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The Tree of Life: Applications to Biology 

Biomedical applications 
     Mechanisms of evolution 
     Environmental influences 
     Drug Design 
     Protein structure and function 
     Human migrations 
 
 

“Nothing in biology makes sense except in the light of evolution” 
 Dobzhansky 



The Tree of Life: a Grand Challenge 

Novel techniques needed for scalability and accuracy 
        NP-hard problems and large datasets 
          Current methods do not provide good accuracy  
          HPC is insufficient   



DNA Sequence Evolution 

AAGACTT 

TGGACTT AAGGCCT 

-3 mil yrs 

-2 mil yrs 

-1 mil yrs 

today 

AGGGCAT TAGCCCT AGCACTT 

AAGGCCT TGGACTT 

TAGCCCA TAGACTT AGCGCTT AGCACAA AGGGCAT 

AGGGCAT TAGCCCT AGCACTT 

AAGACTT 

TGGACTT AAGGCCT 

AGGGCAT TAGCCCT AGCACTT 

AAGGCCT TGGACTT 

AGCGCTT AGCACAA TAGACTT TAGCCCA AGGGCAT 



Markov Model of Site Evolution 

Simplest (Jukes-Cantor, 1969): 
•  The model tree T is binary and has substitution probabilities p(e) 

on each edge e. 
•  The state at the root is randomly drawn from {A,C,T,G} 

(nucleotides) 
•  If a site (position) changes on an edge, it changes with equal 

probability to each of the remaining states. 
•  The evolutionary process is Markovian. 

More complex single site evolution models (such as the General 
Markov model) are also considered, often with little change to the 
theory.   

However, adding “indels” into these models is much more 
complicated. 

 
 



Phylogeny Problem 

TAGCCCA TAGACTT TGCACAA TGCGCTT AGGGCAT 

U V W X Y 

U 

V W 

X 

Y 



The Tree of Life: a Grand Challenge 

Most well known problem: 
 

 Given set of DNA sequences, find the Maximum Likelihood Tree  
 
NP-hard, but lots of software (RAxML, FastTree, GARLI, PhyML…) 



AGAT TAGACTTCC   CACAA TGCGCTT AGGGCATGA 

U V W X Y 

U 

V W 

X 

Y 

The “real” problem 



Input: unaligned sequences 

S1 = AGGCTATCACCTGACCTCCA 
S2 = TAGCTATCACGACCGC 
S3 = TAGCTGACCGC 
S4 = TCACGACCGACA 



Phase 1: Alignment 

S1 = -AGGCTATCACCTGACCTCCA 
S2 = TAG-CTATCAC--GACCGC-- 
S3 = TAG-CT-------GACCGC-- 
S4 = -------TCAC--GACCGACA 

S1 = AGGCTATCACCTGACCTCCA 
S2 = TAGCTATCACGACCGC 
S3 = TAGCTGACCGC 
S4 = TCACGACCGACA 



Phase 2: Construct tree 

S1 = -AGGCTATCACCTGACCTCCA 
S2 = TAG-CTATCAC--GACCGC-- 
S3 = TAG-CT-------GACCGC-- 
S4 = -------TCAC--GACCGACA 

S1 = AGGCTATCACCTGACCTCCA 
S2 = TAGCTATCACGACCGC 
S3 = TAGCTGACCGC 
S4 = TCACGACCGACA 

S1	



S4	



S2	



S3	





Steps in a phylogenetic estimation 

1.  Select genes and set of species 
2.  For each gene: 

–  Identify gene sequences in each genome for each 
species 

–  Compute multiple sequence alignment (MSA) 

–  Compute gene tree (phylogenetic tree on the 
MSA) 

3.  Combine gene trees into species tree 
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Steps in a phylogenetic estimation 

1.  Select genes and set of species 
2.  For each gene: 

–  Identify gene sequences in each genome for each 
species 

–  Compute multiple sequence alignment (MSA) 

–  Compute gene tree (phylogenetic tree on the 
MSA) 

3.  Combine gene trees into species tree 

Tomorrow’s talk 



Avian Phylogenomics Project 
G Zhang,  
BGI 

•  Approx. 50 species, whole genomes 
•  8000+ genes, UCEs 
•  Gene sequence alignments and trees computed using SATé (Liu et al.,  

 Science 2009 and Systematic Biology 2012) 

MTP Gilbert, 
Copenhagen 

S. Mirarab   Md. S. Bayzid, 
UT-Austin      UT-Austin 

T. Warnow 
UT-Austin 

Plus many many other people… 

Erich Jarvis, 
HHMI  

Challenges:  
 Maximum likelihood on multi-million-site sequence alignments 
 Massive gene tree incongruence 



Steps in a phylogenetic estimation 

1.  Select genes and set of species 
2.  For each gene: 

–  Identify gene sequences in each genome for each 
species 

–  Compute multiple sequence alignment (MSA) 

–  Compute gene tree (phylogenetic tree on the 
MSA) 

3.  Combine gene trees into species tree 



1kp: Thousand Transcriptome Project 

l  Plant Tree of Life based on transcriptomes of ~1200 species 
l  More than 13,000 gene families (most not single copy) 
l  Gene sequence alignments and trees computed using SATé (Liu 

et al., Science 2009 and Systematic Biology 2012) 

Gene Tree Incongruence 

G. Ka-Shu Wong 
U Alberta 

N. Wickett 
Northwestern 

J. Leebens-Mack 
U Georgia 

N. Matasci 
iPlant 

T. Warnow,        S. Mirarab,                N. Nguyen,           Md. S.Bayzid 
UT-Austin            UT-Austin                 UT-Austin              UT-Austin 

Challenges:  
 Multiple sequence alignments of > 100,000 sequences 
 Gene tree incongruence 

Plus many many other people… 
 



 Orthology prediction 
 Multiple sequence alignment 
 Maximum likelihood tree estimation 
 Bayesian tree estimation 
 Alignment-free phylogeny estimation 
 Supertree estimation 
 Estimating species trees from incongruent gene trees 
 Genome rearrangements 
 Reticulate evolution 

       Visualization of large trees and alignments 
 Databases of sets of trees 
 Data mining techniques to explore multiple optima 

The Tree of Life: Multiple Challenges 

Large datasets: 
         100,000+ sequences 
         10,000+ genes 
“BigData” complexity 
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Today’s talk 
•  Challenges in alignment estimation 

•  SATé – co-estimating alignments and trees (Science 
2009 and Systematic Biology 2012) 

•  DACTAL – divide-and-conquer trees (almost) without 
alignments (RECOMB 2012) 

•  UPP – ultra-large alignment estimation using SEPP 
(in preparation) 

Focus on practical performance for large-scale analysis. 



Part I: Challenges in 
alignment estimation 



Phylogeny Problem 

TAGCCCA TAGACTT TGCACAA TGCGCTT AGGGCAT 

U V W X Y 

U 
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Y 



AGAT TAGAC TGCAAA TGCGCTTT AGGGCATGA 

U V W X Y 

U 

V W 

X 

Y 

The “real” problem 



…ACGGTGCAGTTACCA… 

Mutation Deletion 

…ACCAGTCACCA… 

Not just substitutions, but also 
“Indels” 



DNA Sequence Evolution 

AAGACTT 

TGGACTT AAGGCCT 
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Markov Model of Site Evolution 

Simplest (Jukes-Cantor, 1969): 
•  The model tree T is binary and has substitution probabilities p(e) 

on each edge e. 
•  The state at the root is randomly drawn from {A,C,T,G} 

(nucleotides) 
•  If a site (position) changes on an edge, it changes with equal 

probability to each of the remaining states. 
•  The evolutionary process is Markovian. 

New models need to consider indels 
Limited progress 
New mathematical questions 
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…ACGGTGCAGTTACC-A… 

…AC----CAGTCACCTA… 

The true multiple alignment  
–  Reflects historical substitution, insertion, and deletion 

events 
–  Defined using transitive closure of pairwise alignments 

computed on edges of the true tree 

…ACGGTGCAGTTACCA… 

Substitution 
Deletion 

…ACCAGTCACCTA… 

Insertion 



Input: unaligned sequences 

S1 = AGGCTATCACCTGACCTCCA 
S2 = TAGCTATCACGACCGC 
S3 = TAGCTGACCGC 
S4 = TCACGACCGACA 



Phase 1: Alignment 

S1 = -AGGCTATCACCTGACCTCCA 
S2 = TAG-CTATCAC--GACCGC-- 
S3 = TAG-CT-------GACCGC-- 
S4 = -------TCAC--GACCGACA 

S1 = AGGCTATCACCTGACCTCCA 
S2 = TAGCTATCACGACCGC 
S3 = TAGCTGACCGC 
S4 = TCACGACCGACA 



Phase 2: Construct tree 

S1 = -AGGCTATCACCTGACCTCCA 
S2 = TAG-CTATCAC--GACCGC-- 
S3 = TAG-CT-------GACCGC-- 
S4 = -------TCAC--GACCGACA 

S1 = AGGCTATCACCTGACCTCCA 
S2 = TAGCTATCACGACCGC 
S3 = TAGCTGACCGC 
S4 = TCACGACCGACA 

S1	



S4	
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Simulation Studies 

S1 S2 

S3 S4 

S1 = -AGGCTATCACCTGACCTCCA 
S2 = TAG-CTATCAC--GACCGC-- 
S3 = TAG-CT-------GACCGC-- 
S4 = -------TCAC--GACCGACA 

S1 = AGGCTATCACCTGACCTCCA 
S2 = TAGCTATCACGACCGC 
S3 = TAGCTGACCGC 
S4 = TCACGACCGACA 

S1 = -AGGCTATCACCTGACCTCCA 
S2 = TAG-CTATCAC--GACCGC-- 
S3 = TAG-C--T-----GACCGC-- 
S4 = T---C-A-CGACCGA----CA 

Compare


True tree and 
alignment


S1 S4 

S3 S2 

Estimated tree and 
alignment


Unaligned 
Sequences




Quantifying Error 

FN: false negative 
      (missing edge) 
FP: false positive 
      (incorrect edge) 
 
50% error rate 

FN 

FP 



Two-phase estimation 
Alignment methods 
•  Clustal 
•  POY (and POY*) 
•  Probcons (and Probtree) 
•  Probalign 
•  MAFFT 
•  Muscle 
•  Di-align 
•  T-Coffee  
•  Prank (PNAS 2005, Science 2008) 
•  Opal (ISMB and Bioinf. 2007) 
•  FSA (PLoS Comp. Bio. 2009) 
•  Infernal (Bioinf. 2009) 
•  Etc. 

Phylogeny methods 
•  Bayesian MCMC  
•  Maximum parsimony  
•  Maximum likelihood  
•  Neighbor joining 
•  FastME 
•  UPGMA 
•  Quartet puzzling 
•  Etc. 

RAxML: heuristic for large-scale ML optimization 



1000-taxon models, ordered by difficulty (Liu et al., 2009) 



Problems with the two-phase approach 
•  Current alignment methods fail to return 

reasonable alignments on large datasets with high 
rates of indels and substitutions. 

•  Manual alignment is time consuming and 
subjective.  

•  Systematists discard potentially useful markers if 
they are difficult to align. 

This issues seriously impact large-scale phylogeny 
estimation (and Tree of Life projects)  



Large-scale MSA: another grand challenge1 

S1 = -AGGCTATCACCTGACCTCCA 
S2 = TAG-CTATCAC--GACCGC-- 
S3 = TAG-CT-------GACCGC-- 
… 
Sn = -------TCAC--GACCGACA 

S1 = AGGCTATCACCTGACCTCCA 
S2 = TAGCTATCACGACCGC 
S3 = TAGCTGACCGC 
  … 
Sn = TCACGACCGACA 

Novel techniques needed for scalability and accuracy 
         

 NP-hard problems and large datasets 
           Current methods do not provide good accuracy 
           Few methods can analyze even moderately large datasets  
  
Many important applications besides phylogenetic estimation   

1 Frontiers in Massive Data Analysis, National Academies Press, 2013 



Part II: SATé  

Simultaneous Alignment and Tree Estimation 
 
Liu, Nelesen, Raghavan, Linder, and Warnow, 

Science, 19 June 2009, pp. 1561-1564. 
Liu et al., Systematic Biology 2012 
 
Public software distribution (open source) 

through Mark Holder’s group at the University 
of Kansas 



Co-estimation 

S1 = -AGGCTATCACCTGACCTCCA 
S2 = TAG-CTATCAC--GACCGC-- 
S3 = TAG-C--T-----GACCGC-- 
S4 = T---C-A-CGACCGA----CA 

S1 S4 

S3 S2 

Estimated tree and alignment




Input: Unaligned Sequences


S1 = AGGCTATCACCTGACCTCCA 
S2 = TAGCTATCACGACCGC 
S3 = TAGCTGACCGC 
S4 = TCACGACCGACA 

 



Co-estimation makes sense, but… 

•  Existing statistical co-estimation methods 
(e.g., BAliPhy) are extremely computationally 
intensive and do not scale. 

•  Existing models are too simple 

Can we do better? 



1000-taxon models, ordered by difficulty (Liu et al., 2009) 



Two-phase estimation 

•  Alignment error increases with the rate 
of evolution, and poor alignments result 
in poor trees. 

•  Datasets with small enough 
“evolutionary diameters” are easy to 
align with high accuracy. 

 



Alignment on the tree 
•  Idea: better (more accurate) alignments will 

be found if we align subsets with smaller 
diameters, and then combine alignments on 
these subsets 

•  Approach: use the tree topology to divide-
and-conquer 

•  Alert: the subtree compatibility problem is 
NP-complete!   
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 D


C
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Decompose 
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 B	
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 D	
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ABCD	



Re-alignment on a tree (Cartoon) 



SATé Algorithm 

Tree	



Obtain initial alignment 
and estimated ML tree	





SATé Algorithm 

Tree	



Obtain initial alignment 
and estimated ML tree	



Use tree to 
compute new 
alignment	



Alignment	





SATé Algorithm 

Estimate ML tree on 
new alignment	



Tree	



Obtain initial alignment 
and estimated ML tree	



Use tree to 
compute new 
alignment	



Alignment	





1000 taxon models, ordered by difficulty 

24 hour SATé analysis, on desktop machines 

(Similar improvements for biological datasets) 



1000 taxon models ranked by difficulty 



Performance 
•  SATé “boosts” the base methods.  Results 

shown are for SATé used with MAFFT. Similar 
improvements seen for use with other MSA 
methods (e.g., Prank, Opal, Muscle, ClustalW). 

•  Biological datasets:  Similar results on large 
benchmark datasets (structurally-based rRNA 
alignments) 
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One Iteration 
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Limitations 
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Trees without alignments? 

 
•  Estimating very large alignments with high 

accuracy is very difficult – some datasets are 
considered “unalignable”. 

•  Running maximum likelihood on a large 
alignment is very computationally intensive. 

 



Part III: DACTAL  
(Divide-And-Conquer Trees (without) ALignments) 

•  Input: set S of unaligned sequences 
•  Output: tree on S (but no alignment)  

(Nelesen, Liu, Wang, Linder, and Warnow, 
RECOMB 2012 and Bioinformatics 2012) 

 



DACTAL 

Objective: To produce a highly accurate estimation of 
a very large tree without requiring a multiple sequence 
alignment of the full dataset. 



DACTAL  

SuperFine


Existing Method:

RAxML(MAFFT)


pRecDCM3


BLAST-
based


Overlapping 

subsets


A tree for each 
subset


Unaligned 
Sequences


A tree for the 
entire dataset




SuperFine: supertree “booster” 
•  Phase 1: construct the Strict Consensus Merger supertree 

(Huson, Nettles, and Warnow, RECOMB 1999). The SCM 
tree is generally highly unresolved, but it solves the NP-
hard Tree Compatibility Problem for some special cases.

     The Strict Consensus  
•  Phase 2: Refine the tree by resolving each high degree 

node using a “base” supertree method (e.g., MRP). 

Examples: SuperFine+MRP  -- boosts MRP; but also 
 SuperFine+QMC, SuperFine+MRL, etc. 

 
Swenson et al., Systematic Biology, 2012 

 Nguyen et al., Algorithms for  Molec Biol, 2012   
  



SuperFine+MRP vs. MRP 

Scaffold Density (%) 

(Swenson et al., Syst. Biol. 2012)	





DACTAL  

SuperFine+MRP


Existing Method:

RAxML(MAFFT)


pRecDCM3


BLAST-
based


Overlapping 

subsets


A tree for each 
subset


Unaligned 
Sequences


A tree for the 
entire dataset




Performance on 
biological datasets 
Average performance on three 16S RNA 

datasets with curated alignments 
based upon secondary structure, with 
6323 to 27,643 sequences  

 
Reference trees are 75% RAxML 

bootstrap trees  
 
DACTAL is run with 5 iterations, starting 

from FastTree(PartTree) 



Part IV: UPP  
(Ultra-large alignment using SEPP1) 

Objective: highly accurate multiple sequence 
alignments and trees on ultra-large datasets 

 
Authors: Nam Nguyen, Siavash Mirarab, and Tandy 

Warnow 
In preparation – expected submission Fall 2013 
 
 
 
1 SEPP: SATe-enabled phylogenetic placement, Nguyen, Mirarab, and 

Warnow, PSB 2012 
 



UPP: basic idea 

Input: set S of unaligned sequences 
Output: alignment on S 
 
•  Select random subset X of S 
•  Estimate “backbone” alignment A and tree T on X 
•  Independently align each sequence in S-X to A 
•  Use transitivity to produce multiple sequence 

alignment A* for entire set S 
 



Input: Unaligned Sequences 

S1  = AGGCTATCACCTGACCTCCAAT 
S2  = TAGCTATCACGACCGCGCT 
S3  = TAGCTGACCGCGCT 
S4  = TACTCACGACCGACAGCT 
S5  = TAGGTACAACCTAGATC 
S6  = AGATACGTCGACATATC 



Step 1: Pick random subset 
(backbone) 

S1  = AGGCTATCACCTGACCTCCAAT 
S2  = TAGCTATCACGACCGCGCT 
S3  = TAGCTGACCGCGCT 
S4  = TACTCACGACCGACAGCT 
S5  = TAGGTACAACCTAGATC 
S6  = AGATACGTCGACATATC 



Step 2: Compute backbone 
alignment 

S1  = -AGGCTATCACCTGACCTCCA-AT 
S2  = TAG-CTATCAC--GACCGC--GCT 
S3  = TAG-CT-------GACCGC--GCT 
S4  = TAC----TCAC—-GACCGACAGCT 
S5  = TAGGTAAAACCTAGATC 
S6  = AGATAAAACTACATATC 



Step 3: Align each remaining 
sequence to backbone  

S1  = -AGGCTATCACCTGACCTCCA-AT- 
S2  = TAG-CTATCAC--GACCGC--GCT- 
S3  = TAG-CT-------GACCGC—-GCT- 
S4  = TAC----TCAC--GACCGACAGCT- 
S5  = TAGG---T-A—CAA-CCTA--GATC 

First we add S5 to the backbone alignment 



Step 3: Align each remaining 
sequence to backbone  

S1  = -AGGCTATCACCTGACCTCCA-AT- 
S2  = TAG-CTATCAC--GACCGC--GCT- 
S3  = TAG-CT-------GACCGC--GCT- 
S4  = TAC----TCAC—-GACCGACAGCT- 
S6  = -AG---AT-A-CGTC--GACATATC 

Then we add S6 to the backbone alignment 



Step 4: Use transitivity to obtain 
MSA on entire set 

S1  = -AGGCTATCACCTGACCTCCA-AT-- 
S2  = TAG-CTATCAC--GACCGC--GCT-- 
S3  = TAG-CT-------GACCGC--GCT-- 
S4  = TAC----TCAC--GACCGACAGCT-- 
S5  = TAGG---T-A—CAA-CCTA--GATC- 
S6  = -AG---AT-A-CGTC--GACATAT-C 



UPP: details 

Input: set S of unaligned sequences 
Output: alignment on S 
 
•  Select random subset X of S 
•  Estimate “backbone” alignment A and tree T on X 
•  Independently align each sequence in S-X to A 
•  Use transitivity to produce multiple sequence 

alignment A* for entire set S 
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•  Estimate “backbone” alignment A and tree T on X 
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•  Use transitivity to produce multiple sequence 

alignment A* for entire set S 
 



How to align sequences to a 
backbone alignment? 

 
Standard machine learning technique: Build 
HMM (Hidden Markov Model) for backbone 
alignment, and use it to align remaining 
sequences 

 
HMMER (Sean Eddy, HHMI) leading software 
for this purpose 



Using HMMER 

Using HMMER works well… 
•  …except when the dataset has a high 

evolutionary diameter. 



Using HMMER 

Using HMMER works well…except when 
the dataset is big! 



  Using HMMER to add sequences to an existing alignment 
 
1) build one HMM for the backbone alignment 
2) Align sequences to the HMM, and insert into backbone    
alignment 



One Hidden Markov Model  
for the entire alignment? 



Or 2 HMMs? 



Or 4 HMMs? 



UPP(x,y) 
 
•  Pick random subset X of size x  

•  Compute alignment A and tree T on X 

•  Use SATé decomposition on T to partition X into small “alignment 
subsets” of at most y sequences  

•  Build HMM on each alignment subset using HMMBUILD 

•  For each sequence s in S-X,  

–  Use HMMALIGN to produce alignment of s to each subset 
alignment and note the score of each alignment.  

–  Pick the subset alignment that has the best score, and align s to 
that subset alignment. 

–  Use transitivity to align s to the backbone alignment. 



UPP design 
•  Size of backbone matters – small backbones are 

sufficient for most datasets (except for ones with very 
high rates of evolution). Random backbones are fine. 

•  Number of HMMs matters, and depends on the rate 
of evolution and number of taxa. 

•  Backbone alignment and tree matter; we use SATé. 



Evaluation of UPP 
•  Simulated Datasets: 1,000 to 1,000,000 sequences (RNASim, 

Junhyong Kim, Penn) 

•  Biological datasets: up to 28,000 rRNA sequences with 
structural reference alignments (CRW, Robin Gutell, Texas) 

•  Methods: MAFFT-profile, UPP(x,y) and UPP(x,x) (“HMMER”), all 
on the SATé backbone alignment. Also, MAFFT-parttree, 
Muscle, Opal, Clustal-quicktree, and SATé. 

•  Criteria: Alignment error (SP-FN and SP-FP), tree error, and 
time  

 

MAFFT-profile is the MSA method with the best accuracy of 
standard methods. 
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UPP vs. MAFFT Running Time 

Elapsed time on 12-core machine 

MAFFT-profile did 
not complete on 200K 
sequences within the 
time limit (24 hours on 
12 cores.) 
 
 
Other MSA methods 
could not run on the 
larger data sets. 

RNASim data, 10K to 1,000K sequences 



Dataset

SP
FN
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UPP vs. MAFFT Alignment Error 

Other tested 
methods were 
generally worse 
than MAFFT. 



 One Million Sequence Alignment: Tree Error  

Similar improvements on all datasets.  
Thus, using multiple HMMs improves tree accuracy. 

UPP(100,100): 1.6 days  
using 8 processors     
(5.7 CPU days) 
 
UPP(100,10): 7 days 
using 8 processors    
(54.8  CPU days) 

  20% reduction in tree error 
 
~2000 more edges recovered  
 

Short sequences:  
~1000 nucleotides in 
each sequence, so  
typical of a gene, not a 
genome 



UPP performance 
•  Speed: UPP is very fast, parallelizable, and scalable. 

•  UPP vs. standard MSA methods: UPP alignments are more accurate on 
large datasets (with 1000+ taxa), and trees on UPP alignments are more 
accurate than trees on standard alignments. 

•  UPP vs. SATé: UPP can analyze larger datasets and is much faster; 
UPP has about the same alignment accuracy, but produces slightly less 
accurate trees (data not shown). 

•  UPP vs. PASTA (new method, in prep.): Both can analyze the same 
datasets, but PASTA is slower. Both have about the same alignment 
accuracy, but PASTA produces slightly more accurate trees (like SATé). 



Other uses of multiple HMMs 

•  SEPP: Phylogenetic Placement of short 
reads into existing tree (Nguyen, 
Mirarab, and Warnow, PSB 2012) 

•  TIPP: taxon identification of 
metagenomic sequences                      
(in preparation, Nguyen et al. 2013) 

  



Part V: Discussion 



Research Agenda 
 
Major scientific goals:  
•  Develop methods that produce more accurate alignments and 

phylogenetic estimations for difficult-to-analyze datasets 
•  Produce mathematical theory for statistical inference under complex 

models of evolution 
•  Develop novel machine learning techniques to boost the performance of 

classification methods  
 
Software that: 
•  Can run efficiently on desktop computers on large datasets  
•  Can analyze ultra-large datasets (100,000+) using multiple processors 
•  Is freely available in open source form, with biologist-friendly GUIs  



•  SATé: co-estimation of alignments 
and trees 

•  SuperFine: supertree estimation 

•  DACTAL: trees without alignments 

•  UPP: ultra-large multiple sequence 
alignment 

 

   4 methods 



Meta-Methods 

•  Meta-methods “boost” the performance 
of base methods (e.g., for phylogeny or 
alignment estimation). 

Meta-method	

Base method M	

 M*	





Phylogenetic “boosters”  

Goal: improve accuracy, speed, robustness, or theoretical guarantees of base 
methods 

Techniques: divide-and-conquer, iteration, chordal graph algorithms, and    
“bin-and-conquer” 

 
Examples: 
•  DCM-boosting for distance-based methods (1999) 
•  DCM-boosting for heuristics for NP-hard problems (1999) 
•  SATé-boosting for alignment methods (2009 and 2012) 
•  SuperFine-boosting for supertree methods (2012)  
•  DACTAL: almost alignment-free phylogeny estimation methods (2012) 
•  SEPP-boosting for phylogenetic placement of short sequences (2012) 
•  UPP-boosting for alignment methods (in preparation) 
•  PASTA-boosting for alignment methods (in preparation) 
•  TIPP-boosting for metagenomic taxon identification (in preparation) 
•  Bin-and-conquer for coalescent-based species tree estimation (2013) 

 
 



Algorithmic Strategies 

•  Divide-and-conquer 
•  Chordal graph decompositions 
•  Iteration 
•  Multiple HMMs 
•  “Bin-and-conquer” 



Computational Phylogenetics 

Interesting combination of 
–  statistical estimation under Markov models of 

evolution 
– mathematical modelling  
–  graph theory and combinatorics 
– machine learning and data mining 
–  heuristics for NP-hard optimization problems 
–  high performance computing 

Testing involves massive simulations 
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UPP vs. HMMER vs. MAFFT (alignment error) 

Dataset
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MAFFT-profile alignment strategy not as accurate as  
UPP(100,10) or UPP(100,100).  



UPP vs. HMMER vs. MAFFT (tree error) 

Dataset
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ML on UPP(100,10) and UPP(100,100) alignments both produce 
  produce better trees than MAFFT. 

Decomposition into a family of HMMs improves resultant trees. 



SEPP(10%), based on ~10 HMMs  

0.0 

0.0 

Increasing rate of evolution 



SEPP (10%) on Biological Data 

 

For 1 million fragments: 

 PaPaRa+pplacer: ~133 days 

 HMMALIGN+pplacer: ~30 days 

 SEPP 1000/1000:  ~6 days 

 

16S.B.ALL dataset, 13k curated backbone tree, 13k total fragments 

 



Major Challenges:  
large datasets, fragmentary sequences 

•  Multiple sequence alignment: Few methods can run on large 
datasets, and alignment accuracy is generally poor for large datasets 
with high rates of evolution.   

•  Gene Tree Estimation: standard methods have poor accuracy on 
even moderately large datasets, and the most accurate methods are 
enormously computationally intensive (weeks or months, high memory 
requirements).  

•  Species Tree Estimation: gene tree incongruence makes accurate 
estimation of species tree challenging.  

Both phylogenetic estimation and multiple sequence alignment are also 
impacted by fragmentary data. 

 



DACTAL performance 

•  DACTAL faster and matches or improves 
upon accuracy of SATé-I for datasets with 
1000 or more taxa.  

•  DACTAL outperforms two-phase methods, 
and the biggest gains are on the very large 
datasets. 


