
even for small datasets!
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The Coalescent

Courtesy James Degnan

Past

Present




Courtesy James Degnan

tree

in a species

Gene tree



Lineage Sorting

* Population-level process, also called the
“Multi-species coalescent” (Kingman, 1982)

* Gene trees can differ from species trees due to
short times between speciation events or large
population size; this is called “Incomplete Lineage
Sorting” or “Deep Coalescence”.



Key observation:
Under the multi-species coalescent model, the species tree
defines a probability distribution on the gene trees, and is
identifiable from the distribution on gene trees

Courtesy James Degnan



Species tree estimation

1- Concatenation: statistically inconsistent (Roch & Steel 2014)

gene 1l gene 2 gene 3 gene k

I N s | | I
I . I
I N s | | I
Sequence data Concatenated supermatrix Species tree

2- Summary methods: can be statistically consistent

gene 1l gene 2 gene 3 gene k

=—=-=>AM AL

Sequence data Estimated gene trees Species tree

3- Co-estimation methods: too slow for large datasets




Two competing approaches

gene1 qgene?2 ... qgenek

—
Concatenation

Specigs

Analyze
separately

%\ %Summary Method
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How to compute a species tree?



How to compute a species tree?

Techniques:
Most frequent gene tree?
Consensus of gene trees?
Other?



Under the multi-species coalescent model, the species
tree defines a probability distribution on the gene trees

Courtesy James Degnan

Theorem (Degnan et al., 2006, 2009):
Under the multi-species coalescent
model, for any three taxa A, B, and C,
the most probable rooted gene tree on s
{A,B,C} is identical to the rooted species .,:523.5'52:;5
tree induced on {A,B,C}. o




How to compute a species tree?

Theorem (Degnan et al., 2006, 2009):
Under the multi-species coalescent
model, for any three taxa A, B, and C,
the most probable rooted gene tree on
{A,B,C} is identical to the rooted species
tree induced on {A,B,C}.



How to compute a species tree?

AN AN —— ANA

Estimate species
tree for every
3 species

Theorem (Degnan et al., 2006, 2009):
Under the multi-species coalescent
model, for any three taxa A, B, and C,
the most probable rooted gene tree on
{A,B,C} is identical to the rooted species
tree induced on {A,B,C}.



How to compute a species tree?

AN AN —— ANA

Estimate species
tree for every
3 species

Theorem (Aho et al.): The rooted tree
on n species can be computed from its
set of 3-taxon rooted subtrees in
polynomial time.



How to compute a species tree?

AN A —— AN-A

Estimate species

tree for every Combine
3 species rooted
3-taxon
Theorem (Aho et al.): The rooted tree trees
on n species can be computed from its v

set of 3-taxon rooted subtrees in
polynomial time.



How to compute a species tree?

AN A —— AN-A

Estimate species .
tree for every Combine
3 species rooted
. -taxon
Theorem (Degnan et al., 2009): Under the multi- 3-taxo
. . trees
species coalescent, the rooted species tree can v

be estimated correctly (with high probability)
given a large enough number of true rooted
gene trees.



How to compute a species tree?

AN A —— AN-A

Estimate species

tree for every Combine
4 species unrooted
Theorem (Allman et al., 2011, and others): For ?r_éz);on

every four leaves {a,b,c,d}, the most probable v
unrooted quartet tree on {a,b,c,d} is the true

species tree. Hence, the unrooted species tree

can be estimated from a large enough number

of true unrooted gene trees.



Statistical Consistency

error

Data

Data are gene trees, presumed to be randomly
sampled true gene trees.




Statistically consistent under ILS?

MP-EST (Liu et al. 2010): maximum likelihood
estimation of rooted species tree — YES

BUCKy-pop (Ané and Larget 2010): quartet-based
Bayesian species tree estimation —YES

MDC—-NO
Greedy — NO
Concatenation under maximum likelihood - NO

MRP (supertree method) — open



Results on 11-taxon datasets with weak ILS
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*BEAST more accurate than summary methods (MP-EST, BUCKYy, etc)
CA-ML: concatenated analysis) most accurate

Datasets from Chung and Ané, 2011
Bayzid & Warnow, Bioinformatics 2013



Results on 11-taxon datasets with strongILS

0.5

*BEAST
CA-ML
BUCKy-con
BUCKy-pop
MP-EST
Phylo—exact
MRP

GC

EEECEECE

AVEIdEEC IM'IN Idle

S5—genes 10—genes 25—genes 50—-genes

*BEAST more accurate than summary methods (MP-EST, BUCKYy, etc)
CA-ML: (concatenated analysis) also very accurate

Datasets from Chung and Ané, 2011
Bayzid & Warnow, Bioinformatics 2013



Average FN rate

*BEAST co-estimation produces more accurate gene
trees than Maximum Likelihood

0.5 \ \ \ 0.5

04 r

Average FN rate

*BEAST FastTree RAXML *BEAST FastTree RAxXxML

11-taxon weakILS datasets 17-taxon (very high ILS) datasets

11-taxon datasets from Chung and Ané, Syst Biol 2012
17-taxon datasets from Yu, Warnow, and Nakhleh, JCB 2011

Bayzid & Warnow, Bioinformatics 2013



Impact of Gene Tree Estimation Error on MP-EST

0.25

0.2 .

0.15 .

M true
[0 estimated

0.1

Average FN rate

——

0.05 | .

MP-EST

MP-EST has no error on true gene trees, but
MP-EST has 9% error on estimated gene trees

Datasets: 11-taxon stronglLS conditions with 50 genes

Similar results for other summary methods (MDC, Greedy, etc.).



Problem: poor gene trees

e Summary methods combine estimated gene
trees, not true gene trees.



Problem: poor gene trees

Summary methods combine estimated gene
trees, not true gene trees.

The individual gene sequence alignments in the
11-taxon datasets have poor phylogenetic
signal, and result in poorly estimated gene
trees.



Problem: poor gene trees

e Summary methods combine estimated gene
trees, not true gene trees.

 The individual gene sequence alignments in the
11-taxon datasets have poor phylogenetic
signal, and result in poorly estimated gene
trees.

e Species trees obtained by combining poorly
estimated gene trees have poor accuracy.



TYPICAL PHYLOGENOMICS PROBLEM:
many poor gene trees

e Summary methods combine estimated gene
trees, not true gene trees.

 The individual gene sequence alignments in the
11-taxon datasets have poor phylogenetic
signal, and result in poorly estimated gene
trees.

e Species trees obtained by combining poorly
estimated gene trees have poor accuracy.



Addressing gene tree estimation error

Get better estimates of the gene trees
Restrict to subset of estimated gene trees
Model error in the estimated gene trees
Modify gene trees to reduce error

Develop methods with greater robustness to
gene tree error



Addressing gene tree estimation error

Get better estimates of the gene trees
Restrict to subset of estimated gene trees
Model error in the estimated gene trees
Modify gene trees to reduce error

Develop methods with greater robustness to
gene tree error

— ASTRAL. Bioinformatics 2014 (Mirarab et al.)
— Statistical binning. Science 2014 (Mirarab et al.)



Avian Phylogenomics Project

E Jarvis, MTP Gilbert, G Zhang, T. Warnow S. Mirarab Md. S. Bayzid,
HHMI Copenhagen BGI UT-Austin UT-Austin ~ UT-Austin

e Approx. 50 species, whole genomes Plus many many other people...
e 8000+ genes, UCEs

e Gene sequence alignments computed using SATé (Liu et al., Science 2009
and Systematic Biology 2012)

Species tree estimated using Statistical Binning with MP-EST
(Jarvis, Mirarab, et al., Science 2014)




Input: estimated gene trees with bootstrap support, and minimum support
threshold t

Step 1: partition of the estimated gene trees into sets, so that no two gene
trees in the same set are strongly incompatible, and the sets have
approximately the same size.

Step 2: estimate “supergene” trees on each set using concatenation (maximum
likelihood)

Step 3: combine supergene trees using coalescent-based method

Note: Step 1 requires solving the NP-hard “balanced vertex coloring problem”,
for which we developed a good heuristic (modified 1979 Brelaz algorithm)



Sequence data

\KX

Incompatibility Graph

Traditional pipeline (unbinned)
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Binned supergene alignments
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Supergene trees (unweighted) Species tree



Statistical binning vs. unbinned

0.25 T T T T T

0.2

0.15
B Unbinned
B Statistical-75

0.1

Average FN rate

0.05

MP-EST MDC*(75) MRP MRL GC

Mirarab, et al., Science 2014
Binning produces bins with approximate 5 to 7 genes each
Datasets: 11-taxon stronglLS datasets with 50 genes, Chung and Ané, Systematic Biology



Mammalian Simulation Study

Moderate ILS — 1000bp Moderate ILS — 500bp

7.5% -

- i i I i i
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. Unbinned . Concatenation . Statistical Binning

Tree Error
N
()]
2
1

greedy

mpest ~
mrp

RAxML ~

greedy

mpest
mrp

RAXML ~

Observations:

Binning can improve accuracy, but impact depends on accuracy of estimated
gene trees and phylogenetic estimation method.

Binned methods can be more accurate than RAXML (maximum likelihood), even
when unbinned methods are less accurate.

Data: 200 genes, 20 replicate datasets, based on Song et al. PNAS 2012
Mirarab et al., Science 2014



Mammalian simulation

Moderate ILS — 1000bp Moderate ILS — 500bp |

Increased ILS — 500bp Reduced ILS — 500bp

TT .

- Unbinned - Concatenation - Statistical Binning

7.5% —

5.0% —

2.5% —

o
2
2

Tree Error

7.5% —

5.0% —

2.5% —

0.0% —

greedy

mpest 7
mrp

RAXML T

greedy |

mpest |
mrp

RAXML T

Observation:
Binning can improve summary methods, but amount of improvement depends on method,

amount of ILS, number of gene trees, and gene tree estimation error.

MP-EST is statistically consistent; Greedy and Maximum Likelihood are not; unknown for MRP.
Data (200 genes, 20 replicate datasets) based on Song et al. PNAS 2012



Avian Simulation: Impact of binning with MP-EST
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Comparing Binned and Un-binned MP-EST on the Avian Dataset
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Phoenicopterus ruber —

Podiceps cristatus
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Chlamydotis macqueenii
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Unbinned MP-EST
Strongly rejects
Columbea, a major
67 finding by

I Jarvis, Mirarab, et al.
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Unbinned MP-EST



1KP: Thousand Transcriptome Project

N. Matasci T. Warnow, S. Mirarab, N. Nguyen, Md. S.Bayzid

G. Ka-Shu Wong . eebens-Mack N. Wickett
UT-Austin UT-Austin

U Alberta U Georgia Northwestern iPlant UT-Austin UT-Austin

« 1200 plant transcriptomes Plus many other people...

o More than 13,000 gene families (most not single copy)

o Gene sequence alignments and trees computed using SATe (Liu et al.,
Science 2009 and Systematic Biology 2012)

Species tree estimated using ASTRAL (Bioinformatics, 2014)
Wickett, Mirarab et al., PNAS 2014




ASTRAL

* Accurate Species Trees Algorithm

 Mirarab et al., ECCB 2014 and Bioinformatics
2014

 Statistically-consistent estimation of the
species tree from unrooted gene trees



ASTRAL's approach

* Input: set of unrooted gene trees T,, T,, ..., T,

e Qutput: Tree T maximizing the total quartet-
similarity score to the unrooted gene trees

Theorem:

* An exact solution to this problem would be a
statistically consistent algorithm in the
presence of ILS



ASTRAL's approach

* Input: set of unrooted gene trees T,, T,, ..., T,

e Qutput: Tree T maximizing the total quartet-
similarity score to the unrooted gene trees

Theorem:

* An exact solution to this problem is NP-hard

Comment: unknown computational complexity
if all trees T, are on the same leaf set



ASTRAL's approach

* Input: set of unrooted gene trees T,, T,, ..., T,
and set X of bipartitions on species set S

e Qutput: Tree T maximizing the total quartet-
similarity score to the unrooted gene trees,
subject to Bipartitions(T') drawn from X

Theorem:

* An exact solution to this problem is achievable
in polynomial time!



ASTRAL's approach

* Input: set of unrooted gene treesT,, T,, ..., T, and
set X of bipartitions on species set S

e Output: Tree T" maximizing the total quartet-
similarity score to the unrooted gene trees,
subject to Bipartitions(T") drawn from X

Theorem:

* Letting X be the set of bipartitions from the input
gene trees is statistically consistent and
polynomial time.



ASTRAL vs. MP-EST and Concatenation
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Basic Question

* |sit possible to estimate the species tree with
high probability given a large enough set of
estimated gene trees, each with some

non-zero probability of error?



Partial answers

Theorem (Roch & Warnow, in preparation): If gene
sequence evolution obeys the strong molecular
clock, then statistically consistent estimation is

possible — even where all gene trees are estimated
based on a single site.



Partial answers

Theorem (Roch & Warnow, in preparation): If gene
sequence evolution obeys the strong molecular clock,
then statistically consistent estimation is possible — even
where all gene trees are estimated based on a single site.

Proof (sketch): Under the multi-species coalescent
model, the most probable rooted triplet gene tree on
{a,b,c}is the true species tree for {a,b,c}, and this remains
true (when the molecular clock holds) even for triplet
gene trees estimated on a single site.



When molecular clock fails

 Without the molecular clock, the estimation
of the species tree is based on quartet trees.
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 Without the molecular clock, the estimation
of the species tree is based on quartet trees.

* Although the most probable quartet tree is
still the true species tree, this is no longer true
for estimated quartet trees — except for very
long sequences.



When molecular clock fails

 Without the molecular clock, the estimation
of the species tree is based on quartet trees.

* Although the most probable quartet tree is
still the true species tree, this is no longer true
for estimated quartet trees — except for very
long sequences.

* No positive results established for any of the
current coalescent-based methods in use!



Summary

Coalescent-based species tree estimation:

Gene tree estimation error impacts species tree estimation.

Statistical binning (Mirarab et al., Science 2014) improves
coalescent-based species tree estimation from multiple genes, used
in Avian Tree (Jarvis, Mirarab et al., Science 2014).

ASTRAL (Bioinformatics, 2014) more robust to gene tree estimation
error, used in Plant Tree (Wickett, Mirarab et al., PNAS 2014).

|Identifiability in the presence of gene tree estimation error? Yes
under the strong molecular clock, very limited results otherwise.

New questions about statistical inference, focusing on the impact
of input error.



Computational Phylogenetics

Interesting combination of different mathematics
and computer science:

— statistical estimation under Markov models of
evolution

— mathematical modelling

— graph theory and combinatorics

— machine learning and data mining

— heuristics for NP-hard optimization problems
— high performance computing

Testing involves massive simulations



Bin-and-Conquer?

Assign genes to “bins”, creating “supergene alighments”

Estimate trees on each supergene alignment using
maximum likelihood

Combine the supergene trees together using a summary
method



Bin-and-Conquer?

1. Assign genes to “bins’, creating “supergene alignments”

2. Estimate trees on each supergene alignment using
maximum likelihood

3. Combine the supergene trees together using a summary
method

Variants:

* Naive binning (Bayzid and Warnow, Bioinformatics 2013)

e Statistical binning (Mirarab, Bayzid, and Warnow, to
appear, Science)



Statistical binning

Input: estimated gene trees with bootstrap support, and
minimum support threshold t

Output: partition of the estimated gene trees into sets, so
that no two gene trees in the same set are strongly

incompatible.



bin size

Balanced Statistical Binning
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Mirarab, Bayzid, and Warnow, in preparation
Modification of Brelaz Heuristic for minimum vertex coloring.



Avian Phylogenomics Project
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Avian Phylogeny

e GTRGAMMA Maximum
likelihood analysis (RAXML) of
37 million basepair alignment
(exons, introns, UCEs) — highly
resolved tree with near 100%
bootstrap support.

* More than 17 years of
compute time, and used 256
GB. Run at HPC centers.

Avian Phylogenomics Project, in preparation



Avian Phylogeny

GTRGAMMA Maximum  Unbinned MP-EST on 14000+
likelihood analysis (RAXML) of genes: highly incongruent with
37 million basepair alignment the concatenated maximum
(exons, introns, UCEs) — highly likelihood analysis, poor
resolved tree with near 100% bootstrap support.

bootstrap support.

More than 17 years of
compute time, and used 256
GB. Run at HPC centers.

Avian Phylogenomics Project, under review



Avian Simulation — 14,000 genes

e MP-EST:
o Unbinned ~11.1% error

O
e Greedy:
o Unbinned <~ 26.6% error

O

e 8250 exon-like genes (27% avg. bootstrap support)
e 3600 UCE-like genes (37% avg. bootstrap support)

e 2500 intron-like genes (51% avg. bootstrap support)



Avian Simulation — 14,000 genes

e MP-EST:
o Unbinned ~11.1% error
o Binned ~ 6.6% error
e Greedy:
o Unbinned ~ 26.6% error
o Binned ~13.3% error

e 8250 exon-like genes (27% avg. bootstrap support)
e 3600 UCE-like genes (37% avg. bootstrap support)
e 2500 intron-like genes (51% avg. bootstrap support)



Avian Phylogeny

GTRGAMMA Maximum  Unbinned MP-EST on 14000+
likelihood analysis (RAXML) of genes: highly incongruent with
37 million basepair alignment the concatenated maximum
(exons, introns, UCEs) — highly likelihood analysis, poor
resolved tree with near 100% bootstrap support.

bootstrap support.

More than 17 years of
compute time, and used 256
GB. Run at HPC centers.

Avian Phylogenomics Project, under review



Avian Phylogeny

GTRGAMMA Maximum
likelihood analysis (RAXML) of
37 million basepair alignment
(exons, introns, UCEs) — highly
resolved tree with near 100%
bootstrap support.

More than 17 years of
compute time, and used 256
GB. Run at HPC centers.

Unbinned MP-EST on 14000+
genes: highly incongruent with
the concatenated maximum
likelihood analysis, poor
bootstrap support.

Statistical binning version of
MP-EST on 14000+ gene trees
— highly resolved tree, largely
congruent with the
concatenated analysis, good
bootstrap support

Avian Phylogenomics Project, under review



To consider

* Binning reduces the amount of data (number of gene
trees) but can improve the accuracy of individual
“supergene trees”. The response to binning differs
between methods. Thus, there is a trade-off between
data quantity and quality, and not all methods respond
the same to the trade-off.

 We know very little about the impact of data error on
methods. We do not even have proofs of statistical
consistency in the presence of data error.



Other recent related work

* ASTRAL: statistically consistent method for species
tree estimation under the multi-species coalescent
(Mirarab et al., Bioinformatics 2014)

 DCM-boosting coalescent-based methods (Bayzid et
al., RECOMB-CG and BMC Genomics 2014)

* Weighted Statistical Binning (Bayzid et al., in
preparation) — statistically consistent version of
statistical binning



Other Research in my lab

Method development for

* Supertree estimation

Multiple sequence alignment

« Metagenomic taxon identification
* Genome rearrangement phylogeny
 Historical Linguistics

Techniques:

e Statistical estimation under Markov models of evolution
e Graph theory and combinatorics

Machine learning and data mining

 Heuristics for NP-hard optimization problems

 High performance computing

* Massive simulations



Research Agenda

Major scientific goals:
 Develop methods that produce more accurate alignments and phylogenetic
estimations for difficult-to-analyze datasets

* Produce mathematical theory for statistical inference under complex models of
evolution

* Develop novel machine learning techniques to boost the performance of
classification methods

Software that:
. Can run efficiently on desktop computers on large datasets

. Can analyze ultra-large datasets (100,000+) using multiple processors
. Is freely available in open source form, with biologist-friendly GUIs



Mammalian simulation

Moderate ILS — 1000bp Moderate ILS — 500bp |
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Observation:
Binning can improve summary methods, but amount of improvement depends on: method,

amount of ILS, and accuracy of gene trees.

MP-EST is statistically consistent in the presence of ILS; Greedy is not, unknown for MRP

And RAXMIL.
Data (200 genes, 20 replicate datasets) based on Song et al. PNAS 2012



Statistically consistent methods

Input: Set of estimated gene trees or alignments, one (or more) for
each gene
Output: estimated species tree

— *BEAST (Heled and Drummond 2010): Bayesian co-estimation of gene
trees and species trees given sequence alignments

— MP-EST (Liu et al. 2010): maximum likelihood estimation of rooted
species tree

— BUCKy-pop (Ané and Larget 2010): quartet-based Bayesian species
tree estimation



Naive binning vs. unbinned: 50 genes
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Bayzid and Warnow, Bioinformatics 2013
11-taxon stronglLS datasets with 50 genes, 5 genes per bin



Naive binning vs. unbinned, 100 genes
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*BEAST did not converge on these datasets, even with 150 hours.
With binning, it converged in 10 hours.
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Naive binning vs. unbinned: 50 genes
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Bayzid and Warnow, Bioinformatics 2013
11-taxon stronglLS datasets with 50 genes, 5 genes per bin
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statistically consistent under Jukes-Cantor




