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Phylogeny (evolutionary tree)
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University of Arizona



The Tree of Life: Applications to Biology
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“Nothing in biology makes sense except in the light of evolution”
Dobzhansky



The Tree of Life: a Grand Challenge
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Novel techniques needed for scalability and accuracy
NP-hard problems and large datasets

Current methods do not provide good accuracy
HPC is insufficient




DNA Sequence Evolution
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Markov Model of Site Evolution

Simplest (Jukes-Cantor, 1969):

 The model tree T is binary and has substitution probabilities p(e)
on each edge e.

« The state at the root is randomly drawn from {A,C,T,G}
(nucleotides)

 If a site (position) changes on an edge, it changes with equal
probability to each of the remaining states.

« The evolutionary process is Markovian.

More complex single site evolution models (such as the General
Markov model) are also considered, often with little change to the
theory.



Phylogeny Problem
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Most well known problem

Given set of DNA sequences, find the Maximum Likelihood Tree

NP-hard, but lots of software (RAXML, FastTree, GARLI, PhyML

)




The “real” problem
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S1
S2
S3
S4

Input: unaligned sequences

AGGCTATCACCTGACCTCCA
TAGCTATCACGACCGC
TAGCTGACCGC
TCACGACCGACA



Phase 1: Alignment

S1 = AGGCTATCACCTGACCTCCA  S1 = -AGGCTATCACCTGACCTCCA
S2 = TAGCTATCACGACCGC S2 = TAG-CTATCAC--GACCGC--
S3 = TAGCTGACCGC ~ 83 = TAG-CT----—-- GACCGC--
S4 = TCACGACCGACA S4 = ——————- TCAC--GACCGACA



Phase 2: Construct tree

S1 = AGGCTATCACCTGACCTCCA  S1 = -AGGCTATCACCTGACCTCCA
S2 = TAGCTATCACGACCGC S2 = TAG-CTATCAC--GACCGC--
S3 = TAGCTGACCGC ~ 83 = TAG-CT----—-- GACCGC--
S4 = TCACGACCGACA S4 = ——————- TCAC--GACCGACA

S1 S2

S4 S3



Steps in a phylogenetic estimation

— ldentify gene sequences in each genome for each
species

— Compute multiple sequence alignment (MSA)

— Compute gene tree (phylogenetic tree on the
MSA)



Steps in a phylogenetic estimation

1. Select genes and set of species
2. For each gene:

— ldentify gene sequences in each genome for each
species

— Compute multiple sequence alignment (MSA)

— Compute gene tree (phylogenetic tree on the
MSA)

3. Combine gene trees into species tree



Steps in a phylogenetic estimation

1. Select genes and set of species

2. For each gene:

— ldentify gene sequences in each genome for each

species

— Compute multiple sequence alignment (MSA)

-

\

— Compute gene tree (phylogenetic tree on the A

MSA)

3. Combine gene trees into species tree

/

Tomorrow’s talk



Avian Phylogenomics Project

Erich Jarvis, — MTP Gilbert, GZzhang,  T.Wamow S Mirarab Md.S.Bayzid,
HHAMI Copenhagen BGI UT-Austn  UT-Austin  UT-Austin

, ST

_ Plus many many other people...
* Approx. 50 species, whole genomes

« 8000+ genes, UCEs
« Gene sequence alignments and trees computed using SATé (Liu et al.,
Science 2009 and Systematic Biology 2012)

Challenges:
Maximum likelihood on multi-million-site sequence alignments
Massive gene tree incongruence




Steps in a phylogenetic estimation

1. Select genes and set of species
2. For each gene:

— ldentify gene sequences in each genome for each
species

[ — Compute multiple sequence alignment (MSA) }

— Compute gene tree (phylogenetic tree on the
MSA)

3. Combine gene trees into species tree



1kp: Thousand Transcriptome Project
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Plus many many other people...

« Plant Tree of Life based on transcriptomes of ~1200 species
« More than 13,000 gene families (most not single copy)

« Gene sequence alignments and trees computed using SATe (Liu
et al., Science 2009 and Systematic Biology 2012)

Challenges:
Multiple sequence alignments of > 100,000 sequences

Gene tree incongruence




The Tree of Life: Multiple Challenges

Large datasets:
100,000+ sequences
10,000+ genes
“‘BigData” complexity

Nature Reviews | Genetics

Orthology prediction

Multiple sequence alignment

Maximum likelihood tree estimation

Bayesian tree estimation

Alignment-free phylogeny estimation

Supertree estimation

Estimating species trees from incongruent gene trees
Genome rearrangements

Reticulate evolution

Visualization of large trees and alignments
Databases of sets of trees

Data mining techniques to explore multiple optima



The Tree of Life: Multiple Challenges

Large datasets:
100,000+ sequences
10,000+ genes
“‘BigData” complexity

Nature Reviews | Genetics

Orthology prediction

Multiple sequence alignment

Maximum likelihood tree estimation

Bayesian tree estimation

Alignment-free phylogeny estimation

Supertree estimation

Estimating species trees from incongruent gene trees
Genome rearrangements

Reticulate evolution

Visualization of large trees and alignments
Databases of sets of trees

Data mining techniques to explore multiple optima



Today's talk

« Challenges in alignment estimation

« SATe — co-estimating alignments and trees (Science
2009 and Systematic Biology 2012)

 DACTAL - divide-and-conquer trees (almost) without
alignments (RECOMB 2012)

« UPP - ultra-large alignment estimation using SEPP
(in preparation)

Focus on practical performance for large-scale analysis.



Part I. Challenges in
alignment estimation



Phylogeny Problem
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The “real” problem
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Not just substitutions, but also
“Indels”

Deletion Mutation

F

..ACGGTGCAGTTACCA...
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LACCAGTCACCAL.



DNA Sequence Evolution
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Markov Model of Site Evolution

Simplest (Jukes-Cantor, 1969):

 The model tree T is binary and has substitution probabilities p(e)
on each edge e.

« The state at the root is randomly drawn from {A,C, T,G}
(nucleotides)

 If a site (position) changes on an edge, it changes with equal
probability to each of the remaining states.

« The evolutionary process is Markovian.



Markov Model of Site Evolution

Simplest (Jukes-Cantor, 1969):

 The model tree T is binary and has substitution probabilities p(e)
on each edge e.

« The state at the root is randomly drawn from {A,C, T,G}
(nucleotides)

 If a site (position) changes on an edge, it changes with equal
probability to each of the remaining states.

« The evolutionary process is Markovian.

New models need to consider indels



Markov Model of Site Evolution

Simplest (Jukes-Cantor, 1969):

 The model tree T is binary and has substitution probabilities p(e)
on each edge e.

« The state at the root is randomly drawn from {A,C, T,G}
(nucleotides)

 If a site (position) changes on an edge, it changes with equal
probability to each of the remaining states.

« The evolutionary process is Markovian.

New models need to consider indels
Limited progress
New mathematical questions



D7H|on Subititution

..ACGGTGCAGTTACCA...

/ '”:f”“’” ..ACGGTGCAGTTACC-A...
..ACCAGTCACCTA.. ..AC----CAGTCACCTA...

The true multiple alignment

— Reflects historical substitution, insertion, and deletion
events

— Defined using transitive closure of pairwise alignments
computed on edges of the true tree



S1
S2
S3
S4

Input: unaligned sequences

AGGCTATCACCTGACCTCCA
TAGCTATCACGACCGC
TAGCTGACCGC
TCACGACCGACA



Phase 1: Alignment

S1 = AGGCTATCACCTGACCTCCA  S1 = -AGGCTATCACCTGACCTCCA
S2 = TAGCTATCACGACCGC S2 = TAG-CTATCAC--GACCGC--
S3 = TAGCTGACCGC ~ 83 = TAG-CT----—-- GACCGC--
S4 = TCACGACCGACA S4 = ——————- TCAC--GACCGACA



Phase 2: Construct tree

S1 = AGGCTATCACCTGACCTCCA  S1 = -AGGCTATCACCTGACCTCCA
S2 = TAGCTATCACGACCGC S2 = TAG-CTATCAC--GACCGC--
S3 = TAGCTGACCGC ~ 83 = TAG-CT----—-- GACCGC--
S4 = TCACGACCGACA S4 = ——————- TCAC--GACCGACA

S1 S2

S4 S3



Simulation Studies

S1
S2
S3
S4

= —-AGGCTATCACCTGACCTCCA
= TAG-CTATCAC--GACCGC-H
= TAG-CT-—-—-———- GACCGC-H

—-—-—-TCAC--GACCGACAH

S2

ha

S4

S3

True tree and
alignment

S1 = AGGCTATCACCTGACCTCCA

S2 = TAGCTATCACGACCGC

S3 = TAGCTGACCGC

S4 = TCACGACCGACA
Unaligned
Sequences

€ >

Compare

S1 = -AGGCTATCACCTGACCTCCH
S2 = TAG-CTATCAC--GACCGC-
S3 = TAG-C--T-----GACCGC-
S4 = T---C-A-CGACCGA----CH
s, S4
52 s3

Estimated tree and
alignment



Quantifying Error
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Two-phase estimation

Alignment methods Phylogeny methods

- Clustal SR
POY (and POY*) . BayeS|an MCMC
Probcons (and Probtree) e Maximum parsimony
Probalign : leali
ARET - Maximum likelihood
I[\)/I.uslclzle  Neighbor joining

- Di-align

 T-Coffee - FastME

Prank (PNAS 2005, Science 2008)
Opal (ISMB and Bioinf. 2007)

FSA (PLoS Comp. Bio. 2009) *
Infernal (Bioinf. 2009) .
Etc.

UPGMA
Quartet puzzling
Etc.

RAXML.: heuristic for large-scale ML optimization



Missing Branch Rate (%)

Alignment SP-FN Error (%)

50

1 I I 1 1 I I 1 1 I T T T T ;
RAXML(ClustalW) +——
RAxXML(Muscle) *-=x---
40 F RAXML(MAFFT) s--a.--:
RAXML(Prank+GT) i@
30  RAXML(TrueAln) it
20
10 |
Pt ittt ittt il
0 l : : L L L 1 ] ] I ! ] ] ! ]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
100 I ' ' T T T T T T T T T T T T
ClustalW #—t—i
Muscle ===x===
80 I~ \MAFFT se-aeee:

60

40

20

Prank+GT z@ e

G et ¥
N~ S - L2
. . . o d
Ko al¥ g a
“ . e ey, e o
] - v ¥
™ Rt """u..-.:x ““““““
2 0 S
AR SN e e
ot
------- ‘\". .“.;‘;
_____ AT RSt
- W ¥
.......... “p »
____________ G
...... E
.....
P e T S S v
1 1 1 | 1 |

1000-taxon

models, ordered by difficulty (Liu et al., 2009)



Problems with the two-phase approach

« Current alignment methods fail to return
reasonable alignments on large datasets with high
rates of indels and substitutions.

 Manual alignment is time consuming and
subjective.

» Systematists discard potentially useful markers if
they are difficult to align.

This issues seriously impact large-scale phylogeny
estimation (and Tree of Life projects)



Large-scale MSA: another grand challenge’

S1 = AGGCTATCACCTGACCTCCA  S1 = -AGGCTATCACCTGACCTCCA
S2 = TAGCTATCACGACCGC S2 = TAG-CTATCAC--GACCGC--
S3 = TAGCTGACCGC S3 = TAG-CT------- GACCGC--
Sn = TCACGACCGACA Sn = ------- TCAC--GACCGACA

Novel techniques needed for scalability and accuracy

NP-hard problems and large datasets
Current methods do not provide good accuracy
Few methods can analyze even moderately large datasets

Many important applications besides phylogenetic estimation

' Frontiers in Massive Data Analysis, National Academies Press, 2013



Part Il: SATé

Simultaneous Alignment and Tree Estimation

Liu, Nelesen, Raghavan, Linder, and Warnow,
Science, 19 June 2009, pp. 1561-1564.

Liu et al., Systematic Biology 2012

Public software distribution (open source)
through Mark Holder’s group at the University
of Kansas



Co-estimation

Input: Unaligned Sequences

S1
S2
S3
S4

AGGCTATCACCTGACCTCCA
TAGCTATCACGACCGC
TAGCTGACCGC
TCACGACCGACA

—)

Estimated tree and alignment

S1 =

S2
S3
S4

—-AGGCTATCACCTGACCTCCA

= TAG-CTATCAC--GACCGC--

= TAG-C--T-----GACCGC--
= T---C-A-CGACCGA----CA

S1 S4

<

S2 S3



Co-estimation makes sense, but...

» Existing statistical co-estimation methods
(e.g., BAliPhy) are extremely computationally
intensive and do not scale.

» Existing models are too simple

Can we do better?
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Two-phase estimation

* Alignment error increases with the rate

of evolution, and poor alignments result
In poor trees.

« Datasets with small enough

“evolutionary diameters” are easy to
align with high accuracy.



Alignment on the tree

Idea: better (more accurate) alignments will
be found 1f we align subsets with smaller
diameters, and then combine alignments on
these subsets

Approach: use the tree topology to divide-
and-conquer



Re-alignment on a tree (Cartoon)
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SATé Algorithm

Obtain initial alignment
and estimated ML tree

Tree




SATé Algorithm

Obtain initial alignment
and estimated ML tree

Tree

Alignment

Use tree to
compute new
alignment



SATé Algorithm

Obtain initial alignment
and estimated ML tree

Tree
| Use tree to
Estlma.te ML tree on compute new
new alignment alignment

Alignment




Missing Branch Rate (%)
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(Similar improvements for biological datasets)
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Performance

« SATé “boosts” the base methods. Results
shown are for SATé used with MAFFT. Similar
improvements seen for use with other MSA
methods (e.g., Prank, Opal, Muscle, ClustalW).



Performance

« SATé “boosts” the base methods. Results
shown are for SATé used with MAFFT. Similar
improvements seen for use with other MSA
methods (e.g., Prank, Opal, Muscle, ClustalW).

 Biological datasets: Similar results on large
benchmark datasets (structurally-based rRNA
alignments)



One lteration
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Limitations
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Limitations
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Trees without alignments?

» Estimating very large alignments with high
accuracy is very difficult — some datasets are

considered “unalignable”.

* Running maximum likelihood on a large
alignment is very computationally intensive.



Part Ill: DACTAL

(Divide-And-Conquer Trees (without) ALignments)

 Input: set S of unaligned sequences
* Qutput: tree on S (but no alignment)

(Nelesen, Liu, Wang, Linder, and Warnow,
RECOMB 2012 and Bioinformatics 2012)



DACTAL

Obijective: To produce a highly accurate estimation of
a very large tree without requiring a multiple sequence
alignment of the full dataset.



DACTAL

BLAST-
w} Existing Method:
Unaligned RAXMI( MAFFT)
Sequences Overlapping A
subsets

pRecDCM3 AA A
A A A

A tree for each
/ subset

Superlkine

A tree for the

entwre dataset
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SuperFine: supertree “booster

« Phase 1: construct the Strict Consensus Merger supertree
(Huson, Nettles, and Warnow, RECOMB 1999). The SCM
tree is generally highly unresolved, but it solves the NP-
hard Tree Compatibility Problem for some special cases.

« Phase 2: Refine the tree by resolving each high degree
node using a “base” supertree method (e.g., MRP).

Examples: SuperFine+MRP -- boosts MRP; but also
SuperFine+QMC, SuperFine+MRL, etc.

Swenson et al., Systematic Biology, 2012

Nguyen et al., Algorithms for Molec Biol, 2012



SuperFine+MRP vs. MRP
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(Swenson et al., Syst. Biol. 2012)



DACTAL

BLAST-
w} Existing Method:
Unaligned RAXMI( MAFFT)
Sequences Overlapping A
subsets

pRecDCM3 AA A
A A A

A tree for each
/ subset

Superkine+MRP

A tree for the

entwre dataset



Performance on
biological datasets

Average performance on three 16S RNA
datasets with curated alignments
based upon secondary structure, with
6323 to 27,643 sequences

Reference trees are 75% RAxML
bootstrap trees

DACTAL is run with 5 iterations, starting
from FastTree(PartTree)

Missing branch rate

Runtime (h)

30%

25%

20%

15%

10%

5%




Part IV: UPP
(Ultra-large alignment using SEPP7)

Objective: highly accurate multiple sequence
alignments and trees on ultra-large datasets

Authors: Nam Nguyen, Siavash Mirarab, and Tandy
Warnow

In preparation — expected submission Fall 2013

1 SEPP: SATe-enabled phylogenetic placement, Nguyen, Mirarab, and
Warnow, PSB 2012



UPP: basic idea

Input: set S of unaligned sequences
Output: alignment on S

« Select random subset X of S
« Estimate “backbone” alignment A and tree T on X
* Independently align each sequence in S-Xto A

« Use transitivity to produce multiple sequence
alignment A* for entire set S



Input: Unaligned Sequences

S1 = AGGCTATCACCTGACCTCCAAT
S2 = TAGCTATCACGACCGCGCT

S3 = TAGCTGACCGCGCT

S4 = TACTCACGACCGACAGCT

S5 = TAGGTACAACCTAGATC

S6 = AGATACGTCGACATATC



Step 1: Pick random subset
(backbone)

S1 = AGGCTATCACCTGACCTCCAAT
S2 = TAGCTATCACGACCGCGCT

S3 = TAGCTGACCGCGCT

sS4 = TACTCACGACCGACAGCT

S5 = TAGGTACAACCTAGATC

S6 = AGATACGTCGACATATC



Step 2: Compute backbone

alignment
S1 = —-AGGCTATCACCTGACCTCCA-AT
S2 = TAG-CTATCAC--GACCGC--GCT
S3 = TAG-CT-—-—-——-- GACCGC—--GCT
s4 = TAC-——--TCAC—GACCGACAGCT
S5 = TAGGTAAAACCTAGATC

S6 = AGATAAAACTACATATC



Step 3: Align each remaining
sequence to backbone

First we add S5 to the backbone alignment

S1 = -AGGCTATCACCTGACCTCCA-AT-
S2 = TAG-CTATCAC--GACCGC--GCT-
s3 = TAG-CT--—-———--- GACCGC—GCT -
sS4 = TAC----TCAC--GACCGACAGCT-

SO TAGG—-—-T-A—CAA-CCTA--GATC



Step 3: Align each remaining
sequence to backbone

Then we add S6 to the backbone alignment

S1 = -AGGCTATCACCTGACCTCCA-AT-
S2 = TAG-CTATCAC--GACCGC--GCT-
s3 = TAG-CT--—-———--- GACCGC--GCT-
sS4 = TAC-—---TCAC—GACCGACAGCT-

S6 —AG-—--AT-A-CGTC--GACATATC



Step 4: Use transitivity to obtain
MSA on entire set

Sl = -AGGCTATCACCTGACCTCCA-AT--
S2 = TAG-CTATCAC--GACCGC--GCT--
Ss3 = TAG-CT---—-—--—- GACCGC-=-GCT--
s4 = TAC----TCAC--GACCGACAGCT--
sb = TAGG---T-A—CAA-CCTA--GATC-

S6 —AG-—--AT-A-CGTC--GACATAT-C



UPP: detalls

Input: set S of unaligned sequences
Output: alignment on S

« Select random subset X of S
« Estimate “backbone” alignment A and tree T on X
* Independently align each sequence in S-Xto A

« Use transitivity to produce multiple sequence
alignment A* for entire set S



UPP: detalls

Input: set S of unaligned sequences
Output: alignment on S

e Select random subset X of S
« Estimate “backbone” alignment A and tree T on X
* |ndependently align each sequence in S-X to A

« Use transitivity to produce multiple sequence
alignment A* for entire set S




How to align sequences to a
backbone alignment?

Standard machine learning technique: Build
HMM (Hidden Markov Model) for backbone
alignment, and use it to align remaining
sequences

HMMER (Sean Eddy, HHMI) leading software
for this purpose



Using HMMER

Using HMMER works well...



Using HMMER

Using HMMER works well...except when
the dataset is big!



Using HMMER to add sequences to an existing alignment

1) build one HMM for the backbone alignment
2) Align sequences to the HMM, and insert into backbone
alignment




One Hidden Markov Model
for the entire alignment?

ALK
@~




Or 2 HMMs?






UPP(X,y)

Pick random subset X of size x
Compute alignment A and tree T on X

Use SATé decomposition on T to partition X into small “alignment
subsets” of at most y sequences

Build HMM on each alignment subset using HMMBUILD

For each sequence s in S-X,

— Use HMMALIGN to produce alignment of s to each subset
alignment and note the score of each alignment.

— Pick the subset alignment that has the best score, and align s to
that subset alignment.

— Use transitivity to align s to the backbone alignment.



UPP design

« Size of backbone matters — small backbones are
sufficient for most datasets (except for ones with very
high rates of evolution). Random backbones are fine.

 Number of HMMs matters, and depends on the rate
of evolution and number of taxa.

« Backbone alignment and tree matter; we use SATEé.



Evaluation of UPP

« Simulated Datasets: 1,000 to 1,000,000 sequences (RNASIm,
Junhyong Kim, Penn)

« Biological datasets: up to 28,000 rRNA sequences with
structural reference alignments (CRW, Robin Gutell, Texas)

« Methods: MAFFT-profile, UPP(x,y) and UPP(x,x) (“HMMER?), all
on the SATé backbone alignment. Also, MAFFT-parttree,
Muscle, Opal, Clustal-quicktree, and SATé.

« Criteria: Alignment error (SP-FN and SP-FP), tree error, and
time

MAFFT-profile is the MSA method with the best accuracy of
standard methods.



UPP vs. MAFFT Running Time

MAFFT-profile did

not complete on 200K
sequences within the
time limit (24 hours on
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2 Other MSA methods

could not run on the
larger data sets.
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RNASiIm data, 10K to 1,000K sequences
Elapsed time on 12-core machine



UPP vs. MAFFT Alignment Error
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One Million Sequence Alignment: Tree Error

0.25-

0.20-

0.15-

FN rate

0.05-

0.00-

Similar improvements on all datasets.

20% reduction in tree error

~2000 more edges recovered

S1000000

UPP(100,100): 1.6 days
using 8 processors
(5.7 CPU days)

UPP(100,10): 7 days
using 8 processors
(54.8 CPU days)

UPPE100,100)
UPP(100,10)

Short sequences:
~1000 nucleotides in
each sequence, so
typical of a gene, not a
genome

Thus, using multiple HMMs improves tree accuracy.




UPP performance

Speed: UPP is very fast, parallelizable, and scalable.

UPP vs. standard MSA methods: UPP alignments are more accurate on
large datasets (with 1000+ taxa), and trees on UPP alignments are more
accurate than trees on standard alignments.

UPP vs. SATé: UPP can analyze larger datasets and is much faster;
UPP has about the same alignment accuracy, but produces slightly less
accurate trees (data not shown).

UPP vs. PASTA (new method, in prep.): Both can analyze the same
datasets, but PASTA is slower. Both have about the same alignment
accuracy, but PASTA produces slightly more accurate trees (like SATé).



Other uses of multiple HMMs

« SEPP: Phylogenetic Placement of short
reads into existing tree (Nguyen,
Mirarab, and Warnow, PSB 2012)

» TIPP: taxon identification of
metagenomic sequences
(in preparation, Nguyen et al. 2013)



Part V: Discussion



Research Agenda

Major scientific goals:

« Develop methods that produce more accurate alignments and
phylogenetic estimations for difficult-to-analyze datasets

* Produce mathematical theory for statistical inference under complex
models of evolution

* Develop novel machine learning techniques to boost the performance of
classification methods

Software that:

 Can run efficiently on desktop computers on large datasets

 Can analyze ultra-large datasets (100,000+) using multiple processors
« Is freely available in open source form, with biologist-friendly GUIs



4 methods

SATé: co-estimation of alignments
and trees

SuperFine: supertree estimation
DACTAL.: trees without alignments

UPP: ultra-large multiple sequence
alignment



Meta-Methods

« Meta-methods “boost” the performance
of base methods (e.g., for phylogeny or
alignment estimation).

Base method M > Meta-method| ———— M*




Phylogenetic “boosters”

Goal: improve accuracy, speed, robustness, or theoretical guarantees of base
methods

Techniques: divide-and-conquer, iteration, chordal graph algorithms, and
“bin-and-conquer”

Examples:

« DCM-boosting for distance-based methods (1999)

 DCM-boosting for heuristics for NP-hard problems (1999)

* SATé-boosting for alignment methods (2009 and 2012)

« SuperFine-boosting for supertree methods (2012)

 DACTAL: almost alignment-free phylogeny estimation methods (2012)
«  SEPP-boosting for phylogenetic placement of short sequences (2012)
» UPP-boosting for alignment methods (in preparation)
 PASTA-boosting for alignment methods (in preparation)

« TIPP-boosting for metagenomic taxon identification (in preparation)

« Bin-and-conquer for coalescent-based species tree estimation (2013)



Algorithmic Strategies

Divide-and-conquer

Chordal graph decompositions
Iteration

Multiple HMMs
“Bin-and-conquer”



Computational Phylogenetics

Interesting combination of

— statistical estimation under Markov models of
evolution

— mathematical modelling

— graph theory and combinatorics

— machine learning and data mining

— heuristics for NP-hard optimization problems
— high performance computing

Testing involves massive simulations



Warnow Laboratory

PhD students: Siavash Mirarab?, Nam Nguyen, and Md. S. Bayzid?
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Funding: Guggenheim Foundation, Packard Foundation, NSF, Microsoft
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TACC (Texas Advanced Computing Center)
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UPP vs. HMMER vs. MAFFT (alignment error)
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MAFFT-profile alignment strategy not as accurate as
UPP(100,10) or UPP(100,100).



UPP vs. HMMER vs. MAFFT (tree error)
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ML on UPP(100,10) and UPP(100,100) alignments both produce

produce better trees than MAFFT.
Decomposition into a family of HMMs improves resultant trees.



SEPP(10%), based on ~10 HMMs
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SEPP (10%) on Biological Data
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16S.B.ALL dataset, 13k curated backbone tree, 13k total fragments
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PaPaRa+pplacer: ~133 days
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SEPP 1000/1000: ~6 days



Major Challenges:
large datasets, fragmentary sequences

« Multiple sequence alignment: Few methods can run on large
datasets, and alignment accuracy is generally poor for large datasets
with high rates of evolution.

 Gene Tree Estimation: standard methods have poor accuracy on
even moderately large datasets, and the most accurate methods are
enormously computationally intensive (weeks or months, high memory
requirements).

« Species Tree Estimation: gene tree incongruence makes accurate
estimation of species tree challenging.

Both phylogenetic estimation and multiple sequence alignment are also
impacted by fragmentary data.



DACTAL performance

« DACTAL faster and matches or improves
upon accuracy of SATé-| for datasets with

1000 or more taxa.

 DACTAL outperforms two-phase methods,
and the biggest gains are on the very large
datasets.



