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Phylogenies and Applications
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Basic Biology:
How did life evolve?

Applications of phylogenies to:
protein structure and function
population genetics
human migrations



The NIH Human Microbiome Project

25,000 human genes,
1,000,000 bacterial genes

Gastro-
intestinal \




Computational Phylogenetics and
Metagenomics

THE NEW SCIENCE OF

- METAGENOMICS
<
\ : Revealing the Secrets of Our Microbial Planet
78 o

Courtesy of the Tree of Life project



Multiple Sequence Alignment (MSA):
another grand challenge’

S1 = AGGCTATCACCTGACCTCCA S1 = -AGGCTATCACCTGACCTCCA
S2 = TAGCTATCACGACCGC S2 = TAG-CTATCAC--GACCGC--
S3 = TAGCTGACCGC S3 = TAG-CT------- GACCGC--
Sn = TCACGACCGACA Sn = —-—-—-—-—-—- TCAC--GACCGACA

Novel techniques needed for scalability and accuracy

NP-hard problems and large datasets
Current methods do not provide good accuracy
Few methods can analyze even moderately large datasets

Many important applications besides phylogenetic estimation

' Frontiers in Massive Data Analysis, National Academies Press, 2013



DNA Sequence Evolution

AAGACTT -3 mil yrs

-2 mil yrs

AAGGCCT TGGACTT

-1 mil yrs

AGGGCAT TAGCCCT AGCACTT

AGGGCAT TAGCCCA TAGACTT AGCACAA AGCGCTT today



Phylogeny Problem

U \4 \u4 X Y
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The “real” problem

U \4 \u4 X Y

@ @ @ @ @
AGGGCATGA  AGAT TAGACTT TGCACAA TGCGCTT
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Indels (insertions and deletions)

Deletion Mutation
ACGGTGCAGTTACCA..

\ /
\N !/
Ny

LACCAGTCACCAL.



D7H|on Subititution

..ACGGTGCAGTTACCA...

/ '”:f”“’” ..ACGGTGCAGTTACC-A...
..ACCAGTCACCTA.. ..AC----CAGTCACCTA...

The true multiple alighment

— Reflects historical substitution, insertion, and deletion
events

— Defined using transitive closure of pairwise alignments
computed on edges of the true tree



S1
S2
S3
S4

Input: unaligned sequences

AGGCTATCACCTGACCTCCA
TAGCTATCACGACCGC
TAGCTGACCGC
TCACGACCGACA



Phase 1: Alignment

S1 = AGGCTATCACCTGACCTCCA  S1 = -AGGCTATCACCTGACCTCCA
S2 = TAGCTATCACGACCGC S2 = TAG-CTATCAC--GACCGC--
S3 = TAGCTGACCGC ~ 83 = TAG-CT----—-- GACCGC--
S4 = TCACGACCGACA S4 = ——————- TCAC--GACCGACA



Phase 2: Construct tree

S1 = AGGCTATCACCTGACCTCCA S1 = -AGGCTATCACCTGACCTCCA

S2 = TAGCTATCACGACCGC S2 = TAG-CTATCAC--GACCGC--

S3 = TAGCTGACCGC S3 = TAG-CT-—-————-— GACCGC--

S4 = TCACGACCGACA S4 = ——————— TCAC--GACCGACA
S1 S2

N

S4 S3




Phylogenomic pipeline

Select taxon set and markers

Gather and screen sequence data, possibly identify orthologs
Compute multiple sequence alignments for each locus
Compute species tree or network:

— Compute gene trees on the alignments and combine the estimated
gene trees, OR

— Estimate a tree from a concatenation of the multiple sequence
alignments

Get statistical support on each branch (e.g., bootstrapping)
Estimate dates on the nodes of the phylogeny

Use species tree with branch support and dates to understand biology
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Large-scale Alignment Estimation

* Many genes are considered unalignable due
to high rates of evolution

* Only a few methods can analyze large
datasets

 iPlant (NSF Plant Biology Collaborative) and
other projects planning to construct
phylogenies with 500,000 taxa



Hard Computational Problems
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NP-hard problems

Large datasets
100,000+ sequences
thousands of genes

“Big data” complexity:
model misspecification
fragmentary sequences
errors in input data
streaming data



1kp: Thousand Transcriptome Project

T. Warnow, S. Mirarab, N. Nguyen, Md. S.Bayzid
UIUC/IGB UT-Austin UIUC/IGB UT-Austin

G.Ka-Shu Wong J. Leebens-Mack  N. Wickett N. Matasci
U Alberta U Georgia Northwestern iPlant

Plus many many other people...

o First study (Wickett, Mirarab, et al., PNAS 2014) had ~100 species and
~800 genes, gene trees and alignments estimated using SATe, and a

coalescent-based species tree estimated using ASTRAL

o Second study: Plant Tree of Life based on transcriptomes of ~1200
species, and more than 13,000 gene families (most not single copy)

Upcoming Challenges:
Species tree estimation from conflicting gene trees

Alignment of datasets with > 100,000 sequences




This talk

« "Big data® multiple sequence alignment

« SATe (Science 2009, Systematic Biology 2012)
and PASTA (RECOMB and JCB 2014), methods
for co-estimation of alignments and trees

 The HMM Family technique, and applications to
— phylogenetic placement (SEPP, PSB 2012),

— multiple sequence alignment (UPP, submitted), and

— metagenomic taxon identification (TIPP, Bioinformatics
2014).



Multiple Sequence Alignment



First Align, then Compute the Tree

S1 = AGGCTATCACCTGACCTCCA S1 = -AGGCTATCACCTGACCTCCA

S2 = TAGCTATCACGACCGC S2 = TAG-CTATCAC--GACCGC--

S3 = TAGCTGACCGC S3 = TAG-CT-—-————-— GACCGC--

S4 = TCACGACCGACA S4 = ——————— TCAC--GACCGACA
S1 S2

S4 S3



Simulation Studies

S1
S2
S3
S4

= —-AGGCTATCACCTGACCTCCA
= TAG-CTATCAC--GACCGC-H
= TAG-CT-—-—-———- GACCGC-H

—-—-—-TCAC--GACCGACAH

S2

ha

S4

S3

True tree and
alignment

S1 = AGGCTATCACCTGACCTCCA

S2 = TAGCTATCACGACCGC

S3 = TAGCTGACCGC

S4 = TCACGACCGACA
Unaligned
Sequences

€ >

Compare

S1 = -AGGCTATCACCTGACCTCCH
S2 = TAG-CTATCAC--GACCGC-
S3 = TAG-C--T-----GACCGC-
S4 = T---C-A-CGACCGA----CH
s, S4
52 s3

Estimated tree and
alignment
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FN: false negative
(missing edge)

FP: false positive
(incorrect edge)

50% error rate

Quantifying Error

St ACAATTAGAAC
S, ACCCTTAGAAC
S3 ACCATTCCAAC
Sy ACCAGACCAAC

Ss ACCAGACCGGA

DNA SEQUENCES

INFERRED TREE




Two-phase estimation

Alighment methods Phylogeny methods

e Clustal _

. POY (and POY*)  Bayesian MCMC

* Probcons (and Probtree) e Maximum parsimony
* Probalign . . .

. MAFFT  Maximum likelihood
* Muscle * Neighbor joining

e Di-align

. T-Coffee  FastME

* Prank (PNAS 2005, Science 2008) e UPGMA

* Opal (ISMB and Bioinf. 2007) ]

- FSA (PLoS Comp. Bio. 2009) * Quartet puzzling

* Infernal (Bioinf. 2009) e FEtc.

 Etc.

RAXML: heuristic for large-scale ML optimization
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Alignment SP-FN Error (%)

50

1 1 I 1 1 I 1 1 1 I T T T T T
RAXML(ClustalW) +——
RAXML(Muscle) ===x--=
40 F RAXML(MAFFT) s--a.--:
RAXML(Prank+GT) i@
30  RAXML(TrueAln) =
20 |-
10
[ TSR
0 l : : . L 1 ] 1 1 ] ] ] 1 1 ]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
100

| I I 1 I I I I 1 | 1 1 1 I I
ClustalW +=—t+—

Muscle =--x---
MAFFT 2-- .-
Prank+GT zw @

80

60

TRPPEL LA ﬁ
- #‘ ......... » .
LY . ':‘:“i 2 "' ‘a
W -ty - _e o
-~ LY R v ’ -r,~'- v o
40 "/ m \" . :“-‘“‘“;"'¢ a4 :I..lx ..........
‘ 2 30 : Pad 2}
..... St R
R S : W "".\\.o . B
q - 3 0 -t X
RS g "":"\"‘ a"‘&
20 RS X3
o
_________
0 | | | 1 | |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1000-taxon models, ordered by difficulty (Liu et al., 2009)



Re-aligning on a tree

Decompose | ..
dataset . .

Align
\{bproblems
WX
[c][of

Estimate M\ A
tree on merged ABCD .erge
sub-alignments

alignment




SATé and PASTA Algorithms

Obtain initial alignment and
estimated ML tree

Use tree to compute

Estimate ML tree on new new alignment

alignment

If new alighment/tree pair has worse ML score, realign using a different decomposition

Repeat until termination condition (typically, 24 hours)



Missing Branch Rate (%)
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SATé-1 (Science 2009) performance
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RAXML(Muscle) *=-x--=
RAXML(MAFFT) 3--#:-- :

RAXML(Prank+GT) i@
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1000 taxon models, ordered by difficulty

SATé-1 24 hour analysis, on desktop machines
(Similar improvements for biological datasets)

SATé-1 can analyze up to about 30,000 sequences.




Missing Branch Rate (%)

Alignment SP-FN Error
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SATé-1 and SATé-2 (Systematic Biology, 2012)
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PASTA (2014): even better than SATé-2

Starting Tree

Clustalw

Mafft—P rofile

RNASIim

0.20

0.15 -

0.10 -

Tree Error (FN Rate)

0.05 -

0.00 -

50000

100000 200000

Muscle . SATe2 - PASTA . R eference Alignment

PASTA vs. SATé-2

(a) Faster,

(b) Can analyze larger
datasets (up to
1,000,000 sequences —
SATé-2 can analyze
50,000 seguences)

(c) More accurate!



1kp: Thousand Transcriptome Project

G. Ka-Shu Wong  J. Leebens-Mack N. Wickett N. Matasci T. Warnow, S. Mirarab, N. Nguyen, Md. S.Bayzid
U Alberta U Georgia Northwestern iPlant ulucC UT-Austin UT-Austin UT-Austin

Plus many many other people...

o Plant Tree of Life based on transcriptomes of ~1200 species
o More than 13,000 gene families (most not single copy)

Challenge:
Alignment of datasets with > 100,000 sequences




Counts
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Median:266
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Length

I I
1500 2000

1KP dataset: more than
100,000 p450 amino-acid

sequences, many fragmentary



Mean:317
Median:266

12000 -
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8000 -
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Counts
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0 500 1000
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1KP dataset: more than
100,000 p450 amino-acid
sequences, many fragmentary

All standard multiple
sequence alignment
methods we tested

performed poorly on
datasets with fragments.



1kp: Thousand Transcriptome Project

G. Ka-Shu Wong  J. Leebens-Mack N. Wickett N. Matasci T. Warnow, S. Mirarab, N. Nguyen, Md. S.Bayzid
U Alberta U Georgia Northwestern iPlant ulucC UT-Austin UT-Austin UT-Austin

Plus many many other people...

o Plant Tree of Life based on transcriptomes of ~1200 species
o More than 13,000 gene families (most not single copy)

Challenge:
Alignment of datasets with > 100,000 sequences
with many fragmentary sequences




SEPP

 SEPP: SATé-enabled Phylogenetic
Placement, by Mirarab, Nguyen, and Warnow.
Pacific Symposium on Biocomputing, 2012,
special session on the Human Microbiome

« Objective:

— phylogenetic analysis of single-gene datasets with
fragmentary sequences

* Introduces "HMM Family” technique



Phylogenetic Placement

Fragmentary sequences Full-length sequences for same gene,
from some gene and an alignment and a tree

ACCG

CGAG

CGG

GGCT >
TAGA

GGGGG

TCGAG

GGCG

GGG

A:CCT AGG...GCAT TAGC...CCA TAGA...CTT AGC...ACA ACT..TAGA..A



Phylogenetic Placement

Step 1: Align each query sequence to
backbone alignment

Step 2: Place each query sequence
iInto backbone tree, using extended
alignment



Sl
S2
S3
S4

Q1

Align Sequence

= —AGGCTATCACCTGACCTCCA-AA
= TAG-CTATCAC--GACCGC--GCA

= TAG-CT-===——— GACCGC--GCT
= TAC———--TCAC--GACCGACAGCT
= TAAAAC
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Sl
S2
S3
S4

Q1

Align Sequence

= —AGGCTATCACCTGACCTCCA-AA
= TAG-CTATCAC--GACCGC--GCA

TAG-CT-—-————- GACCGC--GCT
TAC----TCAC--GACCGACAGCT
——————— T-A--AAAC-——————-

S1

54

S2

N
/

7
AN

S3



Sl
S2
S3
S4

Q1

Place Sequence

= —AGGCTATCACCTGACCTCCA-AA
= TAG-CTATCAC--GACCGC--GCA

TAG-CT-—-————- GACCGC--GCT
TAC----TCAC--GACCGACAGCT
——————— T-A--AAAC-——————-

S1

54

S2

N
A

Q1

7
AN

S3



Phylogenetic Placement

» Align each query sequence to backbone alignment
— HMMALIGN (Eddy, Bioinformatics 1998)

— PaPaRa (Berger and Stamatakis, Bioinformatics 2011)

* Place each query sequence into backbone tree
— Pplacer (Matsen et al., BMC Bioinformatics, 2011)
— EPA (Berger and Stamatakis, Systematic Biology 2011)

Note: pplacer and EPA use maximum likelihood, and are
reported to have the same accuracy.



HMMER vs. PaPaRa

7

B HMMER-+pplacer
|_|PaPaRa+pplacer

Delta-error (edges)

M4 M3 M2
Model Condition

Increasing rate of evolution



HMMER+pplacer:
1) build one HMM for the entire alignment
2) Align fragment to the HMM, and insert into
alignment
3) Insert fragment into tree to optimize likelihood




One Hidden Markov Model
for the entire alignment?

ALK
@~




Or 2 HMMs?






SEPP(10%), based on ~10 HMMs
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SEPP vs. HMMER+pplacer

SEPP produced more accurate phylogenetic
placements than HMMER+pplacer.

The only difference is the use of a Family of HMMs
instead of one HMM.

The biggest differences are for datasets with high
rates of evolution.



The NIH Human Microbiome Project

25,000 human genes,
1,000,000 bacterial genes

Gastro-
intestinal \




Abundance Profiling

Objective: Distribution of the species (or genera, or families, etc.) within the
sample.

For example: The distribution of the sample at the species-level is:
50% species A
20% species B
15% species C
14% species D

1% species E



TIPP: SEPP + statistics

SEPP has high recall but low precision (classifies
almost everything)

TIPP: dramatically reduces false positive rate with
small reduction in true positive rate, by
considering uncertainty in alignment (HMMER)
and placement (pplacer)

TIPP: Taxon ldentification and Phylogenetic
Profiling. N. Nguyen, S. Mirarab, and T. Warnow.
Bioinformatics, 2014.



Abundance Profiling

Objective: Distribution of the species (or genera, or families, etc.) within the sample.
Leading techniques:

PhymmBL (Brady & Salzberg, Nature Methods 2009)

NBC (Rosen, Reichenberger, and Rosenfeld, Bioinformatics 2011)

MetaPhyler (Liu et al., BMC Genomics 2011), from the Pop lab at the University
of Maryland

MetaPhlAn (Segata et al., Nature Methods 2012), from the Huttenhower Lab at
Harvard

mOTU (Bork et al., Nature Methods 2013)

MetaPhyler, MetaPhlAn, and mOTU are marker-based techniques (but use different
marker genes).

Marker gene are single-copy, universal, and resistant to horizontal transmission.



Hellinger Distance

High indel datasets containing known genomes

Long sequence high indel datasets Short sequence high indel datasets

O O O =
N o ~ o
an o ol S
1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1
species genus family order class phylum species genus family order class phylum

Method -2 NBC -e- PhymmBL -4~ MetaPhlAn —— Metaphyler TIPP

Note: NBC, MetaPhlAn, and MetaPhyler cannot classify any sequences from at least one
of the high indel long sequence datasets, and mOTU terminates with an error message

on all the high indel datasets.



I”

“Novel” genome datasets

Easy long read novel datasets Easy short read novel datasets
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High indel long read novel datasets

Hellinger Distance

0.50 -
e——e O

0.25 -

0.00 -

1 1 1 1 1 1 1 1 1 1 1 1
species genus family order class phylum species genus family order class phylum

Method -& NBC -e- PhymmBL -2~ MetaPhlAn —— Metaphyler -« mOTU -<- TIPP

Note: mOTU terminates with an error message on the long fragment
datasets and high indel datasets.



UPP: large-scale MSA estimation

UPP = “Ultra-large multiple sequence alignment
using Phylogeny-aware Profiles”

Nguyen, Mirarab, and Warnow. Under review.

Objective: highly accurate large-scale multiple
sequence alignments, even in the presence of
fragmentary sequences.

Uses a variant of the HMM Family technique in SEPP



UPP Algorithmic Approach

e Select random subset of sequences, and build
“backbone alignment”

e Construct an “Ensemble of Hidden Markov
Models” on the backbone alignment (the
family has HMMs on many subsets of different
sizes, not disjoint)

* Add all remaining sequences to the backbone
alignment using the Ensemble of HMMs



Evaluation

e Simulated datasets (some have fragmentary
sequences):

— 10K to 1,000,000 sequences in RNASim (Guo, Wang,
and Kim, arxiv)

— 1000-sequence nucleotide datasets from SATé papers
— 5000-sequence AA datasets (from FastTree paper)
— 10,000-sequence Indelible nucleotide simulation

* Biological datasets:

— Proteins: largest BaliBASE and HomFam
— RNA: 3 CRW datasets up to 28,000 sequences



RNASIim: alignment error

1.00+

All methods
given 24 hrs
on a 12-core
machine

o

~

o
1

Mean alignment error
o
13
o

o

N

(6]
1

0.00+

10000 50000 100000 200000

[/]clustai-omega /|MAFFT| /]PASTA[ /] UPP(Fast)
Note: Mafft was run under default settings for 10K and 50K sequences

and under Parttree for 100K sequences, and fails to complete under any setting
For 200K sequences. Clustal-Omega only completes on 10K dataset.



RNASImM: tree error

0.25-
0.20-
All methods

_ given 24 hrs
%0-15' on a 12-core
o machine
>0.10-
L

0.05-

0.00-

10000 50000 100000 200000

[/]clustali-omega A MAFFT/]PASTA[ /] UPP(Fast)[ /] True alignment

Note: Mafft was run under default settings for 10K and 50K sequences
and under Parttree for 100K sequences, and fails to complete under any setting
For 200K sequences. Clustal-Omega only completes on 10K dataset.



0.25+

0.20

©
—
a

Alignment error
4
o

0.05-

0.00+

RNASiIim Million Sequences: alighment error

RNASImM 1M

Method [/]PASTA ] UPP(Fast,No Decomp) Z]UPP(Fast)

Notes:

* We show alignment error
using average of SP-FN and
SP-FP. UPP variants have
better scores than PASTA.

» But for the Total Column (TC)
scores, PASTA is better than
UPP: it recovered 10% of the
columns compared to less
than 0.04% for UPP variants.



FN rate

0.25-

0.20+

0.15+

0.10+

0.054

0.00+

RNASim Million Sequences: tree error

Running time (12 processors):
« UPP(Fast,NoDecomp) took

2.2 days,

« UPP(Fast) took 11.9 days,
and

« PASTA took 10.3 days

RNASIm 1M

Method [Z]PASTAJUPP (Fast,No Decomp)[Z]UPP(Fast)
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UPP vs. PASTA: impact of fragmentation
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(a) Average alignment error
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0 125 25

% Fragmentary

[/]PASTA[/]UPP(Default)

(b) Average tree error

50

Under high rates of evolution,
PASTA is badly impacted

by fragmentary sequences (the
same is true for other methods).

Under low rates of evolution,
PASTA can still be highly accurate
(data not shown).

UPP continues to have good
accuracy even on datasets
with many fragments under
all rates of evolution.

Performance on fragmentary datasets of the 1000M2 model condition



Wall clock align time (hr)

Running Time
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Number of sequences

e UPP(Fast)

Wall-clock time used (in hours) given 12 processors

200000



Summary

SATé-1 (Science 2009), SATé-2 (Systematic Biology 2012), and PASTA (RECOMB
2014): methods for co-estimating gene trees and multiple sequence alignments.

PASTA can analyze up to 1,000,000 sequences, and is highly accurate for
full-length sequences. But none of these methods are robust to fragmentary
sequences.

HMM Family technique: uses a collection of HMMs to represent a “backbone

alignment”. HMM families improve accuracy, especially in the presence of high

rates of evolution.

Applications of HMM Families in:

— SEPP (phylogenetic placement), PSB 2012

— TIPP (metagenomic taxon identification and abundance profiling),
Bioinformatics 2014

— UPP (ultra-large multiple sequence alignment), under review



The Tree of Life: Multiple Challenges

Crenarchaeota

S Ci e n t i fi C C h a I I e n g e S : I(f:aw:n(‘(()mnm Plancto Themo Desulfurococcales

Themmotogales mycetales pricales Sulfolobales
Euryarchaeota

Halobacteriales
Methanosarcinales

Aquificales

Spirochaetes
. . ChlarnydialusA .
« Ultra-large multiple-sequence alignment e
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« Alignment-free phylogeny estimation e

Proteobacteria

Thermoplasmatales

Bacteria Ar_chaéa Archaeoglobales
" Methanococcales

Mitochondria Thermococcales

» Supertree estimation - >\\

- Estimating species trees from many gene trees i =—"

Glaucophytes

Opisthokonta

—— Fungi

Choanoflagellates

g . M
l" “ ’
Y y
Mycetozoans /\ Radiolaria

« (Genome rearrangement phylogeny g /] \ gl
* Reticulate evolution ool Jpwess ]\ m
« Visualization of large trees and alignments et amaeia

« Data mining techniques to explore multiple optima Nature Reviews | Genetis

» Theoretical guarantees under Markov models of evolution

QRS
'

Techniques:
machine learning, applied probability theory, graph theory, combinatorial optimization,
supercomputing, and heuristics
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Research Projects

Using iteration within UPP

Using other MSA models and methods (not just
HMMs) within the “Ensemble”

Using structural alignments (or sophisticated
statistical estimations of alignments) for the
backbone

Re-analyzing biological datasets
Application to protein structure and function
Other classification problems
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Impact of backbone size and use of HMM Family technique
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Notes:

Relative performance
under standard alignment
criteria is not predictive
of relative performance
for tree estimation.

For alignment estimation,
a large backbone is important.

For tree estimation,

the use of the HMM Family
is most important, but large
backbones also help.



Metagenomic Taxon ldentification

Objective: classify short reads in a metagenomic sample

Kingdom.......Animalia]
Phylum........ Chordatal
CIass.......: Mammalial
Order............ Cetacea[
Family....Delphinidae|
Genus.......... Orcinus l

Species...........orca




Basic Questions

1. What is this fragment? (Classify each fragment
as well as possible.)

2. What is the taxonomic distribution in the
dataset? (Note: helpful to use marker genes.)

3. What are the organisms in this metagenomic
sample doing together?



Phylogenetic Placement

Full-length sequences for same gene,

Fragmentary sequences :
and an alignment and a tree

from some gene

ACCG

CGAG

CGG

GGCT >
TAGA

GGGGG

TCGAG

GGCG

GGG

A:CCT AGG...GCAT TAGC...CCA TAGA...CTT AGC...ACA ACT..TAGA..A



TIPP vs. other abundance profilers

* TIPP is highly accurate, even in the presence of
high indel rates and novel genomes, and for both
short and long reads.

* All other methods have some vulnerability (e.g.,
mOTU is only accurate for short reads and is
impacted by high indel rates).



Phylogenetic “boosters”

Goal: improve accuracy, speed, robustness, or theoretical guarantees of base
methods

Techniques: divide-and-conquer, iteration, chordal graph algorithms, and
“bin-and-conquer”

Examples:

« DCM-boosting for distance-based methods (1999)

 DCM-boosting for heuristics for NP-hard problems (1999)

+ SATé- and PASTA-boosting for alignment methods (2009, 2012, and 2014)
» SuperFine-boosting for supertree methods (2012)

« DACTAL: almost alignment-free phylogeny estimation methods (2012)

« SEPP-boosting for phylogenetic placement of short sequences (2012)

« TIPP-boosting for metagenomic taxon identification (submitted)

« UPP-boosting for alignment methods (in preparation)

« Bin-and-conquer for coalescent-based species tree estimation (2013 and
2014)



Algorithmic Strategies

Divide-and-conquer

Chordal graph decompositions
Iteration

Multiple HMMs

Bin-and-conquer (technique used for improving
species tree estimation from multiple gene trees,
Bayzid and Warnow, Bioinformatics 2013)



1kp: 1000 Plant Transcriptomes

G.Ka-ShuWong J. Leebens-Mack  N. Wickett N. Matasci T. Warnow, 3. Mirarab, N. Nguyen,
U Alberta U Georgia Northwestern iPlant UT-Austin UT-Austin UT-Austin

Plus many many other people...

o Whole Transcriptomes of 103 plant species and 850 single
copy loci (1200 taxa in next phase)

o Most accurate summary methods cannot handle this size

« Common ancestor about 1 billion years ago and so gene
trees are hard to root

o Most summary methods need rooted gene trees

o Pre-existing summary methods do not provide reasonable
results on this dataset

[Wickett et al. (under review), 2014.]



Combined analysis

gene 1 gene 2 gene 3

TCTAACGGAA GGTAACCCTC TAGTGATGCA
2222222222 GCTAAACCTC 272?2222?2227?



Red gene tree # species tree
(green gene tree okay)
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The Coalescent

Courtesy James Degnan
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Incomplete Lineage Sorting (ILS)

* 1000+ papersin 2013 alone
* Confounds phylogenetic analysis for many groups:
— Hominids
— Birds
— Yeast
— Animals
— Toads
— Fish
— Fungi
 There is substantial debate about how to analyze
phylogenomic datasets in the presence of ILS.



Species tree estimation: difficult,
even for small datasets

From the Tree of the Life Website,
University of Arizona



Species tree estimation

1- Concatenation: statistically inconsistent (Roch & Steel 2014)

gene 1l gene 2 gene 3 gene k

I N s | | | |
I . I
I N s | | | |
Sequence data Concatenated supermatrix Species tree

2- Summary methods: can be statistically consistent

gene ene 2 gene 3 gene k

=== > AMCAT AN

Seqguence data Estimated gene trees Species tree

-
Q
Q

3- Co-estimation methods: too slow for large datasets




|Is Concatenation Evil?

* Joseph Heled: * John Gatesy
— YES — No

* Data needed to held understand existing
methods and their limitations

e Better methods are needed



Avian Phylogenomics Project (100+ people)

Erich Jarvis, MTP Gilbert, G Zhang, T. Warnow  S. Mirarab Md. S. Bayzid
HHMI Copenhagen BGI UT-Austin ~ UT-Austin  UT-Austin

* Approx. 50 species, whole genomes

» 8000+ genes, UCEs

» Gene sequence alignments and trees computed using
SATé (Science 2009, Systematic Biology 2012)

» Concatenation analysis (multi-million site) using ExaML (new version of
RAXML for very long alignments)

» Massive gene tree incongruence suggestive of incomplete lineage sorting --
coalescent-based species tree estimation computed using
“Statistical Binning” (Science, in press)



Our methods

e “Statistical Binning” (accepted): uses a statistical
method to determine sets of “combinable” gene
sequence alignments, improves coalescent-based
species tree estimation accuracy when gene trees
have poor resolution (used for Avian
Phylogenomics Project).

 ASTRAL (Bioinformatics 2014): polynomial time
statistically consistent method, can run on very
large datasets of unrooted gene trees.



Mammalian simulations

Based on a biological mammalian dataset of 37 taxa and 442 genes,
published by Song et al., PNAS, 2012.

In simulations, we vary
— Levels of ILS
— Number of genes
— Alignment length to control gene tree estimation error

Compare ASTRAL to
— MP-EST, BUCKy
— Concatenation
— MRP, Greedy

Measure species tree error compared to the known true tree



ASTRAL vs. Concatenation
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Analyses of the Song et al. Mammalian dataset

MP-EST
ASTRAL 100

— Primates

100 |  ======sssssssssssssssssssssssssssssssssss— Scandentia

100 Rodentia/
74 Lagomorpha

e ———— Scandentia

100 Cetartiodactyla

Camivora/

100 Prissodactyla

Chiroptera

100

Eulipotyphyla

100

Atlantogenata

11

The placement of Scandentia (Tree Shrew) is controversial.
The ASTRAL analysis agrees with maximum likelihood concatenation analysis of this dataset.




Summary

New multiple sequence alignments with improved
accuracy and scalability, as well as high robustness to
fragmentary data — SATé used in many studies.

New coalescent-based species tree estimation
methods that have better accuracy than current
methods, and can analyze large datasets (used in 1KP
and Avian Phylogenomics project analyses)

New methods for metagenomic taxon identification
and abundance profiling with improved accuracy (will
be used in analyses here at Illinois)

Method development inspired by collaboration with
biologists, and improves biological analyses.



AA Sequence Alignment Error (13 HomFam datasets)
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Alignment Accuracy — Correct columns
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Other co-estimation methods

Statistical methods:

* BAIi-Phy (Redelings and Suchard): Bayesian software to co-
estimate alignments and trees under a statistical model of
evolution that includes indels. Can scale to about 100
sequences, but takes a very long time.

— http://www.bali-phy.org/
» StatAlign: http://statalign.github.io/

Extensions of Parsimony

 POY (most well known software)

— http://www.amnh.org/our-research/computational-sciences/
research/projects/systematic-biology/poy

 BeeTLe (Liu and Warnow, PLoS One 2012)



Horizontal Gene Transfer — Phylogenetic Networks

Bacteria Eukarya Archaea
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But...

* Gene trees may not be identical to species
trees:

— Incomplete Lineage Sorting (deep coalescence)
— Gene duplication and loss
— Horizontal gene transfer

* This makes combined analysis and standard
supertree analyses inappropriate



Two competing approaches

genel1 oqene?2 ... qgenek

—
Concatenation

Species

Analyze
separately

%\ %Summary Method

>



How to compute a species tree?



Statistically consistent under ILS?

MP-EST (Liu et al. 2010): maximum likelihood
estimation of rooted species tree — YES

BUCKy-pop (Ané and Larget 2010): quartet-based
Bayesian species tree estimation —YES

MDC—-NO
Greedy — NO
Concatenation under maximum likelihood — NO

MRP (supertree method) — open



The Debate:
Concatenation vs. Coalescent Estimation

. In favor of coalescent-based estimation

— Statistical consistency guarantees
— Addresses gene tree incongruence resulting from ILS
— Some evidence that concatenation can be positively misleading

. In favor of concatenation

— Reasonable results on data

— High bootstrap support

— Summary methods (that combine gene trees) can have poor
support or miss well-established clades entirely

— Some methods (such as *BEAST) are computationally too
intensive to use



Results on 11-taxon datasets with strongILS
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*BEAST more accurate than summary methods (MP-EST, BUCKYy, etc)
CA-ML: (concatenated analysis) also very accurate

Datasets from Chung and Ané, 2011
Bayzid & Warnow, Bioinformatics 2013
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Species tree/network estimation

Methods have been developed to estimate species

phylogenies (trees or networks!) from gene trees, when
gene trees can conflict from each other (e.g., due to ILS,
gene duplication and loss, and horizontal gene transfer).

Phylonet (software suite), has effective methods for many
optimization problems — including MDC and maximum
likelihood.

Tutorial on Wednesday.

Software available at
http://bioinfo.cs.rice.edu/phylonet?destination=node/3




Two Basic Questions

1. What is this fragment? (Classify each fragment
as well as possible.)

2. What is the taxonomic distribution in the
dataset? (Note: helpful to use marker genes.)



SEPP

 SEPP: SATé-enabled Phylogenetic
Placement, by Mirarab, Nguyen, and Warnow

« Pacific Symposium on Biocomputing, 2012
(special session on the Human Microbiome)

 Tutorial on Thursday.



Other problems

* Genomic MSA estimation:
— Multiple sequence alignment of very long sequences

— Multiple sequence alignment of sequences that
evolve with rearrangement events

* Phylogeny estimation under more complex
models
— Heterotachy
— Violation of the rates-across-sites assumption
— Rearrangements

e Estimating branch support on very large datasets



